20
-- The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08 wkl -b-29 A ray departing from P in the direction B ,with rmpBect to the mirror normal (isre&cted symmef rice at tk same agk 8. This is because the symmetric path POP' has minimum length. Campxe, for example, the altanative POP'. Clearly, IPOI + JUP'I < IP~I+ I~P'I. - Comider tbe c~di32wtion af OP' backwards through the mirror. To QQ observer in the direction af P, the ray will appew to bve originated at P". = NUS

The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

--

The law of reflection

P'

P

mirror or

dielectric interface MIT 2.7112.710 02/06/08wkl-b-29

A ray departing from P in the direction B ,withrmpBectto the mirror normal (isre&cted symmefr i c e at tk same a g k 8.

This is because the symmetric path POP' has minimum length.

Campxe, for example, the altanative POP'. Clearly, IPOI + JUP'I < I P ~ I +I ~ P ' I .

-

Comider tbe c~di32wtion af OP' backwards through the mirror. To QQ observer in the direction af P, the ray will appew to b v e originated at P".

= NUS

Page 2: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Reflection from mirrors

30

In: right-handed

triad

Out: left-handed

triad

mirror

Projected: left-handed

triad

(front view)

Page 3: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

--

The law of refraction (Snell's Law)

Taking derivatives with respect to x7

a(cP&) s -

b - z =~&4-22'&4#=Qlas;

=+-n a 0 =a's&@'

Tbis re&& is know as 's &ew,or e

= MIT 2.7112.710 NUS 02106108 wkl-b-31

Page 4: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

Snell's Law as minimum time principle

Beach, running speed

vr-

Which path should the lifeguard follow to reach the drowning person in minimum time?

MIT 2.7112.710 02106108 wkl-b-32

Page 5: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

Snell's Law as momentum conservation principle

MIT 2.7112.710 NUS 02/06/08wkl-b- 33 'w

Page 6: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Two types of refraction

air glass glass air

from lower to higher index (towards optically denser material)

angle wrt normal decreases

from higher to lower index (towards optically less dense material)

angle wrt normal increases

34

if the combination of and is such that

then Snell’s law in the less dense medium cannot be satisfied. This situation is

known as Total Internal Reflection (TIR)

the maximum angle that can enter the optically dense medium

is such that

Page 7: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

glass

air

MIT 2.71/2.710 02/06/08 wk1-b-

Total Internal Reflection (TIR)

35

glass

air at critical angle, the refracted light propagates

parallel to the interface

the result is called a “surface wave”

at angles of incidence higher than critical, the light is totally internally reflected

almost as if the glass-air interface were a mirror

in both cases of surface wave and TIR, there is an exponential tail of electric field

leaking into the medium of lower optical density; this is called the evanescent wave.

We will learn more about evanescent waves after we cover the electromagnetic nature of light

Typically, the evanescent wave is a few wavelengths long but it can be much longer near the critical angle

Page 8: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

Frustrated Total Internal Reflection (FTIR)

r

> 6, glass n c

If another dielectric appsoacbes within a Eew distant canatants from the TLR interface, the tail of the exponentially evmescent wave

becomes propagating; i.e. the light couples out of the medium.

This situati,~is known as hs t ra ted Total injernol &ejbt ion (FTB) .

In quantum mechanics, there is an analogous &ect b o r n as tunneling.

We will compute the amount of energy coupled out of the medium of incidence later, after we study the ekctramgnetic nature of light.

lllii

Page 9: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Prisms

glassair air

TIR TIR

glass

air air

airair

45° 45°

air

glass

TIR

TIR

retro-reflector

pentaprism

Page 10: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Fingerprint sensors

laser illumination

finger

right-angle prism

digital camera

Page 11: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Optical waveguides

TIR TIR

no TIR

“planar” waveguide: high-index dielectric material sandwiched between lower-index dielectrics

Page 12: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Numerical Aperture (NA) of a waveguide

TIR TIR

no TIR

high index contrast (n1/n2) ⇔ high NA

NA is the sine of the largest angle that is waveguided

air (n=1)

i.e., NA is the incident angle of acceptance of the waveguide

Page 13: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

GRadient INdex (GRIN) waveguide

41

TIRlowest index

highest index

Page 14: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Optical fibers: step cladding

cladding (lower index)

core (higher index)

Core diameter = 8-10µm (commercial grade) Cladding diameter = 250µm (commercial grade)

Index contrast Δn = 0.007 (very low NA) attenuation = 0.25dB/km

Page 15: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Optical fibers: GRIN

cladding (lower index)

core of gradually

decreasing index

optical rays “swirl” in a helical trajectory around the axis of the core

Page 16: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

GRIN waveguides in nature: insect eyes

Image by Thomas Bresson at Wikimedia Commons.

Images removed due to copyright restrictions. Please see

http://commons.wikimedia.org/wiki/File:Superposkils.gif

Page 17: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Dispersion from a prism

incident white light (all visible

wavelengths)

Newton’s prism

red

green

blue

glassair

rainbow exit

Page 18: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT 2.71/2.710 02/06/08 wk1-b-

Dispersion measures Reference color lines

C (H- λ=656.3nm, red), D (Na- λ=589.2nm, yellow),

F (H- λ=486.1nm, blue)

e.g., crown glass has

Dispersive power

Dispersive index aka Abbe’s number

e.g. for crown glass: V=0.01704 or v=58.698

Page 19: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

Paraboloidal reflector: perfect focusing

What should the shape function s(x) be in order for the incoming parallel ray bundle

to come to perfect focus?

The easiest way to find the answer isto invoke Fermat’s principle:

since the rays from infinity follow the minimum path before they meet at P,

it follows that they must follow the same path.

focus at F

A paraboloidal reflector focusesa normally incident plane wave

to a pointMIT 2.71/2.710 02/09/09 wk2-a- 3

3

Page 20: The law of reflection - Rutgers Physics & Astronomyeandrei/389/fresnel-1.pdf · The law of reflection P' P mirror or dielectric interface MIT 2.7112.710 02/06/08wkl-b-29 A ray departing

MIT OpenCourseWarehttp://ocw.mit.edu

2.71 / 2.710 Optics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.