24
Monica Zepeda AAPS 2014 National Biotechnology Conference San Diego, CA The Mini-pig As a Model for Subcutaneous Administration

The Mini-pig As a Model for Subcutaneous Administration · San Diego, CA The Mini-pig As a Model for Subcutaneous Administration . 2 • Skin: Man vs pig • Pig Model ... Gio Roxas

Embed Size (px)

Citation preview

Monica Zepeda AAPS 2014

National Biotechnology Conference

San Diego, CA

The Mini-pig As a Model for Subcutaneous

Administration

2

•  Skin: Man vs pig

•  Pig Model •  In-line (tissue) pressure •  Induration at the local tissue site •  Hypo-perfusion •  PK and PET Scan for dispersion of proteins

•  Summary and Conclusions •  Resources

Overview

3

The Skin

•  Skin makes up 3.7% of the human body by weight

•  Skin is not uniform – varies by gender, age,

ethnicity, hormonal levels, and location

•  Functions: •  Physical barrier •  Containment (prevent loss of fluid) •  Thermoregulation •  Sensation (tactile) •  Metabolism (biodegradation of xenobiotics) •  Communication (pheromones)

J.A. Mahl – 2008 Minipig Research Forum

4

Similarities Between Human and Minipig Skin

J.A. Mahl – 2008 Minipig Research Forum

Comparable Physical Parameters •  Thickness of the epidermis

•  Similar anatomical structures (ex Rete ridges)

•  Sparse density of hair follicles

•  Pigmentation

•  Similarities in vascularization

•  Tight attachment of the skin

Comparable Cell Kinetic Parameters

•  Mitotic labeling index

•  Rate of proliferation

•  Turnover rate

5

Differences: Minipig to Human Skin

•  Hyperkeratotic stratum corneum (pig is deeper)

•  Less vascular dermis

•  Absence of eccrine cutaneous glands (only in primates)

•  Apocrine skin glands are not involved in thermoregulation

•  Found only in foot pads and snout

•  Skin is more acidic

J.A. Mahl – 2008 Minipig Research Forum

6

Histology of Normal Skin

H&E Stain of Tissue Samples from the Abdominal Region

Human Minipig Epidermis Stratum corneum Stratum luteum

Stratum granulosum Stratum spinosum

Stratum germinativum

Dermis Papillary and

reticular layers Collagen, reticulin, elastin fibers, and

glucosaminoglycan-rich ground substance

Subcutis

(hypodermis) Adipose tissue

Loose connective tissue (collagen)

Elastin and GAG

•  3 areas of the pig skin that translate best to human: 1) Snout 2) behind the ear and 3) abdomen (near inguinal fold)

7  7

§  Rapid hydrolysis of hyaluronan

§  Local removal of the barrier to bulk

fluid flow

§  Increase dispersion of drugs/fluids

§  Relative to traditional SC

§  Accelerates absorption

§  Increases bioavailability

§  Increases maximum volume

§  Effect is temporary

§  rHuPH20 locally metabolized in

minutes

§  Hyaluronan barrier reconstitutes in

1-2 days

Recombinant Human Hyaluronidase (rHuPH20) A Well Characterized Enzyme

Human body turns over more than 5 grams/day

(1/3rd of total body pool)

+ Hyaluronidase

O

NH

OOH

O O

OH

OH

CH3

O

OH

OOH

n  

n = 2,000 – 25,000

(0.2 – 10 MDa)

N-­‐Acetylglucosamine   Glucuronic  Acid  

8  8  8  

PH20  Mechanism  Of  Ac=on  

9  9  9  

PH20  Mechanism  Of  Ac=on  

10  10  10  

PH20  Mechanism  Of  Ac=on  

11  11  11  

PH20  Mechanism  Of  Ac=on  

12  12

rHuPH20 Reduces Local Swelling and Induration What is happening inside and around the bleb?

Control rHuPH20 Control rHuPH20

13

Pig Subcutaneous Pressure Model What is occurring in the local tissue during SC administration ?

•  1-4 infusion sites per pig •  18 ga “winged” infusion set

•  large bore needle à reflects “tissue pressure” •  small bore needleà reflects “system pressure”

•  Endpoints: •  In-line pressure (tissue pressure) •  Local skin visco-elasticity (pliability) •  Cutaneous blood flow

Pressure Transducer

Stopcock

18 ga “winged” infusion set

14  14

rHuPH20 Reduces Local Interstitial Pressure During SC Infusions

0 300 600 900 1200 1500 18000

50

100

150

200ControlrHuPH20

Time (sec)

Mea

n In

-Lin

e P

ress

ure

(mm

Hg±

SEM

)

n = 8; p < 0.0001

10 20 30 40 50 Volume Delivered (mL)

•  50  mL  IgG  (15%)  infusion  •  2mL/minute  (25  minutes)  •  2,000  U/mL  rHuPH20  •  Control  (no  rHuPH20)  

15  15

rHuPH20 Increases Local Fluid Dispersion Surface Area and Reduces Infusion Site Volume

Control rHuPH200

20

40

60

80

Mea

n Vo

lum

e (c

m3±

SEM

) n = 8; p < 0.0001

Control rHuPH2040

50

60

70

80

90

100

Mea

n A

rea

(cm

SEM

) n = 8; p < 0.05

16  16

Skin Elasticity by Cutometer Measurement rHuPH20 Maintains Skin Pliability Following SC Infusions

Control rHuPH20-1.0

-0.5

0.0

0.5

1.0

Mea

n D

iffer

ence

in S

kin

Exte

nsio

nB

etw

een

Bas

elin

e an

d P

ost-I

nfus

ion

(mm±

SEM

)

n = 8; p < 0.05

17  17

Local Cutaneous Blood Flow after SC Delivery in the Pig Laser Doppler Imaging (over time and volume)

Control rHuPH20

Pre-Infusion

Post-Infusion

10 mL 20 mL 30 mL

40 mL 50 mL

18  18

rHuPH20 Maintains Better Cutaneous Blood Flow During SC Infusions

Control rHuPH20

Control histograms shift to the left (less blood flow; hypo-perfusion) throughout the course of the infusion while rHuPH20 maintains blood flow

0 5 10 15 20 25 30 35-20

-10

0

10

20 ControlrHuPH20

~ Time (min)% C

hang

e in

Flu

x fr

om B

asel

ine±

SEM

0 5 10 15 20 25 30 350

10

20

30

40

50ControlrHuPH20

~ Time (min)

Num

ber o

f Pi

xels

In L

owes

tPe

rfus

ion

Cat

egor

SEM

(0-6

2.5

Flux

Uni

ts)

19  19

rHuPH20 Reduces Local Swelling and Induration at the Infusion Site

Control rHuPH200

1

2

3

4

Mea

n Sw

ellin

g/In

dura

tion

Inde

x (S

II)

n = 8; p > 0.05

Control rHuPH20

20

Volumetric Dispersion is Linked to Increased Absorption of Proteins

0 6 12 18 24 30 36 42 48 54 60 66 720

100000

200000

300000

400000

ControlrHuPH20

Time (hr)

Mea

n Pl

asm

a Co

ncen

trat

ion

ofHu

man

IgG

(ng/

mL±

SEM

)

rHuPH20 Control

High IntensityLow Intensity

0 25 50 75 100 125 1500

250

500

750

1000

1250

1500

ControlrHuPH20

Time (min)

PE

T C

ompu

ted

Vol

ume

(Num

ber

of V

oxel

s)

•  15  %  IgG  soluCon  +  radiolabeled  Zevalin®  

•  2,000  U/mL  rHuPH20  •  Volume  =  10  mL  •  4-­‐10mL/minute  flow  rate  

Volumetric  Dispersion  and  Clearance  aRer  SC  AdministraCon  

Transaxial  PET  Imaging:  rHuPH20  Dispersion  and  Infusion  Site  Clearance  2-­‐hr  Post-­‐Infusion  

ConcentraCon  vs.  Time    

21

Preclinical Models for Subcutaneous Delivery Rodent vs Primate vs Swine A>ribute   Rodent   Primate   Swine  

Volume   No   Yes   Yes  

PK  Yes    

(large  body  of  experience)  

Yes   YesΨ  (Increasing)  

Device  Feasibility   No   Maybe   Yes  

Clinical  De-­‐risking  (Administra=on/Delivery)   No   Some   Yes  

Handling/Housing   Easy   Limited/complex  Moderate  

(social,  single  or  group  housed)  

Expense   Low   High   Low  

Toxicology  Experience   High   High   Low-­‐moderate  

RRR  •  Replacement  •  Refinement  •  Reduc=on  

Lower  impact   Higher  impact   Moderate  to  low  impact  

ΨClaudia  Suenderhauf,  N  Parro_  A  physiologically  based  PK  model  of  the  Minipig:  Data  CompilaCon  and  Model  ImplementaCon  

22

Summary and Conclusions •  The mini-pig is a translational large animal model which can be used for

subcutaneous drug delivery evaluation •  Similar architecture and physiological properties to that of the human •  Clinically relevant volumes can be delivered for risk mitigation •  PK can be performed in the pig

•  Bleb formation and size of bleb translates to the human •  In-line (tissue) pressure can characterize in vivo stress parameters for SC

delivered therapeutics •  Skin pliability (cutometer) at the local injection site characterize induration

•  Laser Doppler in the mini pig can determine blood flow rate changes during SC delivery

•  PET Scan technology can assess local clearance and retention after SC delivery in the mini pig

•  rHuPH20 increases dispersion, reduces tissue pressure, and maintains

local blood flow at the injections site  

23

Resources

•  Minipig  Research  Forum  (MRF)    h_p://minipigresearchforum.org/  

•  David  Kang  and    Monica  Zepeda    [email protected]    [email protected]  

 •  The  minipig  in  dermatotoxicology:  Methods  and  challenges    

 J.A.  Mahl  et  al.  /Experimental  and  Toxicologic  Pathology  57  (2006)  341–345  

•   Immunogenicity  tesCng  of  Adalimumab  and  Infliximab  in  Göjngen  Minipigs.    van  Mierlo  G  et  al.  Society  of  Toxicology.  Washington  DC:  Society  of  Toxicology  (2011)  

•  Immunogenicity  tesCng  of  Kineret  in  Göjngen  minipigs    Penninks  A  et  al  Society  of  Toxicology.  Washington  DC:  Society  of  Toxicology  (2011)    

•  Porcine  model  to  evaluate  local  Cssue  tolerability  associated  with  subcutaneous  delivery  of  protein  D.W.  Kang  et  al  J  Pharm  and  Tox  Meth  (2013)  

24

Acknowledgements

David Kang

Dan Maneval

Beth Clark

Fred Drake

Gerald Fu

Alex Oh

Genaro Ronquillo

Gio Roxas

James Skipper

Tara A. Nekoroski

Marie A. Printz

Carl K. Hoh and David R. Vera