45
DFG Research Center MATHEON Mathematics for key technologies BMS Days Berlin 18 / 02 / 2008 The Gallium Arsenide Wafer Problem Margarita Naldzhieva joint work with Wolfgang Dreyer, Barbara Niethammer Industrial Needs versus Mathematical Capabili

The Gallium Arsenide Wafer Problem

  • Upload
    lula

  • View
    72

  • Download
    2

Embed Size (px)

DESCRIPTION

The Gallium Arsenide Wafer Problem. Industrial Needs versus Mathematical Capabilities. Margarita Naldzhieva joint work with Wolfgang Dreyer, Barbara Niethammer. DFG Research Center M ATHEON Mathematics for key technologies. - PowerPoint PPT Presentation

Citation preview

Page 1: The Gallium Arsenide Wafer Problem

DFG Research Center MATHEONMathematics for key technologiesBMS Days Berlin 18 / 02 / 2008

The Gallium Arsenide Wafer

Problem

Margarita Naldzhieva

joint work with Wolfgang Dreyer, Barbara Niethammer

Industrial Needs versus Mathematical Capabilities

Page 2: The Gallium Arsenide Wafer Problem

Outline

The Becker-Döring model

From Becker-Döring to Fokker-Planck

Industrial problem

Quasi-stationary and longtime behaviour of solutions

BMS Days Berlin 18 / 02 / 2008

Page 3: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Arsen concentration = 0.500082

BMS Days Berlin 18 / 02 / 2008

Page 4: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Distribution of liquid droplets

Single crystal gallium arsenide

BMS Days Berlin 18 / 02 / 2008

Page 5: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Distribution of liquid droplets

Modeling of liquid droplets

BMS Days Berlin 18 / 02 / 2008

Page 6: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Distribution of liquid droplets

Modeling of liquid droplets

BMS Days Berlin 18 / 02 / 2008

Page 7: The Gallium Arsenide Wafer Problem

The Gallium Arsenide Wafer Problem

Single crystal gallium arsenide

Distribution of liquid droplets

Modeling of liquid droplets

BMS Days Berlin 18 / 02 / 2008

Page 8: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

BMS Days Berlin 18 / 02 / 2008

Page 9: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

Variables

)(tn density of n - cluster

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

BMS Days Berlin 18 / 02 / 2008

Page 10: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

Variables

)(tn density of n - cluster

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

BMS Days Berlin 18 / 02 / 2008

Page 11: The Gallium Arsenide Wafer Problem

The Becker – Döring Process

Variables

)(tn density of n - cluster

1 n + 1n +

CnW

EnW 1

n-1n

EnW

CnW 1

1+

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

consttnn

n

1

)(

BMS Days Berlin 18 / 02 / 2008

Page 12: The Gallium Arsenide Wafer Problem

Different Strategies, I: Ball Carr Penrose

Lyapunov Function

)1(ln)(1

n

n

nn Q

V

Transition rates

11

1 )(

nEn

nCn

bW

taW Equilibria

BMS Days Berlin 18 / 02 / 2008

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 13: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

BMS Days Berlin 18 / 02 / 2008

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 14: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

n n

BMS Days Berlin 18 / 02 / 2008

Page 15: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

Transition rates

))((11 tW

WEn

En

Cn

Cn

BMS Days Berlin 18 / 02 / 2008

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 16: The Gallium Arsenide Wafer Problem

Different Strategies, II: Dreyer Duderstadt

Lyapunov Function

1

11

ln)(

kk

n

nnn

nnAA

Transition rates

))((11 tW

WEn

En

Cn

Cn

2nd law of thermodynamics

)(

)(exp

))((

1

11

1

t

tAA

t nn

nnCn

En

BMS Days Berlin 18 / 02 / 2008

Page 17: The Gallium Arsenide Wafer Problem

Comparison of Transition Rates

Evaporation rates

EnW 1

))((1 tEn

1nb

Condensation rates

CnW

Cn

)(1 tan

2nd law of thermodynamics

)(

)(exp))((

1

111 t

tAAt n

n

nnCn

En

BMS Days Berlin 18 / 02 / 2008

Page 18: The Gallium Arsenide Wafer Problem

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Lyapunov Functions

Lyapunov Functions

)1(ln)(1

n

n

nn Q

V

)ln()(

1

11

kk

n

nnn

nnAA

)(L

0dt

dL

BMS Days Berlin 18 / 02 / 2008

Page 19: The Gallium Arsenide Wafer Problem

NNNN

Water droplets in vapour

p0T0

0 20 40 60 80 100 120 140Number of droplet atoms

1.5 107

1 107

5 108

0

T0 275 °C p011

An

n

Page 20: The Gallium Arsenide Wafer Problem

NNNN

p0T0

0 20 40 60 80 100 120 140Number of droplet atoms

1.5 107

1 107

5 108

0

T0 275 °C p011

An

n

p0

Quasi stationary Flux

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °C

S

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

t

Page 21: The Gallium Arsenide Wafer Problem

NNNN

Quasi stationary Flux

p0

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °CS

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

J25(t)

T0

p0

Model system for calculation

Skim of droplets with nmax + 1 atoms: zn + 1= 0

monomer density constant

max

Page 22: The Gallium Arsenide Wafer Problem

NNNN

Quasi stationary Flux

p0

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °CS

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2°C

S

12.8

t t

Model system

J25(t)

T0

p0

Model system for calculation

Skim of droplets with nmax + 1 atoms: zn + 1= 0

monomer density constant

max

Page 23: The Gallium Arsenide Wafer Problem

Equilibrium solutions : Jn=0

Fluxes

nJ111 nnnn cbcca

Conservation of mass

1

)(1

tnn

n

Variables

)(tn

BMS Days Berlin 18 / 02 / 2008

number n-clusters

total volumenumber n-clusters

total number

)()( 11 tWtWJ nEnn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

Page 24: The Gallium Arsenide Wafer Problem

Equilibrium solutions

n n

nD

nn

qN

Q

)(

Equilibrium solutions : Jn=0

1)( ,111

1

k

kkD

k

kk

kk

k

kqNq

Qk

Constraints

BMS Days Berlin 18 / 02 / 2008

Page 25: The Gallium Arsenide Wafer Problem

Equilibrium solutions

n n

nD

nn

qN

Q

)(

Equilibrium solutions : Jn=0

1)( ,111

1

k

kkD

k

kk

kk

k

kqNq

Qk

Constraints

Convergence radii RBCP and RDD

nDD

nn

DDD

nBCP

nn

BCP

RqN

RnQ

1

1

BMS Days Berlin 18 / 02 / 2008

Page 26: The Gallium Arsenide Wafer Problem

Equilibrium solutions

n n

nD

nn

qN

Q

)(

Equilibrium solutions : Jn=0

Constraints

1)( ,111

1

k

kkD

k

kk

kk

k

kqNq

Qk

Convergence radii RBCP and RDD

nDD

nn

DDD

DDD

BCP

RnqNN1

and1or,1

Equilibrium conditions

nDD

nn

DDD

nBCP

nn

BCP

RqN

RnQ

1

1

BMS Days Berlin 18 / 02 / 2008

Page 27: The Gallium Arsenide Wafer Problem

nn

n

Qn1

with

Equilibrium solutions

nnn Q

Longtime behaviour of solutions I: Penrose et al.

nBCP

nn

BCP RnQ1

Equilibrium condition

BMS Days Berlin 18 / 02 / 2008

Page 28: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions I: Penrose et al.

nn

n

Qn1

with

Equilibrium solutions

nnn Q

nBCP

nn

BCP RnQ1

Equilibrium condition

. (weak*)

(strong) )( then If 0

nBCPn

nnnBCP

BCP

RQ

Qt

Asymptotical behaviour

BMS Days Berlin 18 / 02 / 2008

Page 29: The Gallium Arsenide Wafer Problem

• existence of metastable states (Penrose 1989)

• excess density described by the LSW equations (Penrose 1997, Niethammer 2003)

• convergence rate to equilibrium e-ct1/3 (Niethammer, Jabin 2003)

Longtime behaviour of solutions I: Penrose et al.

. (weak*)

(strong) )( then If 0

nBCPn

nnnBCP

BCP

RQ

Qt

Asymptotical behaviour

BMS Days Berlin 18 / 02 / 2008

Page 30: The Gallium Arsenide Wafer Problem

Modified Flux

11

11exp

n

kk

nnCnn

Cnn AAJ

)exp(1

11

111

n

kknn

Cnn

Cn AA

nJ~

Simplified Dreyer/Duderstadt Model

Current state of the artMathematical results for a modified DD model!

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 31: The Gallium Arsenide Wafer Problem

11

11

~~exp

~~~

n

kknn

Cnn

Cnn AAJ

11

1

1

~~)(

~

2~~

)(~

JJ

nJJ

kk

nnn

with

Modified Becker-Döring system

New time scale

t

dss0 1 )(

1

)()(

~tnn

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Simplified Dreyer/Duderstadt Model

Page 32: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions II: mod. Dreyer

BMS Days Berlin 18 / 02 / 2008

n

nn

n

nn

n

nn

RnqRq

Rq

11

1

and1

or,1

Equilibrium condition

1

11

)( ,1

k

kkD

k

kk kqNq

Equilibrium solutions

with )( nnDn qN

Page 33: The Gallium Arsenide Wafer Problem

n

nn

n

nn

n

nn

RnqRq

Rq

11

1

and1

or,1

Equilibrium condition

1

11

)( ,1

k

kkD

k

kk kqNq

Equilibrium solutions

with )( nnDn qN

for )(weak 0

(strong) )(

~ nn

depending on the Availability of the System:

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Longtime behaviour of solutions II: mod. Dreyer

Page 34: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions: GaAs wafer

Distribution of liquid droplets

1for nnaAn

Assumption

n

BMS Days Berlin 18 / 02 / 2008

Page 35: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions: GaAs wafer

Distribution of liquid droplets

1for nnaAn

Assumption

1

11

)( ,1

k

kkD

k

kk kqNq

Equilibrium solutions

with )( nnDn qN

relevant ?

BMS Days Berlin 18 / 02 / 2008

Page 36: The Gallium Arsenide Wafer Problem

Longtime behaviour of solutions: GaAs wafer

Distribution of liquid droplets

1for nnaAn

Assumption

relevant ?

BMS Days Berlin 18 / 02 / 2008

0 20 40 60 80 100time intau

0

2.51017

51017

7.51017

11018

1.251018

1.51018

Jni

s^

1mc

^3

T2 °C

S

12.8

J25(t)

nmax = 40

nmax = 50

nmax = 70

t

J25(t)

Page 37: The Gallium Arsenide Wafer Problem

n

n

n

nn

Cnn QQQWJ

1

1

1, 111 QQWQW nEnn

Cn)()( 11 tWtWJ n

Enn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

From Becker-Döring to Fokker-Planck

2for)1(

)( 1

n

nn

JJt nn

n

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 38: The Gallium Arsenide Wafer Problem

n

n

n

nn

Cnn QQQWJ

1

1

1, 111 QQWQW nEnn

Cn)()( 11 tWtWJ n

Enn

Cnn

11

)(1

JJtk

k

2)( 1 nJJt nnn

with

Becker-Döring system

From Becker-Döring to Fokker-Planck

2for)1(

)( 1

n

nn

JJt nn

n

))(,(

),(

tfxQ

xtfx

,Jxtf Dxt 1in ),(

fffxQxWJ xxxC

D ),(ln)(

Continuous System (Duncan)

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

DxJ

Page 39: The Gallium Arsenide Wafer Problem

,Jxtf Dxt 1in ),(

fffxQxWJ xxxC

D ),(ln)(

Continuous System (Duncan)

From Becker-Döring to Fokker-Planck

)1,(

),(ln)(

tf

dxxtfxa

Dreyer/Duderstadt

Continuous thermodynamics

dx

tfNxq

xtfxtftfA

D ))(()(

),(ln),())((

with)()(,),())(( xa

D exqdxxtftfN

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 40: The Gallium Arsenide Wafer Problem

,Jxtf Dxt 1in ),(

fffxQxWJ xxxC

D ),(ln)(

Continuous System (Duncan)

From Becker-Döring to Fokker-Planck

)1,(

),(ln)(

tf

dxxtfxa

Dreyer/Duderstadt

Continuous thermodynamics

dx

tfNxq

xtfxtftfA

D ))(()(

),(ln),())((

Lyapunov Funktion, minimal at equilibria!

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 41: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 42: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

fffxQxWJ xxxC

D ),(ln)(

Page 43: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System fffxQxWJ xxxC

D ),(ln)(

Thermodynamics and mass conservation

constdxxtxftn

dxtfNxq

xtfxtf

NqtfA

M

nn

D

M

n Dn

nn

),()(

))(()(

),(ln),(

)(ln))((

1

1

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 44: The Gallium Arsenide Wafer Problem

Mixed System

,MJxtf

MnJJt

dxJJJt

Dxt

nnn

D

M

kk

1in ),(

2)(

)(

1

11

1

Mixed System fffxQxWJ xxxC

D ),(ln)(

)1,(

0lim and

1

1

Mf

xJJJ

M

Dx

MMxD

Boundary values

Mathematics for key technologies and innovation Warsaw 21 - 22 / 02 / 2008

Page 45: The Gallium Arsenide Wafer Problem

Summary and outlook

thermodynamically consistent nucleation rates

existence of a metastable phase befor equilibrium?

Becker-Döring model for homogeneous nucleation

equilibrium solutions and asymptotical behaviour

Duncan`s PDE approximation of the discrete System?

BMS Days Berlin 18 / 02 / 2008