11
Page 1 THE REAL NUMBER SYSTEM Review The real number system is a system that has been developing since the beginning of time. By now you should be very familiar with the following number sets : Natural or counting numbers : 1; 2; 3; 4; … Whole numbers : 0; 1; 2; 3; 4; … Integers : … –3; –2; –1; 0 ; 1; 2; 3; … Did you know? The three dots (…) are called ellipses and indicate that there would be more digits to come before or after in the list. And then along came all numbers that could be written as fractions and because fractions are actually ratios the name ‘rational’ numbers was born. FraCtioNs (Can you see the word ‘ratio’ hidden inside the word FRACTIONS?) So what exactly then is a rational number? By definition, any number of the form a _ b where a, b are integers and b ¹ 0 is rational. So let us look at the kind of numbers that fit into this family. 1. All natural, whole and integer numbers are rational. 2 can be written as 2 _ 1 which fits the definition of a _ b –10 can be written as –10 _ 1 which makes it rational 2. All mixed fractions are rational e.g: 1. 3 1 _ 2 = 7 _ 2 2. –10 3 _ 10 = –103 _ 10 3. All terminating decimals are rational (they end or have a finite number of decimal places) e.g. : 1. 0,25 = 25 _ 100 = 1 _ 4 2. 4,032 = 4 32 _ 1 000 = 4 4 _ 125 = 504 _ 125 1 LESSON M911 GRADE 10.indb 1 M911 GRADE 10.indb 1 2010/12/13 01:49:03 PM 2010/12/13 01:49:03 PM

THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Embed Size (px)

Citation preview

Page 1: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 1

THE REAL NUMBER SYSTEM

Review

The real number system is a system that has been developing since the beginning of time. By now you should be very familiar with the following number sets :

Natural or counting numbers : 1; 2; 3; 4; …

Whole numbers : 0; 1; 2; 3; 4; …

Integers : … –3; –2; –1; 0 ; 1; 2; 3; …

Did you know? The three dots (…) are called ellipses and indicate that there would be more digits to come before or after in the list.

And then along came all numbers that could be written as fractions and because fractions are actually ratios the name ‘rational’ numbers was born.

FraCtioNs (Can you see the word ‘ratio’ hidden inside the word FRACTIONS?)

So what exactly then is a rational number?

By definition, any number of the form a _ b where a, b are integers and b ¹ 0 is rational.

So let us look at the kind of numbers that fit into this family.

1. All natural, whole and integer numbers are rational.

2 can be written as 2 _ 1 which fits the definition of a _ b –10 can be written as

–10 _ 1 which makes it rational

2. All mixed fractions are rational

e.g: 1. 3 1 _ 2 = 7 _ 2

2. –10 3 _ 10 = –103 _ 10

3. All terminating decimals are rational (they end or have a finite number of decimal places)

e.g. : 1. 0,25 = 25 _ 100 = 1 _ 4

2. 4,032 = 4 32 _ 1 000 = 4 4 _ 125 = 504 _ 125

1LESSON

M911 GRADE 10.indb 1M911 GRADE 10.indb 1 2010/12/13 01:49:03 PM2010/12/13 01:49:03 PM

Page 2: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 2Page 2

If you type 4,032 into your calculator and hit equals – it might change it to 4 4 _ 125 directly. Ask your teacher to show you if your calculator can

change 4 4 _ 125 into 504 _ 125 as well.

4. All recurring decimals are rational (there is a repeat pattern identified)

e.g.: 1. 0, ․ 3 = 1 _ 3

2. 1, ․ 3 ․ 2 = 1 32 _ 99 = 131 _ 99

If you type 0,33333333333 into your calculator and hit equals it converts this recurring decimal into 1 _ 3 for you. The same holds for 1,323232323232 being changed to 1 32 _ 99 .

However, you are required to be able to do this conversion manually. So this is how its done.

4.1 Convert 0, ․ 3 to a common fraction. Show all working.

Let x = 0,33333 …

Then 10x = 3,33333 … (Multiply by 10)

Now 9x = 3 (Subtract top line from bottom)

x = 1 _ 3 (Divide both sides by 9)

4.2 Convert 1, ․ 3 ․ 2 to a common fraction. Show all working.

Let x = 1,3232323232 …

100 x = 132,32323232 …

99x = 131 (subtract top line from bottom

x = 131 _ 99 (divide both sides by 99)

4.3 Convert 4,02 ․ 4 ․ 5 to a common fraction. Show all working.

Let x = 4,02454545 (multiply by 100 to bring the non-repeating digits in front of the decimal) 100 x = 402,454545

10000 x = 40245,454545

9900 x = 39843 subtract second line from third line

x = 3 9843 _ 9 900 = 27 _ 4 1100 the answer you get immediately on your calculator

Of course, all rational numbers can be shown on a number line and there are infinitely many of them.

What does this mean? Well if we look at the line between integers 1 and 2

1 a b c 2

Then a = 1 1 _ 2 = 3 _ 2

b = 1 3 _ 4 = 7 _ 4

c = 1 7 _ 8 = 15 _ 8 etc

And so we can always place another fraction between any two fractions, and keep on going forever. This means that the rational numbers are densely (tightly) packed on to the number line – but there is always room to squeeze in at least one more. A weird thought!

(multiply by 100 because we need the part after the decimal comma to be the same)

M911 GRADE 10.indb 2M911 GRADE 10.indb 2 2010/12/13 01:49:03 PM2010/12/13 01:49:03 PM

Page 3: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 3

You would think that we have now mentioned all the numbers that exist, wouldn’t you? However, some numbers are not able to be written in the form a _ b , with a and b integers and b ≠ 0 and so they fail the rational test. We call this family of numbers the IRRATIONAL numbers (and yes, they can be thought of as mad!)

Example

Key the value √ _ 2 into your calculator. The screen should show

√ _ 2 = 1,414213562 but in fact √

_ 2 = 1,414213562 …

The rest of the digits are not visible/showing on your screen as there is limited space. We have no way of knowing/predicting what the next digits are and so here we have a case of a decimal which does not end (non – terminating) and does not re-occur (non – recurring) and so this number is not rational, irrational.

Here is a quick proof of how we know that √ _ 2 is irrational. It is a proof by

contradiction.

First we suppose that √ _ 2 is a rational number. So we can write √

_ 2 = a _ b ; a, b are

integers b ≠ 0.

We also suppose that a _ b is a fraction in simplest form.

Now ( √ _ 2 )2 = ( a _ b ) 2 square both sides

2 = a2 _

b2

a2 = 2b2 … (1)

So now a2 is an even number since it is equal to 2 times something.

But 2 × 2 = 4; 3 × 3 = 9; 4 × 4 = 16; 5 × 5 = 25; 7 × 7 = 49

Can you see that if a2 is even than a itself has to be even (since (odd)2 = odd)

This means that a = 2k (can be written as a multiple of 2)

So now from (1) above

2 = (2k)2

_ b2

2 = 4k2 _

b2

2b2 = 4k2

b2 = 2k2

This means that b was also an even number. Oops! This is a contradiction! Because we supposed from the start that a _ b is a fraction in simplest form, and now we get a and b both even. So our original statement that √

_ 2 is rational is

untrue. It must be irrational.

Activity 1

State if these numbers are rational or irrational?

1. √ _ 3 2. √

_ 4 3. √

_ 7

4. – √ _ 25 5. √

_ 26 6. √

_ 100

M911 GRADE 10.indb 3M911 GRADE 10.indb 3 2010/12/13 01:49:04 PM2010/12/13 01:49:04 PM

Page 4: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 4Page 4

7. 1 + √ _ 2 8. 3 √

_ 8 9. 3 √

_ 10

Another important number which is irrational is p.

Remember the ratio of the circumference of a circle to its diameter gives us the quantity p.

Circumference __ Diameter = p = 3,141592654 …

Rational approximations for p are p = 22 _ 7 or 3,14 (rounded to 2 decimals). From now on, all calculations requiring p will need you to use p on your calculator (so hopefully you have a calculator with this button).

Now of course, irrational numbers also have to have a position on a number line so we need to find a way to place them. Remember all your working must be shown – you can’t just type the number into your calculator.

Activity 2

In this activity we are going to establish between which two integers any irrational number lies. The first one has been done for you.

1. √ _ 2

Now 1 < 2 < 4 (2 lies between the square numbers 1 and 4) so √

_ 1 < √

_ 2 < √

_ 4

so 1 < √ _ 2 < 2

2. √ _ 5

3. √ _ 69 4. – √

_ 24

As before, there are infinitely many irrational numbers. ●

A number like ● √ _ 2 ; √

_ 5 ; 3 √ _ 10 is also called a SURD.

● √ _ 4 or √

_ 100 is not a SURD but it is a rational number.

By the Theorem of Pythagoras :

AC2 = 22 + 32

AC2 = 13 AC = √

_ 13

A

B C

2

3

M911 GRADE 10.indb 4M911 GRADE 10.indb 4 2010/12/13 01:49:05 PM2010/12/13 01:49:05 PM

Page 5: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 5

This is the exact value for the length of AC and we should use √ _ 13 on our

calculator for any further calculations.

If we write √ _ 13 as 3,6 (correct to 1 dec. digit)

or as 3,61 (correct to 2 dec. digits)

or as 3,606 (correct to 3 dec. digits)

then we are using a rational approximation for a number which is actually irrational and our final answer will not be exact.

Did you follow how √ _ 13 was rounded off to a specified number of decimal

digits? This is a skill you should have from junior school. You should also be able to give answers correct to the nearest unit, ten or hundred.

Activity 3

1. Given 23,10734569. Write this number

1.1 correct to the nearest unit

1.2 correct to the nearest ten

1.3 correct to the nearest hundred

1.4 correct to 1 dec. digit

1.5 correct to 2 dec. digits

1.6 correct to 5 dec. digits

2. Round √ _ 30 to

2.1 the nearest integer

2.2 one decimal digit

M911 GRADE 10.indb 5M911 GRADE 10.indb 5 2010/12/13 01:49:06 PM2010/12/13 01:49:06 PM

Page 6: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 6Page 6

2.3 three decimal digits

We have now discussed all of the numbers in the real number system.

You should now be able to see that this system can be represented in this picture form:

– 2 _ 7 Rationals

– 400 _ 3

16 1 _ 5

1 _ 2

Integers–7

1,25

10 1 _ 3

0, ․ 6

0,12

–1

–8

–2

–9

–3–10–4

–11

–5

–12

–6

Whole

0Natural

1, 2, 3, 4, 5

Irrationals

√ _ 2

√ _ 3

√ _ 10

1,17326143 …

– √ _ 101

p

√ _ 4 1 _ 2

REAL NUMBER SYSTEM

You may now be asking if any other kinds of numbers exist.

The answer is yes.

Numbers which are not real are called non-real. Since every point on a line represents a real number, and every real number is a point of the line – this means that non-real numbers cannot be located on a number line.

Any number of the form √ _ a where a < 0 (a is a negative number) is called non-

real.

So √ _ –10 ; √ _ –16 ; √ _ –3 are all called non-real numbers, and we cannot place them

on the real number line.

Note:

1. 3 √ _ a where a < 0 (a is a negative number)

3 √ _ –8 = –2 is real and rational

3 √ _ –9 is real but irrational

3 √ _ –27 = –3 is real and rational

2. 4 √ _ a where a < 0 (a is negative number)

4 √ _ –16 ; 4 √ _ –8 ; 4 √ _ –81 are all non-real

In general n √ _ a is non-real only if a < 0 and n is an even number.

You are now ready for the assessment of this section.

M911 GRADE 10.indb 6M911 GRADE 10.indb 6 2010/12/13 01:49:07 PM2010/12/13 01:49:07 PM

Page 7: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 7

Activity 4

1. Classify (this means put into a category) the following real numbers. The first two are done for you.

1.1 5 is a natural number, a whole number, an integer and a rational number

1.2 –10 is an integer and a rational number

1.3 2 _ 3

1.4 √ _ 144

1.5 4,3 ․ 7

1.6 2p

1.7 √ _ 3 _ 2

2. Show all working:

2.1 Express 1, ․ 2 ․ 4 as a common fraction

2.2 Express 0, ․ 1 + 0,0

․ 2 as a common fraction

3. Given p = √ __ b2 – 4ac

3.1 Evaluate p if a = 4, b = –1 and c = –8

3.2 State whether p is rational or irrational

M911 GRADE 10.indb 7M911 GRADE 10.indb 7 2010/12/13 01:49:09 PM2010/12/13 01:49:09 PM

Page 8: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 8Page 8

3.3 Round p off to 3 decimal digits.

3.4 Show all working to establish between which two integers p lies.

4. Given E = √ _ 3x + 4

4.1 Give any value for x that would make E a rational number.

4.2 Give any value for x that would make E an irrational number.

4.3 Give any value for x that would make E a non-real number.

5.1 Choose and write down any rational number and any irrational number between 6 and 7. Use arrows to show where they would be represented on this number line.

5 6 7 8

5.2 Now write down a number between 6 and 7 which has a rational square root.

6. If x = √ _ 2 ; y = √

_ 3 and z = –16 decide whether each of the following

algebraic expressions is real and rational, real and irrational or non-real.

6.1 4x 6.2 x2 6.3 x + 3y

6.4 1 _ z 6.5 √ _ z 6.6 z + p

M911 GRADE 10.indb 8M911 GRADE 10.indb 8 2010/12/13 01:49:10 PM2010/12/13 01:49:10 PM

Page 9: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 9

7. Give two different irrational numbers whose product is:.

7.1 rational

7.2 irrational

7.3 bigger than both numbers

7.4 bigger than the smaller and smaller than the bigger

7.5 smaller than both numbers

Solutions to Activities

Activity 1

1. irrational 2. rational 3. irrational

4. rational 5. irrational 6. rational

7. irrational 8. rational 9. irrational

Activity 2

2. Now 4 < 5 < 9 (choose the two numbers either side of 5 which can easily be square rooted) √

_ 4 < √

_ 5 < √

_ 9

2 < √ _ 5 < 3

3. Now 64 < 69 < 81

√ _ 64 < √

_ 69 < √

_ 81

8 < √ _ 69 < 9 so √

_ 69 lies between 8 and 9

4. Be careful!

– 25 < – 24 < – 16

– √ _ 25 < – √

_ 24 – √

_ 16

– 5 < – √ _ 24 < – 4 so – √

_ 24 lies between –5 and –4

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9

–√_24 √

_2 √

_5 √

_69

Activity 3

1.1 Look at 2310,7 this is 2310 7 _ 10 which is closer to 2311.

1.2 2310

1.3 2300

1.4 Place your pen on the digit 1 decimal place after the decimal comma. Look to the right. This number is a 0 so we drop it and all the numbers to the right.

So 23,1073456 ® 23,1

1.5 Place your pen on the digit 2 decimals after the decimal comma. Look to the right. This number is a 7. Increase the digit in the second decimal place by 1. Now drop the 7 and all the numbers to the right.

So 23,1073456 ® 23,11

M911 GRADE 10.indb 9M911 GRADE 10.indb 9 2010/12/13 01:49:11 PM2010/12/13 01:49:11 PM

Page 10: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 10Page 10

1.3 Same story

So 23,1073456 ® 23,10735

The rule is : if the digit to the right is a ‘5’ or larger than ‘5’(6, 7, 8, 9) then it changes the digit to the left up by 1.

2.1 √ _ 30 = 5,477225575 …

to nearest integer √ _ 30 ≈ 5

2.2 √ _ 30 ≈ 5,5

2.3 √ _ 30 ≈ 5,477

Activity 4

1.3 2 _ 3 is rational

1.4 √ _ 144 is natural, whole, integer, rational

1.5 4,3 ․ 7 is rational

1.6 2p is irrational

1.7 √ _ 3 _ 2 is irrational

2.1 Let x = 1,242424

100x = 124,242424

99x = 123

x = 123 _ 99

= 41 _ 33 *

2.2 0, ․ 1 + 0,

․ 2 = 0,1111111 + 0,02222222…

= 0,1333333…

Let x = 0,13333…

10x = 1,33333…

100x = 13,3333…

90x = 12

x = 12 _ 90 = 2 _ 15 *

3.1 p = √ __

(–1)2 –4(4)(–8) = √ _ 129

3.2 p is irrational

3.3 11,35781669… ≈ 11,358

3.4 121 < 129 < 144

√ _ 121 < √ _ 129 < √ _ 144

11 < √ _ 129 < 12

∴ √ _ 129 lies between 11 and 12*

4. E = √ _ 3x + 4

4.1 Try x = 0 ® E = √ _ 4 = 2 this is rational

or try x = 4 ® E = √ _ 16 = 4 this is rational

or try x = 7 ® E = √ _ 25 = 5 this is rational

and many more

* Remember the answer only will not get you full marks/credit.

M911 GRADE 10.indb 10M911 GRADE 10.indb 10 2010/12/13 01:49:12 PM2010/12/13 01:49:12 PM

Page 11: THE REAL NUMBER SYSTEM - Bubblegumbubblegum.co.za/images/maths_grade_10.pdf · THE REAL NUMBER SYSTEM ... family of numbers the IRRATIONAL numbers (and yes, ... irrational number

Page 11

4.2 Could give E = 1, 2, 3, 5, 6, 7 etc

4.3 Could give E = –2, –3, –4 etc

5. 6 7√

_40 6,5

5.1 Rational – choose 6 or any other (like 6 2 _ 3 ; 6 7 _ 10 ; 6,15)

Irrational – choose √ _ 40 or any other (like √

_ 41 ; √ _ 37 ; √ _ 38 )

5.2 6 < 25 _ 4 < 7 and √ _ 25 _ 4 = 5 _ 2 which is rational

or 6 < 169 _ 25 < 7 and √ _ 169 _ 25 = 13 _ 5 which is rational

The only way to get these answers is by trial and error.

6.1 irrational

6.2 rational

6.3 irrational

6.4 rational

6.5 non-real

6.6 irrational

7.1 Any like √

__ 2 ×

√___

18 = 6

3 √

__ 2 ×

3 √

__ 4 = 2

5 √

__ 4 ×

5 √

__ 8 = 2

7.2 Any like √

__ 2 ×

__ 3 =

__ 6

3 √

__ 5 ×

3 √

__ 2 =

3 √___

10

7.3 Any like √

__ 2 ×

__ 3 =

__ 6

__ 2 ×

√___

10 = √ _ 2 × √

_ 2 × √

_ 5 = 2 √

_ 5

7.4 √

__ 2 _ 2 ×

__ 2 _ 1 = 1 now

__ 2 _ 2 < 1 <

__ 2 etc.

7.5 √

__ 2 _ 3 ×

__ 2 _ 5 = 2 _ 15 now 2 _ 15 <

__ 2 _ 5 <

__ 2 _ 3

or 3 √

__ 4 _ 2 ×

3 √

__ 2 _ 2 = 1 _ 2 now 1 _ 2 <

3 √

__ 2 _ 2 <

3 √

__ 4 _ 2

M911 GRADE 10.indb 11M911 GRADE 10.indb 11 2010/12/13 01:49:13 PM2010/12/13 01:49:13 PM