Thu thuat Mathtype

  • View
    84

  • Download
    0

Embed Size (px)

Text of Thu thuat Mathtype

Lp L lun v phng php dy hc b mn Ton k17 Cn Th, 2011 M6.7a Trng Cm Nang Th thut vi Mathtype Cm Nang- 1 - NI DUNG 1.nh dng cng thc ton hng lot ...................................................................... 2 1.1.To cc nh dng mu.................................................................................. 2 1.1.1.nh dng font cho cc i tng ton hc.............................................. 2 1.1.2.nh dng size ch cho cc i tng ton hc ........................................ 3 1.2.Lu li nh dng mu ................................................................................... 3 1.3.S dng nh dng mu g cng thc ton................................................. 3 1.4.nh dng cng thc hng lot hoc c vn bn ti liu.................................. 4 2.Lu cng thc vo cc thanh cng c truy xut nhanh hn ............................... 4 3.Mt s t hp phm tt thng dng trong Mathtype............................................ 5 4.nh dng tab dng, dng vn bn trong cng thc ton....................................... 7 5.Nhng code TEX thng dng g cng thc trong Mathtype ............................ 8 6.To s th t cho biu thc ton hc hoc i tng bt k ................................ 10 6.1.Ty chnh nh dng nh s ....................................................................... 10 6.2.Cch nh s th t..................................................................................... 10 6.3.Tham chiu ti v tr cng thc to s th t........................................... 11 6.4.Ty chnh s th t section, chapter ............................................................ 11 7.Chn cng thc ton ln cc din n, blog hay email.......................................... 12 Th thut vi Mathtype Cm Nang- 2 - 1.nh dng cng thc ton hng lot 1.1.To cc nh dng mu 1.1.1. nh dng font cho cc i tng ton hc Trong mi trng MS Word, m Mathtype ln ( phm tt: Ctrl+Alt+Q), vo th Style, chn Define v chuyn qua th Advanced vo nh dng font ch cho cc i tng nh hnh sau (i vi ngi dng c bn): Text:chnfontcabngmVNI(fontctnbtulVni-),hocTCVN (.Vn-)gctingVit.Chnkiuchtrnhbybngcchcheckvo2 bn cnh, gm in nghing Italic v m Bold. Function (hm s): chn font ty , nn chn font ch ging nh font dng g vn bn ca ti liu. Variable (bin s): chn font ty , nn chn ging font ca Function. Nn chn kiu ch l Italic. Cc k hiu ton hc khc (gm L.C. Greek, U.C.Greek, Symbol): nn chn font ging nhau, hoc tt c l Symbol hoc Euclide symbol. Vector matrix v Number: nn chn font ging nh font ca Function. Extra Math: nn chn MT Extra hoc Euclide Extra. Trong ca s lnh ny, c 3 lnh chng ta cn lu , lFactory setting - tr vccnhdngmcnhcaMathtype;Usefornewequation-sdngcc thit lp ny khi to cc cng thc mi; v Apply - cho ta xem trc kt qu ca cc ty chn. Th thut vi Mathtype Cm Nang- 3 - Cctychncnlinnginguyn.Sau,chnOKhonthnhccty chn v chuyn sang nh dng size ch. 1.1.2. nh dng size ch cho cc i tng ton hc Trnthanhmenulnh,voth Size,chnDefinevonhdngnhhnh sau (i vi ngi dng c bn): Full (bin hoc hm thng thng): nn chnging vi size dng trong ti liu, thng thng ta chn size 13, n v pt. Subscript/superscript (ch s trn, di): nn chn size 10 pt. Sub-Subscript/superscript (ch s trn, di cp 2): nn chn size 8 pt. Symbol: gi nguyn, tc 150% so vi size ca Full. Sub-symbol: mc nh. Tng t nh nh dng font cho cc lnh Factory setting, Use for new equation v Apply. Cc ty chn khc gi nguyn, sau chn OK hon thnh cc ty chn.1.2.Lu li nh dng mu Trn thanh menu lnh, vo th Preference, chn Equation preference, chn tip lnhSavetofiletrongdanhsch,sau,nhptnchonhdngmu, c lu mcnh trong thmc m ra, khng nn sang dnny. Chng hn, lu vi tn Times 13-10-8. 1.3.S dng nh dng mu g cng thc ton Mun s dng cc nh dng no, ta ch cn vo th Preference, chn mu, nu c,trongdanhschlitk(ccdngdicngcaslnh,thngthngc4 mu);hocchnEquationpreference,tiptheochnLoadfromfile,sau, chn nh dng mu mun s dng. Lu . Mathtype cng to sn mt s nh dng mu, chng hn mu nh dng ca font Euclide, rt ging font dng son vi Latex. Ta nn ty chnh li nh sau: Th thut vi Mathtype Cm Nang- 4 - Th Advanced, lnh Text, chn font ChuVanAn (Vni) - font Euclide dng g ting Vit; b du chn kiu ch cho L.C.Greek. Th Size nh dng l 12-8-6 l c. Lu li nh dng mu vi tn mi. 1.4.nh dng cng thc hng lot hoc c vn bn ti liu Chn on vn bn cn nh dng li cng thc ton (nu chuyn i c ti liu thkhngcnthitphichnhttiliu),trongfileWord,vothMathtype, chn Format Equations. Trong ca s hin ra, chn Browse, sau chn nh dng mun s dng. Chn OK chng trnh thc thi (rt nhanh), sau ng ca s Mathtype thng bo hon thnh vic chuyn i. 2.Lu cng thc vo cc thanh cng c truy xut nhanh hn Vic lu cc cng thc vo thanh cng c ca Mathtype rt c li, khi chng ta phi s dng li nhiu ln cng thc v n l mt cng thc di, tc phi qua Th thut vi Mathtype Cm Nang- 5 - nhiu thao tc. Ta thit lp lu nh sau: Trctinrng,trongMathtypec5thanhcngctheothtttrn xungdi,gmSymbolPaletttes(Ctrl+Alt+K),TemplatePalettes (Ctrl+Alt+T),SmallBar(Ctrl+Alt+F),LargeTabbledBar(Ctrl+Alt+L), Small Tabbled Bar (Ctrl+Alt+S). Haithanhcngctrncnglmcnh,tctakhngcthayihocxa cccngthc.ivi3thanhcngccnlitacphpthayi,tytheo cngthclnnhmluvothanhcngcthchhp,thmchcphntheo ch rt hay. luvo,tacvicsoncngthc,tiptheoqutchncngthc,nmgi chut v ko ln v tr thch hp trn 3 thanh cng c c php ty chnh. Thit lp phm tt truy xut nhanh hn: nhp chut phi ln cng thc, chn lnhProperties,nhpthpphmbtkvodidngEnternewshortcut key(s), nhn Assign chp nhn v OK thot. Thayi,cpnhtcngthclu:nhpchutphilncngthc,chnlnh Edit, trong ca s tip theo, ta ty chnh sa cng thc n khi va v ng ca s ny l c. Xa b cng thc lu: nhp chut phi ln cng thc, chn lnh Delete. Chncngthcvovtrcontr:nhpchutphivocngthc,chnlnh Insert hoc n gin hn, ch cn nhp tri chut ln cng thc l c. Nithmvinvchothanhthco.Trnthanhmenulnhca Mathtype, chn Preferences; chn tip lnhWorkspace Preferences.... Trong bncnhdnglnhRulerunitchnnvlCentimeters(cm).Vicnygip chngtakimsotchiudicngthckhichnvovnbn,vthngthng vn bn c ty chnh n v thanh thc o ca MS Word l cm. Ni thm v chn mt k t bt k vo v tr con tr.Trn thanh menu lnh ca Mathtype, chn th Edit, chn Insert symbol. Trong ca s hin ra, dng lnh View by chn ty chn v font no , trong khung hin th bn di chn k t mun chn vo, nhn Insert hoc Double-click, nhn Close thot. 3.Mt s t hp phm tt thng dng trong Mathtype KhigcngthctonhctrongMathtype,trnhblifontdoMathtype chahtrccfontcabngmUnicode(haygpkhichnkiugTelex)ta phichuynchtingVitsangtingAnhchochngtrnhhtrgting Vit. Chng hn i vi chng trnh Unikey, phm tt chuyn nhanh ch l Ctrl+Shift. Th thut vi Mathtype Cm Nang- 6 - Ctrl+Alt+ Q: trongWord,dngkchhotchngtrnhMathtype.Cng thc ton thm vo vn bn s c ch cng dng vi vn bn hin ti, tng ng vi lnh Insert Inline Equation khi chn t menu lnh ca Mathtype. Ctrl + F4 hoc Alt + F4: thot khi Mathype v chn cng thc vo vn bn. Ctrl + 1, Ctrl + 2, Ctrl + 4, Ctrl + 8 : iu chnh khung hin th nhp cng thc caMathtypeccchtngngl100%,200%,400%,800%.Numun tychnhtheomunththchinchntrnthanhmenulnhcathView, chn lnh Zoom,chnOther, chn Custom, nhp vocons mongmun,nhn OK thot. Ctrl + C, Ctrl + V, Ctrl + X : cc lnh sao chp (copy), dn (paste) v ct (cut) cng thc c chn. Ctrl + H : to ch s trn, c th qut chn i tng bt k v nhn t hp phm ny, th i tng s chuyn thnh ch s trn. Ctrl + L : to ch s di, tng t nh vic to ch s trn. Ctrl + J : to ch s trn v di. Ctrl + F : to phn s, c th qut chni tng bt k v nhn t hp phm ny, th i tng tr thnh biu thc t s ca phn thc. Ctrl + R : to cn bc hai cho biu thc, c th to mi hoc qut chn biu thc cnchuynthnhcnthc,ribmthpphmny.iunycngpdngcho cc t hp phm to du ngoc n ( ), ngoc vung [ ] v ngoc kp { }. Ctrl + ( : ngoc ( ). Ctrl + [ : ngoc [ ]. Ctrl + shift + { : ngoc { }. Ctrl + Shift + A: chuyn i qua li 3 cch nh dng cho ccdungoc, bng cch t con tr chut v tr trong du ngoc v nhn t hp phm ny. V d, cho biu thc sau: 3 3332 22i iie ee b ( ) ( ) ( ) = ( )

( ) ( ). Ctrl + I : chn nhanh cng thc nhp tch phn, gm v tr nhp 2 cn ly tch phn v biu thc cn tnh. Ctrl+Shift+E:nhdng,hocchuynsang,gtext.Nuchnhfontg text trong Mathype khc vi bng m ang son vn bn, th phi chuyn sang bng m ca font tng ng th mi g ting Vit c. Ctrl + + : nh dng, hoc chuyn sang, g k hiu, bin s ton hc. Ctrl + Shift + F : nh dng, hoc chuyn sang, g bin s, hm s. Th thut vi Mathtype Cm Nang- 7 - Ctrl + Tab: i n v tr tab dng, nu khng thit lp th s tab theo mc nh. 4.nh dng tab dng, dng vn bn trong cng thc ton Chnghncngthccnhiudng,vtamunccdngbndingangdu = vi dng trn. V d ta c cng thc ton sau: 3 222 2228 2 4) ( 2)(12( 2)( 2)lim lim244 4 432 2 24limx xxx x xIx xxx xxx = = = == Munvy,utintacgthngthng,nkhimunxungdngthlm nh sau: trong th Format, chn lnh Align at =. CclnhAlignRightvAlignCenterdngcanhphi,canhgiachocng thc ton. Ch mc nh l Align Left. t tab dng ty rng,trongcaslmviccaMathtype,cthanhhinththanhthc o,vcccntlnh(. = )tngngcclnhttabdngl canhtri,canhgia,canhphi,canhtrichoccdubng,canhlhnhp theo bin, du (+, ), du (=), ht cu, Mun s dng chc nng no nhp vo nt lnh tng ng, tip theo nhp trn thanh thc o v tr mun t tab dng, sau con tr v tr mong mun v nhn t hp phm Ctrl + Tab. Tab dng mc nh l canh tri, mi ln tab cch nhau mt khong 1,27cm. V d, cho canh l hn hp: 3 7 8 202 8 1123 2 3x y zx zy z'1 =111 =|11 = 11+ v d trn, ta t tab . cc v tr ca binx , du ca h s biny , biny , du ca h s binz , binz , du =, hng s t do. nh dng trn cng mt dng Gi s ta mun nh dng ging nh sau: Cho biu thc 2 6232 4( )cos212345sinlim 3 92176 ln13ln(2 5) 7 3xxx xx x exy f x xxx x x l= = l l l l l

l

l Tc y, ta mun canhdng vi dng trncng cabiu thc trong [ ] v c cng thc ton hc cng canh dng trn cng vi vn bn trong Word. Th thut vi Mathtype Cm Nang- 8 - Khi ta lm nh sau: g cng thc thng thng s c nh th ny Cho biu thc 2 6322 4( ) cos212345sin3 921lim 76 ln13 ) ln5(27 3xxx xx x exxy f x xx x x l l l= = l l l l

l Sau t con tr chut ti cng thc trong [ ], tip theo vo th Format, chn lnh Align at Top l c. Cc lnh Align at Bottom dng canh dng vi dng di cng. Lnh Align at Center l ch mc nh. 5.Nhng code TEX thng dng g cng thc trong Mathtype TrctintychnhMathtypenhsau:trnthanhmenulnhcaMathtype, chnPreferences;chntiplnhWorkspacePreferences....Nhngdngdi cng chn