35
Transcription in Eukaryotes Atif Hassan Khirelsied Atif Hassan Khirelsied, B.Sc., M.Sc., Ph.D B.Sc., M.Sc., Ph.D. Department of Biochemistry Department of Biochemistry Faculty of Faculty of Medicine Medicine International University of International University of Africa, Africa, Khartoum Khartoum, Sudan. , Sudan.

Transcription in Eukaryotic Cells

Embed Size (px)

DESCRIPTION

Transcription in EukaryotesAtif Hassan Khirelsied, B.Sc., M.Sc., Ph.D.  Atif Hassan Khirelsied, B.Sc., M.Sc., Ph.D.  Department of BiochemistryFaculty of Medicine Faculty of Medicine International University of Africa, Khartoum, Sudan. International University of Africa, Khartoum, Sudan.Eukaryotic gene transcriptionEukaryotic initiation is more complex. E k ti i iti ti i l About 50 different proteins (transcription factors) bind  to promoter . RNA polymerases bind several transcription fa

Citation preview

Page 1: Transcription in Eukaryotic Cells

Transcription in Eukaryotes

Atif Hassan KhirelsiedAtif Hassan Khirelsied, , B.Sc., M.Sc., Ph.DB.Sc., M.Sc., Ph.D. . 

Department of BiochemistryDepartment of Biochemistry

Faculty of Faculty of MedicineMedicine

International University of International University of Africa,Africa, KhartoumKhartoum, Sudan., Sudan.

Page 2: Transcription in Eukaryotic Cells

Eukaryotic gene transcription

E k ti i iti ti i lEukaryotic initiation is more complex.

About 50 different proteins (transcription factors) bind to promoter .

RNA polymerases bind several transcription factorsRNA polymerases bind several transcription factors. 

Page 3: Transcription in Eukaryotic Cells

The Eukaryotic Transcription Factors

Th th l t ( l t )• The are many other regulatory sequences (elements) in eukaryotic genes .

• The number and type of these elements varies with each gene.

Page 4: Transcription in Eukaryotic Cells

The Eukaryotic Transcription Factors

• Eukaryotes have three types of RNA polymerases, I, II,Eukaryotes have three types of RNA polymerases, I, II, and III, and prokaryotes only have one type.

• Eukaryotes contain many different promoter elements: TATA b i iti t l t d tTATA box, initiator elements, downstream core promoter element, CAAT box, and the GC box

Page 5: Transcription in Eukaryotic Cells

The basal promoter elements

Th b l t l t th CCAAT b ( t)The basal promoter elements are the  CCAAT‐boxes (cat) 

and TATA‐boxes . 

The TATA‐box resides 20 to 30 bases upstream of the 

l d l h ktranscriptional start site and is similar to the prokaryotic 

Pribnow‐box .

Page 6: Transcription in Eukaryotic Cells

Eukaryotic Transcription UnitEukaryotic Transcription Unit

Page 7: Transcription in Eukaryotic Cells

The Eukaryotic PromoterThe Eukaryotic Promoter

Page 8: Transcription in Eukaryotic Cells

The Eukaryotic RNA Polymerases

Eukaryotic cells have three distinct, RNA polymerases (pol) I, II and III.

Each polymerase synthesize a different class of RNA.Each polymerase synthesize a different class of RNA.

Classes of RNA pol merases ere identified b theirClasses of RNA polymerases were identified by their sensitivity to α‐amanitin.

Page 9: Transcription in Eukaryotic Cells

The Eukaryotic RNA Polymerases

Diff t t f RNA th i d b diff t RNA P lDifferent types of RNA are synthesized by different RNA‐Polymerases.

Page 10: Transcription in Eukaryotic Cells

The Eukaryotic RNA Polymerases

Page 11: Transcription in Eukaryotic Cells

α‐amanitin inhibits RNA polymerases

The inhibitor of transcription

i h ll idAmanita phalloides

Page 12: Transcription in Eukaryotic Cells

The Eukaryotic Transcription Factors

• Numerous Transcription Factors interact with the TATA• Numerous Transcription Factors interact with the TATA‐

box.

• TF interacting with are RNA polymerase II include:

– TFIIA 

– TFIIB 

– TFIID  

– TFIIEReview their structural and functional features at the end of this presentationTFIIE 

– TFIIF 

– TFIIH

features at the end of this presentation

– TFIIH 

Page 13: Transcription in Eukaryotic Cells

Generalized scheme of binding of transcription factors to the promoter regions of eukaryotic cells.p g y

Following the binding of the transcription factors IID, IIA, IIB, IIE and IIF a pre‐initiation complex is formed RNA polymerase II then binds to thisa pre‐initiation complex is formed. RNA polymerase II then binds to this complex and begins transcription from the start point 1.

Page 14: Transcription in Eukaryotic Cells

The Eukaryotic Transcription Factors

Page 15: Transcription in Eukaryotic Cells

The basal transcription factors (BTF)

BTF th t i f t• BTFs are the proteins necessary for accurate 

transcription.p

• They are distinct from the regulatory transcription 

factors, which bind to sequences far away from the 

start and serve tomodulate levels of transcriptionstart and serve to modulate levels of transcription., 

Page 16: Transcription in Eukaryotic Cells

Eukaryotic transcription factors

• The protein C/EBP (for CCAAT‐box/ Enhancer BindingThe protein C/EBP (for CCAAT box/ Enhancer Binding 

Protein) binds to the CCAAT‐box. 

• Other transcrpition factors include:

1. CTF (CAAT Transcrition Factor). 

2 Sp1 (specificity protein 1)2. Sp1 (specificity protein 1). 

Page 17: Transcription in Eukaryotic Cells

Eukaryotic transcription factors

Page 18: Transcription in Eukaryotic Cells

Eukaryotic transcription factors

Diff t bi ti f t i ti f t t• Different combinations of transcription factors  exert 

differential regulatory effects upon transcriptional 

initiation. 

ll d ff b f• Various cells express different combinations of 

transcription factors leading to tissue specific regulation of p g p g

gene expression.

Page 19: Transcription in Eukaryotic Cells

Eukaryotic transcription factors

Page 20: Transcription in Eukaryotic Cells

Eukaryotic transcription regulatory elements

Page 21: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

The helix‐turn‐helixThe helix turn helix

I t i th h li t h li (HTH) i j• In proteins, the helix‐turn‐helix (HTH) is a major structural motif capable of binding DNA. 

• It is composed of two α helices joined by a short strand of amino acids

• It is found in many proteins that regulate gene expressionexpression.

Page 22: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

Page 23: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

Th L i ZiThe Leucine Zipper

• A leucine zipper, leucine scissors, is a super‐secondary structural motif with two parallel α ‐helices.p

• It is a common dimerization domain found in some proteins involved in regulating gene expression

Page 24: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

Page 25: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

The Zinc Finger

• Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to stabilize theircan coordinate one or more zinc ions to stabilize their folds. 

• They function as interaction modecules that bind DNA RNA iDNA, RNA, proteins. 

Page 26: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

Page 27: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

The helix‐loop‐helixThe helix‐loop‐helix

• This motif is characterized by two α‐helicesconnected by a loop. 

• In general, transcription factors including this domain In general, transcription factors including this domainare dimeric, each with one helix containing basic amino acid residues that facilitate DNA binding.a o ac d g

Page 28: Transcription in Eukaryotic Cells

Structural Motifs in DNA Binding Proteins

Page 29: Transcription in Eukaryotic Cells

TFIIA

• Consists of three protein subunits in humans and 

drosophila 

• TFIIA binds directly to TBP (TATA binding protein) and 

stabilizes its binding to DNA,

• TFIIA acts as an anti‐repressor, stabilizing TFIID binding byTFIIA acts as an anti repressor, stabilizing TFIID binding by 

blocking repressors of transcription

Page 30: Transcription in Eukaryotic Cells

TFIIBTFIIB

• Binds directly to TBP, recruits RNA polymerase II, through an interaction with the small subunit of TFIIF. 

• Stabilizes TBP binding to TATA element• Stabilizes TBP binding to TATA element. 

• Required for association of RNA polymerase II to the initiation complex. 

Page 31: Transcription in Eukaryotic Cells

TFIID = (TBP + TAFs)TFIID = (TBP + TAFs)

• Is multimeric (>5 subunits) transcription factor that• Is multimeric (>5 subunits) transcription factor that recognizes and binds to the promoter DNA. 

• Consists of TATA‐binding protein (TBP), and several TBP‐i t d f t (TAF )associated factors (TAFs). 

• It initiates transcription and recruits other transcription factors through a direct interaction with TFIIB.

Page 32: Transcription in Eukaryotic Cells

TBPTBP

• The TBP protein resembles a saddle, with the inner 

f t ti DNA d th t f ksurface contacting DNA and the outer surface make 

protein‐protein contacts.p p

Page 33: Transcription in Eukaryotic Cells

TFIIE

• Two subunits. Forming a tetramer of two molecules of 

h b i h l b i h i fieach subunit,  the large subunit has a zinc finger 

domain.domain. 

• Recruits TFIIH to the initiation complex and modulates 

TFIIH kinase and helicase activities. 

Page 34: Transcription in Eukaryotic Cells

TFIIFTFIIF

TFIIF i f RNA l II t t bl• TFIIF is necessary for RNA polymerase II to stably 

associate with the TFIIF‐TFIIB‐promoter complex.p p

• Helps recruit RNA polymerase II to the initiation 

complex in collaboration with TFIIB. 

Page 35: Transcription in Eukaryotic Cells

TFIIHTFIIH

• TFIIHs have at least six subunits. 

• The two largest TFIIH subunits are ATP‐dependent helicases.

• TFIIH is essential for promoter melting.