Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

Embed Size (px)

Citation preview

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    1/79

    H. Lindow, Dipl.Ing, Senior Adviser

    u ec s n e a ures n e as ng

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    2/79

    Subjects On Die Failure

    Die design

    Die making process

    Heat treatmentSurface treatment

    rocess parame ers

    H. Lindow2

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    3/79

    Selection Of Die Material for HPDC

    Cast Metal Temperature Die Size

    Chemical composition Steel production parameters Production Series Shape of the contour

    H. Lindow3

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    4/79

    as ng empera ures o var ous a oys

    4

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    5/79

    Cast Metal and Preheating Temperature

    H. Lindow5

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    6/79

    Die Cavity Wall Temperature

    n uence on:

    Cavity wall strength

    H. Lindow6

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    7/79

    C cles Until Visible Cracks Of 0,15mm De endent On

    Surface Temperature

    -

    (mm)

    7.000 cycles

    0,15 550 620

    Depth

    800 cycles

    2.500 cycles

    670 690

    Crack

    400 Cycles

    H13, SKD61, 1.2344HRC 44 to 47

    0 2000 4000 6000 8000

    H. Lindow7

    Number of Cycles

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    8/79

    ,On Surface Temperature

    (mm)

    1.000.000

    Dept

    20.000

    200,000 H13, SKD61, 1.2344HRC 44 to 47

    Crac

    3.000

    H. Lindow8 Cycles x 1.000

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    9/79

    e empera ure

    Influence on:

    Die cavity wall temperature thermal stress

    H. Lindow9

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    10/79

    Influence Of Temperature / T Stress / Strength

    1500 N/mm ~HRC 45

    N/

    mm

    1500 N/mm ~HRC 45

    N/

    mm

    rength

    rength

    m/S

    m/S

    s

    sN/

    s

    sN/

    Str

    Str

    H. Lindow10

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    11/79

    DIE SIZE

    Influence on:

    Heat treatment

    material

    H. Lindow11

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    12/79

    Cross section

    Small dies < 70 mm and their corresponding flat sizes

    (42x250; 45x140; 50x100; 60x75 m)

    Medium dies 70 140 mm and their corresponding flat sizes(90x300; 100x250; 120x150 mm)

    Big dies > 140 mm and their corresponding flat sizes(140x230; 180x300; 200x250; 230x280)

    NoteThe toughness shown at the brochures diagram demonstrates the

    toughness of the steel only without considering the influence comingrom e ea rea men . ue o e sma s ze o e es -spec men(7 x 10 x 55 mm) the effect of the heat treatment is optimal.But with the increase of the cross section of a die the slower the cooling

    H. Lindow12

    .

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    13/79

    In order to have sufficient toughness the structure shouldat least consist of 20% Martensite and 80% Bainite andas less as possible carbide precipitation. With the increase ofBainite especially coarse Bainite and with the increase of

    carbide precipitation the toughness is decreasing.

    If the die maker is not sure about the heat treatment and if the dieis of a big size always it is advisable to choose a material which

    independent from the chosen heat treatment process.In such a case choose a die material with a better hardenability

    Such materials are:

    VIDAR SUPERIOR

    H. Lindow13

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    14/79

    Structure at ~ 6.4 640s for a Size Ran e of

    380 to 45 mm (80%B/20%M) dependent on theHeat Transfer for 8407 (H13; SKD61; 1.2344)

    ~ 6.4

    Name, Company, Date14

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    15/79

    -Gives A Similar Structure as ~ 6.4 (640s)

    ( 380-45) for H13

    ~ 52 ~ 6,4

    H. Lindow15

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    16/79

    Reachable Diameter For H13 Dependent On Cooling

    Medium and a fixed Q-Velocity of28C/minute( ~ 6.4 (640s)) at Core Area

    e.g 80% B + 20%M for 8407 at core area

    mm

    i

    n

    H. Lindow16

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    17/79

    Toughness Dependent On Hardenability

    HRc 45

    21 J

    HRc 45

    6 J

    Name, Company, Date17

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    18/79

    Toughness Comparison At Surface Of Large Size

    oc s t ar ous uenc ng ates(Block Sizes 300 x 500 x 700 mm)

    HRC 45

    H.Lindow18

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    19/79

    Reachable for 80% Bainite and 20 % Martensite in

    e core area epen en on oo ng e um anVarious Types of Steels

    DIEVAR

    8407-2M

    QRO90S

    mm

    in

    H. Lindow19

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    20/79

    Hardenability

    100

    60

    80

    20

    40

    %

    VIDAR SUPERIOR

    ORVAR SUPREMEartensite

    40 60Bain

    it

    M20

    80

    50 100 200 300 400

    Diameter in mm

    Percentage of Martensite / Bainite in the centre at various diameters

    Name, Company, Date20

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    21/79

    Chemical com osition

    Influence on

    creeping strengt

    ductility Crack initiation

    hot strength toughness

    Crack propagation

    thermal stress Crack initiation Crack propagation+

    corrosion resistance

    H. Lindow21

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    22/79

    uct ty

    uctilit

    y

    072M

    uper

    84

    D

    IEVAR

    V

    IDAR

    8

    407Su

    Q

    RO90S

    H. Lindow22

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    23/79

    (Resistance To Crack Initiation)

    2

    00

    Creeping test 0tility

    0

    1%, 550 C, 500 MPa, 1000 h

    HRC

    hxDu

    1

    X

    100

    0

    trengt

    HRC 45

    0

    eping

    Cre

    H. Lindow23

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    24/79

    inN/m

    Strengt

    Super

    u

    o

    t-Yield

    8

    407

    D

    IEVAR

    VIDAR

    QRO90S

    HRC 45 / 46

    H. Lindow24

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    25/79

    Comparison Of Toughness At RT In ST

    Size of specimen 7 x 10 x 55 mm (Charpy V)

    J

    hness.

    52

    .

    Tou

    2M

    A

    R

    A

    R,

    HR

    RSupe

    90Su

    ARSu

    840

    DIE

    DIE

    VID

    QRO

    OR

    Name, Company, Date25

    HRC 45 / 46HRC

    45 / 46

    HRC

    52

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    26/79

    ou ness epen en n ar e rec p a on

    nd

    s

    inSeco

    r

    from

    A

    7000

    Supe

    ri

    lingtim

    0

    8407

    IEVAR

    VIDA

    QRO90S

    Coo

    1

    H. Lindow26

    H.Lindow

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    27/79

    Product Of Hot-Yield Stren th 600 C And Tou hness

    (Resistance to crack propagation)

    ess/1

    Tough

    )

    ngth

    X

    (NJ/m

    072M

    per

    RC52

    u

    ie

    ldStr 8

    4

    I

    EVAR

    I

    DARS

    IEVAR,

    R

    O90Su

    R

    VARS

    Hot-Y

    HRC 45 46

    HRC

    52

    H. Lindow27

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    28/79

    Temper Back Resistance At 600C - 10 Hours

    RC

    ness,

    H

    per

    Hard

    407

    I

    EVAR

    I

    DARS

    R

    O90Su

    HRC 45 / 46

    H. Lindow28

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    29/79

    Relation Heat Conductivity / ThermalExpansion

    255

    245

    250

    r

    235

    240

    8407

    uperi

    S

    225

    230

    I

    DAR

    IEVA

    Q

    RO9

    220

    Kategorie 1

    H. Lindow29

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    30/79

    ,Conductivity, - Expansion

    600, a

    l

    n

    400

    500

    Mtrength

    /Ther

    xpansi

    r

    3008407

    RtHot

    S

    )x0,

    vity,-

    Sup

    rem

    Supe

    ri

    100DIEVA

    (Produ

    ughnes

    o

    nducti

    QRO90

    8

    407S

    VIDAR

    0To

    H. Lindow30

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    31/79

    orros on es s ance n n - e

    Al (A356)

    1

    000

    - ,

    720 C 5 h

    value

    e ro a on , m m n

    Specimen sizeprocal

    20 x 95 (100) mm

    Reci

    H. Lindow31

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    32/79

    ro uc on parame ers

    Influence on:

    uc y

    Toughness Residual stresses

    H. Lindow32

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    33/79

    Process Develo ment Re ardin Reduction Of

    Total Oxygen Content

    tin

    pp

    nconte

    Oxyg

    Year

    H. Lindow33

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    34/79

    Improvement Due To Cleaner Materials

    Old ESR-process New ESR-process

    Advantages

    Re-melting under apro ec ve a mosp ere

    Process with a staticmould

    ResultMore cleaner materialBetter isotropic materialSmaller and less

    rimar carbides

    H. Lindow34

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    35/79

    Comparison of a standard and a supreme steel

    H. Lindow35

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    36/79

    Micro-segregation also after ESR-and VAR-process

    re

    gatio

    re

    gatio

    cro-seg

    cro-seg

    eofmi

    eofmi

    9 hours at a hightemperature

    Cast condition Longer time and orhigher temperatureD

    egr

    Degr

    9 h at high or longer time at lower temperature

    Residual stress in between micro-segregation may go up to 150 N / mm

    H. Lindow36

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    37/79

    Homogenizing is adiffusion annealing process

    Standard

    temperature and a long soakingtime.The ur ose is to reducemicrosegregations and sizeof primary carbides whichwill result in improvement of:

    ; ductility and

    ; touhness in all directions

    H. Lindow37 Homogenized

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    38/79

    IMPACT STRENGTH VERSUS

    VARIOUS PROCESSES, HRC 43/45; TL

    DIEVAR

    200

    100

    Standard ESR ESR under VAR H ESR+H

    H. Lindow38

    protective

    gas

    Material H13;

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    39/79

    e ee e ec onDIEVAR

    CuQRO90S

    thand uper or

    ORVAR S

    Orvar 2MVidar Superior

    tstren

    ghness

    g

    ep-/

    ho

    ity-tou

    Vidar Superior, Dievar

    Elmax

    c

    tofcr

    Ductil

    Erosion / Corrosion Thermal Fatigue (Heat Checking)Produ

    H. Lindow39

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    40/79

    DESIGN

    Influence on:

    Erosion Soldering

    Corrosion Thermal fatigue cracks Heat cracks Chipping Gross cracks

    e eas ng mar s Temper back at cavity wall

    H. Lindow40

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    41/79

    Un-suitable Parameters Due To Wrong Design

    Gate area

    Make the most suitable gate design Avoid an un-suitable relation of melt volume

    Avoid an un-suitable relation gate area to runner Avoid an gate opening too small or too big

    , ,melt velocity, plunger diameter and its velocity

    Location of the gate area

    Put right relation of gate section to runner section

    H. Lindow41

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    42/79

    Basic Rules For Gate Location

    Try to avoid premature cavity erosion Avoid creation of hot spots

    Choose most direct ath what means fill awa from ate first Avoid impingement on cores Direct metal flow in line with long ribs, not across them Gate should be placed opposite the longest unhindered

    metal flow path

    Use only one gate for one casting. Multiple gates may causemore trouble

    Avoid too thin a gate if possible Do not place the gate near very thin sections with fine details Avoid impingement on convex sections

    H. Lindow42

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    43/79

    g

    tim

    fillin

    hoo

    s

    F

    irst

    H. Lindow43

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    44/79

    ng me epen en n o y ng empera ureOf The Al-Alloy

    Al 99 9 % 658 C 0 C Furnace tem .

    DIN GB USA-ASTM ASIA-JIS EURO NORMDINDIN GBDIN GBDIN USA-ASTMGBDIN USA-ASTMGBDIN ASIA-JISUSA-ASTMGBDIN EURO NORMASIA-JISUSA-ASTMGBDIN

    226 G-AlSi9Cu3 LM 24 A380,0 ADC10 (12) EN Al 46000230 G-AlSi12 LM 6 AC3A EN AL44300231 G-AlSi12(Cu) LM 20 A413 ADC1 EN Al 47100

    H. Lindow44

    239 G-AlSi10Mg LM 9 AC4A EN Al 43000

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    45/79

    -

    H. Lindow45

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    46/79

    And Die Preheating Temperatures

    -

    Die Temp CSm mmFilling Time msAlloy

    280

    280

    1

    6

    -

    12 - 17

    60 - 90

    -

    Mg-Alloy

    350

    350

    ,

    2,16

    3,43

    50

    60

    Die preheating temperatures

    Pb, Sn 120 C Zn 150 200 CAl 180 260 C Mg 250 330 C

    Cu-Alloys 300 - 350 C

    H. Lindow46

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    47/79

    -

    H. Lindow47

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    48/79

    Average Recommendedwall thickness

    mm

    filling timesms

    123

    12 to 1725 to 4840 to 60

    45

    6

    48 to 7055 to 80

    60 to 90

    H. Lindow48

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    49/79

    Sm=Wa4

    Cw

    w , ,

    Wa Zn 30 to 50 m / s; Al 20 to 60 m / s;

    Mg 40 to 90 m / s; Cu 20 t0 50 m / s

    H. Lindow49

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    50/79

    Tem erature Increase At Cavit Wall

    Dependent On Melt Velocity At The Gate

    gate

    locity

    a

    M

    eltve

    H. Lindow50

    Temperature increase

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    51/79

    Gate Velocitya g ve oc ty or parts w t t n

    wall

    b) Al 20 to 60 m / smin. 18 m / se.g. 33 m / s for Sm = 6 mmVacuum 15 to 30 m / s

    c) Mg 40 to 90 m / smin. 27 m / s

    =. .d) Zn 30 to 50 m / s

    min. 12 m / s

    . .e) Cu 20 to 50 m / s

    Too high a velocity may damage the die by erosion, soldering, corrosion and also fatigue

    H. Lindow51

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    52/79

    Formula For Gate Area

    Sa = V tfx waSa =Sa V=S

    H. Lindow52

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    53/79

    Gate Area For Parts More Than 150 g

    x = gk x p a mm

    b = width of gated = gate opening

    Wp = velocity plunger

    Agk = area plunger a= ve oc y me a ga e

    H. Lindow53

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    54/79

    e oc y s on

    Al die casting

    below 3 m s

    Mg die casting

    below 4,5 m / s

    =g g

    = =gafter gate; Agk = area plunger;

    t = filling time

    H. Lindow54

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    55/79

    Tab

    l

    u

    idin

    3G

    15

    6

    4

    Name, Company, Date55

    Relation Gate Area to Volume De endent On

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    56/79

    Relation Gate Area to Volume De endent On

    Average Wall Thickness, Gate Opening, Alloy

    Averagewall thickness

    Gateopening

    Relation Sa/ V (mm / cm)Type of Alloy

    u n

    1,5 0,9 1,48 1,66 3,57 1,77,2,02,53 0

    ,1,01,11 2

    ,0,940,690 54

    ,1,040,78

    ,

    2,411,75

    ,

    1,160,86

    3,54,0

    4 5

    1,31,4

    1 5

    0,440,37

    0 32

    0,490,41

    0 36

    ,1,150,98

    0 86

    ,0,580,49

    0 435,05,56,0

    1,71,82,0

    0,300,270,25

    0,330,290,25

    0,790,710,65

    0,400,350,33

    H. Lindow56

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    57/79

    Genera A vise For Gate Opening

    Finding of gate opening (general rules)

    Al die casting 1,0 to 2,5 mm

    AlSi min. 1 mm

    >>Si > 1 mm

    AlSiCu min. 1,2 mm

    Mg die casting 0,6 to 2 mm

    Zn die casting 0,35 to 1,2 mm

    ZnAl4 (Zamak 3) 0,35 to 0,8 mm

    ZnAl4Cu1 (Zamak 5) 0,5 to 1,2 mm

    Cu die casting 1,5 to 3,0 mm

    H. Lindow57

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    58/79

    Formula For Gate Opening In Al Die Casting

    d = 0 52 + 0 28 x S

    , , m(for 1 < Sm < 4,5 mm)

    d = Sm

    / 3(for 4,5 < Sm < 6 mm)

    H. Lindow58

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    59/79

    H. Lindow59

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    60/79

    20-35

    H. Lindow60

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    61/79

    H. Lindow61

    SAL=1 5xB AK0=2 SA

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    62/79

    L=1 5xB K0 A

    part

    B BR 35

    LK0

    R 0,5BSame distance

    AK1=2AKo

    1/3

    R

    /3L

    Same distanceK2 K0

    AK=4 AK0 = AK2

    H. Lindow62

    AK0=2 SA R not bigElse fills at first

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    63/79

    H. Lindow63

    1 / 2 D

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    64/79

    /

    3

    H. Lindow64

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    65/79

    H. Lindow65

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    66/79

    Cavity wall temperature control byinternal cooling

    Influence on:

    Thermal fatigue cracks Thermal stress cracks Thermal ex ansion Releasing marks Soldering Erosion Corrosion

    H. Lindow66

    Surface Temperature

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    67/79

    Surface temperature dependents on

    Zn 450 CMg 670 C (low heat capacity)

    AlSi12(Cu) 680 720 C (high heat Capacity)Ms 970 C

    b Cavit contour and die desi n-wall thickness cores

    Bad heat transfer

    Good heat transferc) Die preheating Temperature

    d) Frequency of cyclese) Position of joint contour of both die parts

    f) Condition of die filling as filling time, melt velocity,

    plunger velocity; metal flow in the cavityg) Die internal cooling heating system; lubrication;

    Bad heat transfer

    h) Cast system (gate, runner, bush) its design and location; number of overflows

    Name, Company, Date67

    decrease or increase the die life by 30 to 50 %

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    68/79

    s mu a on program w e e p u or n ngwhere the cooling channels should be placed

    H. Lindow68

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    69/79

    Temperature profile

    Simulation curves for

    H. Lindow69

    a en w an n rare amera

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    70/79

    Hot spots

    Hot s ots causin : Product orosit Solderin Earl heat checkin

    H. Lindow70

    Corrosion / Erosion

    Tem erature Flow In Vertical Direction

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    71/79

    H. Lindow71

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    72/79

    a) Better to have more small cooling channels than a few big ones

    b When usin water 9 to 12 mm when usin oil 12 to 15 mmc) Distance cooling channel to cavity in general 25 mm, gate area 28 mm

    d) Cooling channel depending on wall thickness of the part

    e Distance of coolin channels, max 3 x

    H. Lindow72

    n erna oo ng arrow a s

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    73/79

    n erna oo ng arrow a s

    n narrow areas use u- ar

    connected to a cooling channel

    in a cylindrical area

    Use Cu-paste for heat transfer

    from Cu-bar to cylindrical wall(clearance 0.05 0.1 mm,

    Ra

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    74/79

    H. Lindow74

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    75/79

    H. Lindow75

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    76/79

    They should not be put at the gate area!

    H. Lindow76

    Desi n Of Ventin

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    77/79

    Put venting as much as possible but as less as necessary

    H. Lindow77

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    78/79

    H. Lindow78

  • 8/2/2019 Tj-Ningbo.materialDesignUddLayout [Automatisch Gespeichert]

    79/79

    , .