Click here to load reader
View
225
Download
6
Embed Size (px)
Author: Dirk Bertels
Hobart, November 12, 2004
Proportions in a Geodesic Dome
Calculations of the geodesic dome based on the icosahedron (frequency 3)
Proportions in a Geodesic Dome Dirk Bertels
Index
INTRODUCTION ....................................................................................................................6
DEFINITIONS..........................................................................................................................7
STANDARDS USED IN THIS PAPER..................................................................................9 VECTORS .................................................................................................................................9 VERTICES AND POINTS .............................................................................................................9
Example ............................................................................................................................10 LINES.....................................................................................................................................10
THE ICOSAHEDRON ..........................................................................................................11 LENGTH OF THE ICOSAHEDRON EDGE....................................................................................13 LENGTH OF THE ICOSAHEDRON RADIUS.................................................................................13
APPROXIMATING THE SPHERE.....................................................................................14
FREQUENCY...........................................................................................................................14 CONVERTING THE ICOSAHEDRON TO A GEODESIC DOME ........................................................14
First step...........................................................................................................................14 Second step .......................................................................................................................15 Second step .......................................................................................................................16
DETAILED CALCULATIONS OF THE GEODESIC DOME ........................................17 STEP 1 - CALCULATING SECONDARY AND TERTIARY VERTEX COORDINATES AND RADII ON THE SURFACE OF AN ICOSAHEDRON .......................................................................................17
Locate the new vertices onto the 3-dimensional grid (calculate the coordinates). ..........17 STEP 2 - CALCULATING VERTICES ON THE GEODESIC DOME.................................................18 GEODESIC SPHERE COORDINATES FOR TRIANGLE AIJ...........................................................19 LENGTH OF GEODESIC DOME EDGES.....................................................................................20
ANGULAR INFORMATION ...............................................................................................21 LOCAL AXES ..........................................................................................................................21
DIHEDRAL ANGLES ...........................................................................................................22
ANGLE_DI_BB1 ANGLE BETWEEN 2 'B' EDGES INSIDE A ICOSAHEDRON TRIANGLE............22 ANGLE_DI_BB2 ANGLE BETWEEN 2 'B' EDGES JOINING 2 ICOSAHEDRON TRIANGLES ........24 ANGLE_DI_CC ANGLE BETWEEN 2 MEETING C EDGES......................................................25
Interlude ...........................................................................................................................25 ANGLE_DI_AA ANGLE BETWEEN 2 MEETING A EDGES ......................................................27 SUMMARY .............................................................................................................................28 ILLUSTRATIONS .....................................................................................................................29
DESIGNING ANIMATION OBJECTS...............................................................................30
APPLYING AN EVEN THICKNESS - BACKGROUND .................................................31 THE 'RUSSIAN DOLL' METHOD ..............................................................................................31 CENTERS OF A TRIANGLE .......................................................................................................32
1. Gravitational center .................................................................................................32
Page 2 of 76
Proportions in a Geodesic Dome Dirk Bertels
2. Orthocenter...............................................................................................................32 3. Circumradius ............................................................................................................32 4. In-center ...................................................................................................................33 5. Inner-radius system ..................................................................................................33
APPLYING AN EVEN THICKNESS ..................................................................................35 TRANSLATING THE PLANE......................................................................................................35 FINDING THE COORDINATES...................................................................................................35 EXAMPLE TRIANGLE BLOCK...................................................................................................35 PLANE EQUATIONS - GENERAL ..............................................................................................37
vector equation .................................................................................................................37 scalar equation .................................................................................................................37
THE ACF PLANE ...................................................................................................................38 Calculate the normal vector .............................................................................................38 Adding unit normal to plane ACF to get projected plane coordinates ............................39
EQUATION FOR THE AR - CL - FL PLANE................................................................................40 THE CBE PLANE....................................................................................................................41
Plane equation for Bl........................................................................................................41 THE BAD PLANE ...................................................................................................................42
Plane equation for Al........................................................................................................42 THE BCA PLANE ...................................................................................................................42 THE BCA PLANE ...................................................................................................................43
The plane equation for point Ab.......................................................................................43 THE EDF PLANE ....................................................................................................................43 THE EDF PLANE ....................................................................................................................44
The plane equation for point Dt .......................................................................................44 PLANE INTERSECTIONS ..........................................................................................................45
Point 1: Intersection of planes Ar - Cl - Fl, Br - Al - Dl, and Bb - Cb - Ab .....................45 ILLUSTRATIONS .....................................................................................................................46 CALCULATING THE RADIAL ANGLE BETWEEN 2 VERTICES - GENERAL EQUATION ..................48
angle_A_Yaxis ..................................................................................................................48 angle_AIJ_Yaxis = 0.364864 radians ..............................................................................49 angle_A_AIJ = 0.652358 radians ....................................................................................49 angle_A_DJI = 1.38209 radians......................................................................................49 angle_A_DGJ = 1.75951 radians ....................................................................................49 angle_A_CGD = 2.48923 radians ...................................................................................49
EDGE-RADIAL ANGLES ....................................................................................................50
SUPPLEMENT 1 - CLASSIFICATION / NOMENCLATURE ........................................51
Edges ................................................................................................................................51 Chords[over edge]............................................................................................................51 Angle[chord,edge]............................................................................................................51
SUPPLEMENT 2 - EQUATION CELLS...................