22
Trojan-horse attacks threaten the security of practical quantum cryptography Nitin Jain 1,3 , Elena Anisimova 2 , Imran Khan 1,3 , Vadim Makarov 2 , Christoph Marquardt 1,3 , and Gerd Leuchs 1,3 1 Max Planck Institute for the Science of Light, G¨ unther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen, Germany 2 Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada 3 Friedrich-Alexander University Erlangen-N¨ urnberg (FAU), Institute for Optics, Information and Photonics, Staudtstrasse 7/B2, 91058 Erlangen, Germany Abstract. A quantum key distribution system may be probed by an eavesdropper Eve by sending in bright light from the quantum channel and analyzing the back- reflections. We propose and experimentally demonstrate a setup for mounting such a Trojan-horse attack. We show it in operation against the quantum cryptosystem Clavis2 from ID Quantique, as a proof-of-principle. With just a few back-reflected photons, Eve discerns Bob’s secret basis choice, and thus the raw key bit in the Scarani-Ac´ ın-Ribordy-Gisin 2004 protocol, with higher than 90% probability. This would clearly breach the security of the cryptosystem. Unfortunately in Clavis2 Eve’s bright pulses have a side effect of causing high level of afterpulsing in Bob’s single-photon detectors, resulting in a high quantum bit error rate that effectively protects this system from our attack. However, in a Clavis2-like system equipped with detectors with less-noisy but realistic characteristics, an attack strategy with positive leakage of the key would exist. We confirm this by a numerical simulation. Both the eavesdropping setup and strategy can be generalized to attack most of the current QKD systems, especially if they lack proper safeguards. We also propose countermeasures to prevent such attacks. 1. Introduction Quantum key distribution (QKD) provides a method to solve the task of securely distributing symmetric keys between two parties Alice and Bob [1–3]. The security of QKD is based on the principles of quantum mechanics: an adversary Eve attempting to eavesdrop on the quantum key exchange inevitably introduces errors that warn Alice and Bob about her presence. In the last decade however, several vulnerabilities and loopholes in the physical implementations of QKD have been discovered, and proof-of- principle attacks exploiting them have shown the possibilities that Eve may get hold of the secret key without alerting Alice and Bob [4–11]. In most cases, vulnerabilities and loopholes arise due to technical imperfections or deficiencies of the hardware. For instance, no optical component can perfectly transmit, arXiv:1406.5813v1 [quant-ph] 23 Jun 2014

Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

  • Upload
    vonhu

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of

practical quantum cryptography

Nitin Jain1,3, Elena Anisimova2, Imran Khan1,3, Vadim

Makarov2, Christoph Marquardt1,3, and Gerd Leuchs1,3

1 Max Planck Institute for the Science of Light, Gunther-Scharowsky-Str. 1/Bau 24,

91058 Erlangen, Germany2 Institute for Quantum Computing, University of Waterloo, 200 University Avenue

West, Waterloo, Ontario N2L 3G1, Canada3 Friedrich-Alexander University Erlangen-Nurnberg (FAU), Institute for Optics,

Information and Photonics, Staudtstrasse 7/B2, 91058 Erlangen, Germany

Abstract. A quantum key distribution system may be probed by an eavesdropper

Eve by sending in bright light from the quantum channel and analyzing the back-

reflections. We propose and experimentally demonstrate a setup for mounting such

a Trojan-horse attack. We show it in operation against the quantum cryptosystem

Clavis2 from ID Quantique, as a proof-of-principle. With just a few back-reflected

photons, Eve discerns Bob’s secret basis choice, and thus the raw key bit in the

Scarani-Acın-Ribordy-Gisin 2004 protocol, with higher than 90% probability. This

would clearly breach the security of the cryptosystem. Unfortunately in Clavis2

Eve’s bright pulses have a side effect of causing high level of afterpulsing in Bob’s

single-photon detectors, resulting in a high quantum bit error rate that effectively

protects this system from our attack. However, in a Clavis2-like system equipped with

detectors with less-noisy but realistic characteristics, an attack strategy with positive

leakage of the key would exist. We confirm this by a numerical simulation. Both the

eavesdropping setup and strategy can be generalized to attack most of the current QKD

systems, especially if they lack proper safeguards. We also propose countermeasures

to prevent such attacks.

1. Introduction

Quantum key distribution (QKD) provides a method to solve the task of securely

distributing symmetric keys between two parties Alice and Bob [1–3]. The security

of QKD is based on the principles of quantum mechanics: an adversary Eve attempting

to eavesdrop on the quantum key exchange inevitably introduces errors that warn Alice

and Bob about her presence. In the last decade however, several vulnerabilities and

loopholes in the physical implementations of QKD have been discovered, and proof-of-

principle attacks exploiting them have shown the possibilities that Eve may get hold of

the secret key without alerting Alice and Bob [4–11].

In most cases, vulnerabilities and loopholes arise due to technical imperfections or

deficiencies of the hardware. For instance, no optical component can perfectly transmit,

arX

iv:1

406.

5813

v1 [

quan

t-ph

] 2

3 Ju

n 20

14

Page 2: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 2

or completely absorb light. An optical pulse launched into a network of optic and

optoelectronic components, e.g., a QKD system, encounters several sites of Fresnel

reflection and Rayleigh scattering [12]. Some light thereby travels opposite to the

propagation direction of the input optical signal. The properties and functionality of

some component inside a QKD system may thus be probed from the quantum channel

by sending in sufficiently-bright light and analyzing the back-reflected light. This forms

the basis of a Trojan-horse attack [4, 5, 13].

Neither the concept, nor the danger of a Trojan-horse attack on QKD systems is

new [4, 5, 13]. Also, it is the Alice device that is typically considered vulnerable to

this kind of attacks since it prepares the quantum state in most QKD schemes. If a

QKD system is operating, e.g., the Bennett-Brassard 1984 (BB84) protocol [1], then by

sending a suitably-prepared bright pulse inside Alice and analyzing its back-reflections,

Eve could obtain information about the setting of the polarizer [14–16] or the phase

modulator [13, 17,18] responsible for encoding the secret bit.

A simple way to detect a Trojan-horse attack red-handed is to install a passive

monitoring device at Alice’s entrance. This is usually implemented by a suitable detector

(or an array of detectors) that measures different parameters of an incoming signal and

raises an alarm whenever certain pre-characterized thresholds are crossed. However, a

similar countermeasure cannot be straightforwardly adopted for the Bob device since

it typically detects the already-quite-weak states of light coming from the quantum

channel – a passive monitoring device would introduce unwanted attenuation and bring

the secret key rates down further. Another countermeasure [4, 5, 19, 20] is to add an

optical isolator to block the bright Trojan pulse from entering; however, this is not

applicable to two-way systems such as plug-and-play schemes [21].

For the BB84 protocol, this does not pose a problem as Bob publicly declares his

basis choice, i.e., the setting of his polarizer/phase modulator. However, in the Scarani-

Acın-Ribordy-Gisin 2004 (SARG04) protocol [22, 23], the secret bit is given by Bob’s

basis choice. If Eve can surreptitiously read Bob’s phase modulator setting (= 0 or π/2)

from the quantum channel via a Trojan-horse attack, then she acquires knowledge of

the raw key [24]. She can then apply the same operations (sifting, error correction and

privacy amplification [2,3,14]) as Alice and Bob and therefore, eavesdrop without being

discovered and hence break the security of the system.

SARG04 is more robust than BB84 against photon-number-splitting attacks [11,25],

which is useful for QKD systems such as Clavis2 [26] that employ attenuated laser

sources. In the following sections however, we show that it can be vulnerable to Trojan-

horse attacks on Bob. We believe this is the first proof-of-principle demonstration of

such an attack on a practical QKD system (although static phase readout in Alice has

been demonstrated before [4,5], the previous experiments were not real-time and did not

analyse the complete system). Furthermore, both our eavesdropping setup and strategy

are universal: with simple modifications, they could be applied against entanglement-

based, continuous-variable, or even the very recent measurement-device-independent

QKD systems [27–30] if they lack proper safeguards against Trojan-horse attacks. In

Page 3: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 3

such cases, it may be used even to break the BB84 protocol.

2. Theory and preparatory measurements

To prepare for a practical Trojan-horse attack, the eavesdropper Eve needs to know the

answers to (at least) the following questions:

(i) What time should a Trojan-horse pulse be launched by Eve into Bob?

(ii) What time would a back-reflected pulse of interest exit Bob and arrive on the

quantum channel? And with what amplitude?

(iii) What properties may be analyzed in a back-reflected pulse?

(iv) How to avoid being detected by Alice and Bob?

(v) What is the most suitable wavelength for attack?

These questions are closely interrelated, and the answers to them naturally depend

on the QKD system under attack. In this section, we address them specifically for

Clavis2, the plug-and-play QKD system from ID Quantique; or to be more precise,

with the aim of crafting and executing an attack on Clavis2-Bob while it runs SARG04.

Figure 1(a) shows the basic scheme of the attack while figure 1(b) shows the optical

schematic of Clavis2 that operates in a two-way configuration based on the plug-and-

play principle [21]. We briefly describe the principle below, and in the appendix we

discuss several (technical) details via a numerical simulation.

Bob contains both the laser and the detectors; he sends bright pulse pairs to Alice

who prepares the quantum states and sends them back to Bob. For this, she randomly

modulates the relative phase ϕA = {0, π/2, π, 3π/2} between the optical modes of each

pair, and applies an attenuation so that the mean photon number of the resultant

weak coherent pulses (returning to Bob on the quantum channel) is as dictated by the

protocol. For SARG04, the optimal value is µSARG04 = 2√T , where T is the channel

transmission [23]. Bob applies a binary modulation chosen randomly per pair (ϕB = 0

or π/2, corresponding to the secret bit 0b or 1b respectively) and his pre-calibrated [10]

gated detectors measure Alice’s quantum states. The actual transmission uses the

concept of frames, a train of pulses that entirely fit in Alice’s delay line in order to

prevent errors that would otherwise result from Rayleigh backscattering [21]. A frame

in our Clavis2 system is configured to be 215µs long, while the inter-frame separation

depends on the total distance between Alice and Bob1.

Time of launching the Trojan-horse pulse

Eve launches a Trojan-horse pulse (THP) into Bob at time tE→B chosen so that the

onward pulse and/or one of its back-reflections (from some component or interface inside

Bob) travel through Bob’s phase modulator (PM) while he is applying a voltage on it.

As will be explained below, the back-reflected pulse coming out from Bob onto the

1Lower bound is provided by the delay line in Alice, which for our system results in ∼ 235µs.

Page 4: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 4

quantumchannel

V

detector 0detector 1

polarizingbeamsplitter

50/50 beamsplitter

circulator

phase modulator

BobB

H

laser

photodiode

90/10coupler

variableopticalattenuator

Faradaymirror

delay lines

phasemodulator

Alice

A

a)

b)

quantumchannel

BobAlice

timing and polarizationinformation extractor

MUX

Trojan-horseattack apparatus

tap coupler

Eve

Eve’s delay lines

quantumchannel

Figure 1. Basic optical schematic of the Trojan-horse attack and plug-and-play QKD

system. (a) Using the MUX, Eve multiplexes (in time and wavelength) the Trojan-

horse pulses to the quantum signals traveling from Alice to Bob for probing Bob’s

basis choice. Reflections from Bob travel back to the Trojan-horse attack apparatus

after being demultiplexed at the MUX. Eve may also replace parts of the quantum

channel (in solid-orange) with her own delay lines (in dashed-blue). (b) A folded Mach-

Zehnder interferometer operating in double pass facilitates a passive autocompensation

of optical fluctuations (arising in the quantum channel) and forms the essence of plug-

and-play schemes. Bob contains both the laser and single-photon detectors connected

to his local interferometer by means of a polarizing beamsplitter, 50/50 beamsplitter,

and circulator (henceforth referred to as the PBS-BS-C assembly). Alice employs a

Faraday mirror to reflect back the signals sent by Bob. The small black rectangles in

Bob denote a pair of FC/PC connectors inside a mating sleeve.

quantum channel then carries an imprint of whatever random phase shift ϕB had been

applied by Bob. The time tE→B is of course relative to events inside Bob repeating at

fB = 5 MHz. To be synchronized to the clock in Bob, Eve may steal a few photons from

the bright pulses traveling to Alice using a tap coupler, as shown in figure 1(a). She

can extract information such as timing and polarization from the measurement of these

photons and use it in the preparation of the THPs.

Time of arrival and amplitude of the back-reflected pulse

As illustrated in figure 1(b), Bob comprises of a miscellany of fiber-optical components.

This offers several interfaces from where (measurable) back-reflections could arise. Also,

due to the asymmetric interferometer, there may be two different paths traversable in

either directions, i.e., for the arrival of the Trojan-horse pulse into Bob, and departure

of a given reflection to the quantum channel. In essence, for a single THP sent into

Bob, multiple reflections varying in time and amplitude can be expected. By means

of repetitive measurements, a reflection-map for Bob – temporal distribution of the

back-reflection levels – can be constructed. This is a task perhaps best suited for an

optical time domain reflectometry (OTDR) device [31]. We obtained OTDR traces, or

Page 5: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 5

Reflections (

in d

B)

time delay (ns)

sum of the remainingthree connectors 806 nm

D0

laserD1

PM

PBS-BS-CD0

laserD1

D0

laserD1

short-short short-long / long-short long-long

PBS-BS-C

PBS-BS-C

1550 nm

Figure 2. Reflection maps of Clavis2-Bob at 1550 nm and 806 nm, as seen from

Bob’s entrance. Reflections from several components close in time are color-coded.

Reflections not shown were below the OTDR sensitivity (about −83 dB at 1550 nm and

−96 dB at 806 nm). However, some important reflections below the sensitivity limit

at 806 nm were estimated by combining several measurements on parts of Bob. The

reflection level of the connectors could depend significantly (maximum variation: 3 dB)

on the cleanliness of the connectors and mating sleeves. In the scheme, small filled

rectangular blocks represent FC/PC connectors with curved polished surfaces; PM:

phase modulator, D0 and D1: avalanche photodiodes; PBS-BS-C: optical assembly

of polarizing beamsplitter, 50/50 beamsplitter, and circulator. OTDR model: Opto-

Electronics modular picosecond fiber-optic system.

reflection-maps for Bob, for three different wavelengths: 806 nm, 1310 nm and 1550 nm.

Figure 2 illustrates two of them; the traces for 1310 nm and 1550 nm were found to

be quite similar. Due to the polarizing beamsplitter at Bob’s entrance (the PBS in the

PBS-BS-C assembly), most of the reflection levels depend greatly on the polarization of

the probe light. This polarization was set to maximize the reflection from the closest

connector of the PM (see star-like shape). As indicated, the back-reflected pulse would

exit Bob around 43 ns after the arrival of the THP into Bob; tB→E − tE→B ∼ 43 ns.

The corresponding back-reflection level is around −57 dB. By sending a THP, say with

a mean photon number µE→B = 2 × 106, Eve would get a back-reflection µB→E ≈ 4.0,

i.e., with just four photons on average.

Measurement of the back-reflected pulse

Per se, any physical property in the back-reflected pulse that provides a clue of Bob’s

modulation suffices, and governs Eve’s measurement technique. If Eve uses a coherent

Page 6: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 6

laser operating at wavelength λE to prepare the THP, the state of light in the back-

reflected pulse can be approximated by a weak coherent state |α〉. The phase ϕE =

Arg(α) depends on λE, e.g., if λE = λAB ∼ 1550 nm, and Eve launches the THP so

that both the onward and back-reflected pulse make a pass through the PM while it is

active, then ϕE ∼= ϕB +π+ϕB = π or 0. The objective then simplifies to discriminating

between two weak coherent states having the same amplitude |α| but opposite phase,

which can succeed with a probability 1 − e−|α|2 at most (which is the probability that

the state |±α〉 is not projected onto the vacuum state). Assuming the aforementioned

case with |α|2 ≡ µB→E ≈ 4.0, the maximal success probability is 98.2%. This unknown

phase may be probed interferometerically with either a (bright) local oscillator followed

by a homodyne detector, or an attenuated coherent state (the same level as µB→E) and

a pair of single-photon detectors.

Avoiding discovery by Bob (or Alice) and other constraints

Raising µE→B would yield more photons for the measurement, allowing for a better

phase discrimination, but how do these bright pulses affect the other components in the

QKD system in general? An oddly-behaving component is a signature that could lead

to Eve’s discovery, so this issue is quite central to the success of Eve’s attack.

Bob uses a pair of avalanche photodiodes (APDs) operated in gated mode2 to detect

the legitimate photonic qubits from Alice. Eve’s bright pulses, even if timed to arrive

outside the detection gate, tend to populate carrier traps [9,33] in the APD. This ensues

in an afterpulsing effect: traps exponentially decay by releasing charge carriers that may

stimulate avalanches of current, or afterpulses, in the onward gates. These afterpulses

increase the dark count rate, i.e., result in higher number of false clicks in the APDs.

Due to this, the quantum bit error rate (QBER) incurred by Alice and Bob at the

conclusion of the key exchange will naturally be higher. Eve’s objective is to make sure

that the QBER does not cross the ‘abort threshold’ (e.g., around 8% in Clavis2 [10]) as

that would fail her eavesdropping attempt. Moreover, as characterized in the so called

after-gate attack [9], if the brightness µE→B exceeds a certain threshold, then for a THP

arriving a few ns after the gate, the APD may register a click with high probability for

that particular slot. Since Eve wants to merely read the state of the phase modulator

via a Trojan-horse pulse, she must constrain the brightness of this pulse to avoid an

undesired click in Bob’s APDs in the attacked slot. This imposes an upper limit on

µE→B, which is ∼ 2× 106 for our system [9].

As the afterpulsing is strongly dependent on the brightness µE→B and frequency

of attack fEatt (which may be lower than fB = 5 MHz), Eve would like to attack with

the dimmest-possible THPs. The lower limit is mainly decided by the probability of

success in discerning Bob’s modulation, i.e., how well can Eve’s measurement apparatus

perform as µB→E falls in the few-photon regime. Reducing fEatt implies Eve probes

only a fraction of the slots that eventually contribute to the raw key formation: she can

2Gate width for Clavis2 system is ≈ 2.0 ns [32], and gate period is 1/fB= 200 ns.

Page 7: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 7

then possess only a partial amount of knowledge of the raw key. This must therefore be

high enough to ensure a positive leakage of information at the end of the protocol, i.e.,

after Alice and Bob have distilled the secret key by estimating Eve’s information and

destroying it by means of privacy amplification.

Suitable wavelength for attack

The behaviour of most optical components is a function of wavelength. The attenuation

through fibers and back-reflectance of the connectors may also vary with wavelength.

The notable differences between the OTDR traces at 808 nm and 1550 nm, shown in

figure 2, is a testimony to this fact.

Ideally speaking, to characterize a QKD system, one should perform individual

OTDR measurements over a large spectral range that could prove feasible for mounting

Trojan-horse attacks. However, identifying such a range is not easy. Moreover, it

requires an OTDR system with a tunable source as well as a detector with a high

sensitivity over the complete range. This may not be possible in practice. Nevertheless,

we made some simple measurements using a photonic crystal fiber based supercontinuum

source [34]. The primary focus of these measurements, the details of which will be

discussed elsewhere, was to examine the spectral behaviour of Bob’s PM in conjunction

with its input and output connectors. Fortunately for the QKD system, we did not

find any reflection peaks that could have aided Eve. In fact, based on the OTDR and

supercontinuum results, the optimum attack wavelength seems to be ∼ 1550 nm.

3. Phase readout experiment

Eavesdropping setup

Here we describe our implementation of a proof-of-principle Trojan-horse attack.

Figure 3 shows the schematic of the apparatus used for reading out the unknown phase

by means of homodyne detection. For this, we disconnected Bob from Alice. A pulse

& delay generator (Highland Technology P400) was synchronized to Bob and drove

Eve’s laser at a repetition rate fEatt = 5 MHz. An optical isolator was employed to

protect Eve’s laser from reflections. Using a 50/50 (later replaced by a 1/99) coupler,

the Trojan-horse pulses were directed into Bob from port 3. The polarization of these

THPs was optimized using PC1 so that the power at the FC/PC connector (port 9,

inside Bob) after the PM was maximum.

A long fiber patchcord of an appropriate length was spliced and added to the other

arm of the coupler at port 4. The relative path difference between the back-reflected

pulse (signal path) and the local oscillator pulse (control path), as observed at the

50/50 beamsplitter of the homodyne detector, was adjusted to achieve the maximum

interference visibility. The polarization of the signal (control) pulses at the outcoupler

FC1 (FC2) could be controlled by PC2 (PC3). Using P400, the laser delay, i.e., tE→Bwas changed so that the input pulse traveled through Bob’s PM while the PM was

Page 8: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 8

control path

BS

signal pathtranslation

stage

1/99coupler

Eve’s laser

isolator

pulse & delaygenerator

Bob

sync

1

PC1

PC3

4

3

9

2

coarse delayline

PC2

FC2

PC: polarization controllerBS: 50/50 beamsplitterFC: fiber collimator

B

homodynedetector

FC1

Figure 3. Schematic of a Trojan-horse eavesdropper. Some components in Bob are

not shown to avoid cluttering. To synchronize to Bob’s modulation cycle, we used an

electronic sync signal as shown. In an actual attack, Eve can use the method explained

in section 2 (also see the explanation of the attack strategy in the appendix).

activated. The optical pulse width, and therefore the mean photon number per pulse,

could be fine-tuned by changing τEatt, the driving pulse width in P400.

Results

As mentioned before, Clavis2 operates the quantum key exchange in frames that are

215µs long, containing Nf = 1075 modulations or slots repeating every 0.2µs. We

configured the oscilloscope to capture the output voltage of the homodyne detector and

the phase modulator voltage (obtained via an electronic tap placed inside Bob) in a

single-shot acquisition mode lasting 250µs. Figure 4 shows the time traces of Bob’s

randomly-chosen phase modulations and the output of Eve’s homodyne detector for

5 arbitrarily chosen slots in two different configurations. The first one (with a 50/50

coupler and τEatt = 3.3 ns) had mean photon numbers µLO ≈ µE→B = 108 resulting

in a mean photon number µsig ≈ 100 of the back-reflected pulses in the signal arm of

the homodyne detector. In this case, the discrimination is quite apparent as illustrated

in figure 4(a); in fact, using peak-to-peak values as a measure, correlations above 99%

were easily obtained when measured over entire Clavis2 frames.

We then replaced the 50/50 coupler with a 1/99 coupler and obtained µE→B ≤1.5 × 106 at τEatt = 2.6 ns. In this case, illustrated in figure 4(b), the mean photon

number µsig ≈ 3 while the LO had slightly higher power than before, µLO > 108. We

also confirmed that a slot attacked with the Trojan-horse pulse never experienced a

click (except due to a dark count) [9]. A direct discrimination may not be evident by

eye, however, after integrating the homodyne pulses over a suitably chosen time-window

every slot, we obtained correlations above 90%. This is explained further in the caption,

and the corresponding output for 500 slots is depicted in figure 4(c).

Both theoretical and experimentally demonstrated discrimination probability is

above 90%, and in section 5 we shall discuss a few techniques that can increase it

Page 9: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 9

Vo

ltag

e, H

D (

mV

)V

olt

age,

PM

(m

V)

20

10

-10

30

φ πBob = /2

φBob = 0

time (μs)0.2 0.4 0.8 1.0

time (μs)

40

20

-20

-40

φBob= 0

φ πBob = /2

Vo

ltag

e, H

D (

mV

)V

olt

age,

PM

(m

V)

0.60.2 0.4 0.8 1.00.6

a) b)

c)

Inte

gra

ted v

alues

,an

d(a

.u.)

HD

PM

Mean photon no. 100, μ ≈sig

time (μs)

100 200 300 400 500

5

10

15

20

Bob’s secret bit 0b

Bob’s secret bit 1b

0E

1E

slot no. in the QKD frame

Mean photon no. 3, μ ≈sig

time (μs)

Figure 4. Results of phase readout. (a) Traces of Bob’s randomly-chosen phase

modulation (in red) and the output of Eve’s homodyne detector (in blue) for a sequence

of 5 arbitrarily chosen slots. The measurement was performed at µsig ≈ 100 and

fEatt = 5 MHz. The correlation between Bob’s modulation and Eve’s homodyne pulses

can be easily discerned. (b) Same as in (a) but with µE→B reduced so that µsig ≈ 3.

The major pulse shape observed at the homodyne detector (HD) output arises from

the slightly-imperfect subtraction of the LO. The signal is nevertheless easily extracted

by integration over a time-window (denoted by green shaded rectangle). Thus, in each

200 ns slot, a single value each for the random phase modulation and HD pulse is

calculated. (c) Series of 500 such integrated values, shifted by an arbitrary constant

merely to aid visual discrimination. Using an appropriate threshold (black horizontal

line), Eve’s estimation of Bob’s bit 0b or 1b in a given slot is correct in > 90% cases.

further. To simplify our simulation, we assume from hereon that a Trojan-horse pulse

with µE→B ∼< 2 × 106 can always accurately read the state of Bob’s PM in each

slot. Finally, note that due to fluctuations, the global phase drifts on frame-to-frame

basis, but Eve can always suitably craft her LO to homodyne another back-reflection

which passed through Bob’s PM outside the modulation width, i.e., when the PM is

inactive. This effectively allows to set her reference to ϕB = 0. Also, such phase drifts

are typically in the few-kHz regime which is of the same order as the frame rate in Bob.

4. Eve’s attack strategy simulation

To know the entire modulation sequence in Bob, Eve would have to attack the QKD

system with fEatt = 5 MHz which would result in a tremendous amount of afterpulsing

in Bob’s APDs even when µE→B ∼ 2 × 106 is chosen. A straightforward attack is

Page 10: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 10

clearly not possible. In this section, we devise an attack strategy that may still allow

Eve to probe Bob’s PM frequently enough to obtain more raw key than Alice and Bob

estimate her to possess during the calculation of the secret key fraction [23]. Neither is

the expected detection rate of Bob severely affected, nor the QBER crosses the abort

threshold. In other words, a non-zero portion of the final secret key is leaked to Eve

without her being discovered.

To motivate the basic idea of the strategy, note that it makes sense to probe the

modulation in a slot if Bob, with a high probability, eventually obtains a valid detection

in that slot. Conversely, if a slot has a very low probability of being registered by Bob,

probing that slot is not only a waste but also the afterpulsing – due to Eve’s bright

pulses – unnecessarily increases the QBER. By manipulating the photonic frame, i.e.,

the train of Nf = 1075 legitimate weak coherent pulses (WCPs) returning from Alice

to Bob, Eve can control the timings of detection events in Bob. For this purpose, she

may either (i) use a low-loss channel to transfer the photon(s) in a WCP from Alice to

Bob and increase the chance of a click in that given slot, or (ii) block the WCP entirely

to decrease it. She multiplexes Trojan-horse pulses on (a subset of) the former slots as

depicted in figure 1(a) while keeping her laser shut in the latter slots.

Since the mean photon number of the WCPs arriving in Bob is rather low, a major

chunk of the slots would actually contain 0 photons, and obviously cannot result in a

detection event in Bob. Eve may increase her chance of attacking a slot, that eventually

yields a valid detection event, by sending a set of consecutive Trojan-horse pulses, here

called an attack burst with length Nab. However, this burst would also cause a large

amount of afterpulsing – noticeable even a few slots after its application. Eve’s remedy

to this is based on the fact that a successful click causes a deadtime in Bob’s APDs.

During the attack burst, Eve therefore tries to impose a deadtime in Bob from Alice’s

photons to mask the afterpulsing. To achieve that, she uses the low-loss channel to

transfer the Nab slots to Bob to increase the photon detection probability.

Since Nab can obviously not be too large, the deadtime imposition (which results

in a withdrawal of Ndt = 50 gates in Clavis2) may not always work during the attack

burst. Therefore, Eve also transfers another set of Nss slots on the low-loss channel,

called the substitution sequence, to keep the photon detection probability high after the

attack burst as well. We emphasize that Eve does not add any Trojan-horse pulses

during the substitution sequence.

In this scenario, the detection clicks in Bob’s APDs due to Alice’s photons (sent

over the low-loss channel in Nab+Nss slots) compete with those from the afterpulses: the

former may mask the latter, effectively lowering the error probability. Finally, another

optimization for Eve would involve drastically decreasing the detection probability

before these Nab + Nss slots – otherwise, a click in a slot before the attack burst slots

would result in the burst being encompassed in a deadtime, yielding no benefit to Eve.

By extinguishing a certain number of the WCPs (denoted as extinguished length Nel),

she may reduce these chances. Thus, her attack pattern can be thought of as a repetition

of the triad {Nel, Nab, Nss}, as illustrated by an example in figure 5(a).

Page 11: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 11

b) Photonic frame arriving in Bob after Eve’s manipulation

pro

babili

ty o

fdete

ction, D

0

pro

babili

ty o

fdete

ction, D

1

Click

slot no.No click

attacked slot T T( = )LL

substituted slot T T

extinguished slot T

( = )

( =0)LL

a) Eve’s frame-filtering using fast optical switches and low-loss line

photo

n n

o.

d) Corresponding detection probabilities in each of the 1075 gates of the frame

e) Combining all gates that clicked in D0 and D1 while taking care of double clicks

c) Overall noise probability with contribution from afterpulses

pro

babili

ty o

fdete

ction, D

/0

1

slot no.

200 400 600 800 1000

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��

����������

������

���������

��

��

��

��������

�������

����

����������

�������

��

����

����������������������

������

��

��

������������

���

��

����

��

�����

���������

����������������������������������������������������������������������������������������������������

���

���

��

��������

���������

����������

��

������

��

����

���������������������

�����

������

��

�������

������������������������

���

��������������������

��

�����������

�������������������������������������������������������������������������������������������������������

����

���

���������

���

��

���

�����

��

�������

������������������

�����

��������������������������

��������������

����������������������������������

��

��

��

���

�������������������������������������������������������������������������������������������������������

200 400 600 800 1000

0.050.100.150.200.250.30

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��

����

����������

�����

���

����������������

�����

���������

��

��

�������������

������������

���

������

��

����������������

�����

�����

�������

��

�����

�������������������������������������������������������������������������������������������������������

���

����

����������

��

���

�����������

��

����������������

�������

���

���

��

��

������

��������

��

��

��

����

���

�������

����

���

������������������

�����

����

���������������������������������������������������������������������������������������������������

�������

������

��������

�������

�������������

�����������

�����

��

��

��

����������

��

����

��

��

�����

����

�����

�����������

������

�����������������

����

�����

��

����

���������������������������������������������������������������������������������������������������

���� ��

200 400 600 800 1000

0.050.100.150.200.250.30

200 400 600 800 1000

slot no.��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������

���

������

�����

��

��

��������

��

�����

��

����

���

��

��

��

�������

��

����

���

���

�����

��

��

��

��

��

�����������

��

���

����

���

��

���

�����

��

�����������������������������������������������������������������������������������������������������

��

��

���

����

�����

��

��

��

���������

����

����

��

����

�������

���

���

��

��

���

��

������

��

��

��

����

���

���

���

��

����

���

����������

��

����

�����

��

���

���������������������������������������������������������������������������������������������������

�������

���

���

�����

��

���

��

��

��

��

�����

��

���

���

�������

�����

��

��

��

���

������

��

����

��

��

�����

���

����

�������

���

������

�����������������

����

���

��

��

��

���

���������������������������������������������������������������������������������������������������

���

1

2

3

����������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

200 400 600 800 1000

0.050.100.150.200.250.30

slot no.1000

����������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Nss=174 N

el=98N

el0=239 N

ab=5

200 400 600 800

0

Figure 5. Simulating the effect of Eve’s attack on the QKD protocol operation.

(a) Eve manipulates a frame sent by Alice to Bob using the strategy described in

the main text (more details in the appendix). (b) Bob receives a ‘filtered’ frame,

as the effective channel transmission is T = TLL for all Nab (attack burst) and Nss

(substitution sequence) slots, and T = 0 for Nel (extinguished length) slots. We

assumed TLL = 0.9 in the present case. (c) Characteristic exponential decay of

probabilities due to afterpulsing in both D0 and D1 (red and blue) may be visualized

after the attack-bursts. (d) Final detection-probability patterns for D0 and D1. (e)

Subsequent click pattern just like in figure A1(e); out of the 9 slots (3 in D0 and 6

in D1, indicated by rotated-red and straight-blue squares, respectively) where clicks

occurred, Eve knows the basis choice of Bob in 4 of them (indicated by green star).

Evaluating the QKD frame manipulation

In the appendix, we describe a specific construction of Eve’s strategy using fast optical

switches [35] and low-loss channels for manipulating the QKD frame as explained above.

Due to this manipulation, Bob receives photons from Alice only during the attack bursts

and substitution sequences. This is apparent in figure 5(b); see the thick yellow and

green segments. Also, due to the afterpulses emanating from the attack burst slots,

the dark noise is not uniform throughout the frame. The overall noise probability in

the lth slot is given by nj(l) = dj + aj(l) − dj × aj(l) for j = 0 and 1, and is shown

in figure 5(c). In this expression, d0/1 represents the dark noise probability per gate

for D0/D1. The function aj(l) is computed by summing together the contributions of

all previous afterpulses until the lth slot; this is explained in more detail in Ref. [9].

Table A1 lists all the parameters for calculating the function nj(l).

Page 12: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 12

After considering both the photonic input and noise figure, we can evaluate the

final detection probabilities pj(l) = sj(l) + nj(l) − sj(l) × nj(l) for the entire frame,

as shown in figure 5(d). We explain the derivation of sj(l) and modelling of the click

events in D0 and D1 based on Bernoulli trials in the appendix. Figure 5(e) illustrates

the clicked gates found after taking double clicks and deadtime imposition into account.

Note that while Eve attacked only 20 out of 1075 slots, she knows Bob’s basis choice in

4 out of 9 slots that are going to be used in the formation of the raw key.

The QBER incurred by Alice and Bob is strongly dependent on the combination

{Nab, Nss, Nel} used by Eve during the operation of the QKD protocol. The quantum

channel transmission T and low-loss line transmission TLL directly influence the photon

number statistics µSARG04 in Alice and the observed detection rate γB in Bob, and also

indirectly affect both the QBER and Eve’s actual correlations IactE with the key shared

by Alice and Bob after error correction. For instance, long and frequent attacks (larger

Nab and smaller Nss, in a relative sense) yield high IactE but also high QBER. Similarly,

a large Nel preceding an attack burst may effectively increase IactE as the attacked slots

have lesser chances of being inside a deadtime period, but this may also decrease γB.

And a high TLL naturally implies higher γB, and perhaps lower QBER because the dark

noise is effectively decreased, however TLL cannot exceed 1.

Classical processing and optimizing the simulation

Let us first briefly recapitulate some essential information from the previous pages.

In section 3, we experimentally demonstrated the readout of Bob’s phase modulator

with a high accuracy. However, we also found that frequent Trojan-horse pulses would

result in a huge afterpulsing in Bob’s APDs which would reveal Eve’s presence easily.

In this section, we devised an intuitive strategy in which Eve manipulates the frame-

based communication of Clavis2 and attacks (with Trojan-horse pulses) only a small

but carefully-chosen subset of the slots in a frame. If Eve simultaneously ensures that

(i) the QBER q does not cross the abort threshold (q < qabort),

(ii) the portion of the raw key Eve actually knows is more than whatever Alice and

Bob estimate based on the security proof (IactE > IestE ), and

(iii) the deviation of the observed detection rate γobsB from the expected value in Bob

γexpB , given by δB =∣∣∣∣1− γobsB

γexpB

∣∣∣∣, is within tolerable limit (δB ≤ δmaxB ),

then her strategy succeeds. For satisfying these requirements, one needs to find an

optimal attack combination. We simulated different combinations {r, Nab, Nss, Nel};with the new variable r ≤ 1 denoting the fraction of frames subjected to the Trojan-horse

attack. To elaborate, if r = 0.8, Eve randomly chose 80 out of 100 frames to attack with

the pattern imposed by a specific triad {Nab, Nel, Nss} in the manner shown in figure 5,

while the remaining 20 passed to Bob normally (in the manner shown in figure A1).

Due to probabilistic elements in the simulation, each run was performed for

nsim = 10000 frames to minimize stochastic fluctuations. In each run, slots that

Page 13: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 13

yielded clicks were collated and the average number of clicks per frame γobsB = (total

clicks)/nsim was calculated. A basis reconciliation procedure, as per the specifications

of SARG04 [22, 23], was then performed on the collated slots. This provided us with

the incurred QBER q and the fraction of valid slots3 in which Eve knows the secret

bit. From the former, we can calculate the leak due to error correction (EC) leakECthen use it with the latter to bound Eve’s correlations IactE with the error-corrected key.

In particular, we assumed EC to work in the Shannon limit, i.e., leakEC = h(q), with

h(x) = −x log2(x)− (1− x) log2(1− x) being the binary entropy.

To calculate the amount of privacy amplification that Alice and Bob do in SARG04

protocol, we evaluated the expression I(A : E) derived in Ref. [23] (equation (88)

therein); this provides IestE essentially. The derivation considers eavesdropping strategies

applicable against SARG04 when Alice employs an attenuated laser instead of a single-

photon source. The final expression is obtained while optimizing and lower-bounding

the secret key fraction attained by Alice and Bob.

One element considered in the calculation of IactE = I(A : E) is preprocessing : a

classical operation performed by Alice at the commencement of QKD that reduces both

Bob’s and Eve’s information, but in a more inimical manner for the latter than the

former [23,36]. Although Ref. [23] concludes that preprocessing in SARG04 helps Alice

and Bob only in a very specific regime, it does not explicitly state that preprocessing

should be avoided in other regimes. Since security proofs generally consider attacks that

maximize I(A : E) instead of I(B :E), the use of preprocessing by Alice may expose

a vulnerability exploitable via Trojan-horse attacks on Bob. Although preprocessing is

not implemented in Clavis2, we consider a case here to highlight the vulnerability.

Indicating the degree of preprocessing performed by Alice with a variable y, and

using all the relevant source, channel, and detector parameters introduced thus far, we

calculate IestE = 0.4844 for y = 0. This implies that Alice and Bob compress almost half

of their error-corrected key during privacy amplification. If however, Alice were to use

the maximum preprocessing (y = 0.5), then IestE = 0.1106. Note that the value of IestE

is independent of the incurred QBER. This is due to the fact that the attacks found

optimal in the security proof [23] are ‘zero-error’ attacks [3]. However, IestE depends on

the channel transmission, as also shown in Ref. [23]. The values here are calculated at

a fixed transmission (T = 0.25).

5. Results and discussion

In trying to search for optimal combinations {r, Nab, Nel, Nss} that satisfy all the

requirements listed in the previous section, we could find numerous cases where two of

the three conditions were easily satisfied (qabort ≈ 0.08 and δmaxB = 0.15 for Clavis2),

as shown in figure 6(a). However, it is clear that below the QBER abort threshold,

the final raw key correlations of Eve never surpass the estimate of Alice and Bob, i.e.,

IactE < IestE . One reason for the failure is that the detectors, especially D1, in Clavis2 are

3I.e., the slots kept by both Alice and Bob after the basis reconciliation.

Page 14: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 14

Final quantum bit error rate,

Deviation in detection rate, δB

Eve’s raw key correlations,

q

Iact

E

0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5

a)

IE

est

= 0.4844

{ = 0.15, =8, 1, 67}r Nab N Nss el= 8 =

{0.20, 8, 64, 159}

{0.25, 7, 83, 67}

{0.25, 6, 84, 179}

b) Assumed detector configuration (D1 equivalent to D0) and y=0.4q

abort= 0.08

δB

max

= 0.15

Given detector configuration (D0 and D1) and y=0.0

c)

{0.20, 10, 78, 79}

{0.30, 9, 94, 77}

{0.30, 10, 80, 81}

{0.45, 9, 220, 117}

IE

est

= 0.5037New detector configuration (ultralow noise D0 and D1) and y=0.0

δB

max

= 0.15Miscellaneous parameters

IE

est

= 0.1336

qabort

= 0.11

{0.80, 18, 39, 45}

{0.90, 16, 32, 50}

{0.95, 14, 36, 51}

{0.95, 15, 35, 54}

Figure 6. Performance of the simulated attack strategy in three different scenarios.

The QKD system aborts the protocol when the QBER q crosses a threshold qabort(dashed red line) or the absolute deviation in the detection rate δB surpasses a

boundary δmaxB (dash-dotted blue line). To break the security under these constraints,

Eve’s actual correlations with the raw key IactE must exceed the estimate made by

Alice and Bob IestE (dotted green line). (a) Assuming D0 and D1 with characteristics

as that of the Clavis2 detectors (see Table A1) and that Alice does not apply any

preprocessing (y = 0), it seems difficult to satisfy the three conditions: q < qabort,

δB ≤ δmaxB , and IactE > IestE simultaneously. (b) Assuming both detectors behaving like

D0, some preprocessing (y = 0.4), and qabort ≈ 0.11, Eve can breach the security. (c) A

QKD system implemented with APDs having high efficiency and low noise is vulnerable

to Trojan-horse attack even without the preprocessing loophole. The optimal attack

combinations {r, Nab, Nss, Nel} that produced these results are also listed (see text

for details). All parameters and results were computed at T = 0.25 and TLL = 0.9.

quite noisy: even without an attack, i.e., with r = 0, the QBER q = 2.52%. Crafting an

attack with high r and optimal {Nab, Nss, Nel} may give Eve sufficiently high IactE but

the incurred QBER q >> qabort.

If we assume Bob’s detectors to have the same characteristics as that of D0 (in

Clavis2), and that Alice has preprocessing accidentally enabled, then Eve could breach

the security for qabort ≈ 0.11 as shown in figure 6(b). This is possible because the mutual

information between Eve and Bob scales by the same factor (given by 1 − y) as that

between Alice and Bob: in particular, at y = 0.4, Eve can surpass IestE = 0.1336.

In order to gauge the full power of this attack strategy and the dangers posed

by Trojan-horse attacks in general, we optimized the simulation for a Clavis2-like

Page 15: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 15

QKD system assumed to be fitted with a pair of APDs having high efficiency and

low noise. To be more precise, we assumed a pair of gated APDs with detection

efficiencies η0 = η1 = 0.25, thermal dark count probabilities d0 = d1 = 10−5 per

gate, and a cumulative probability of obtaining random click after deadtime period

due to afterpulses to be < 10% (refer Table A1 for comparison). Note that detectors

with similar or even better characteristics have already been reported [37–40], thanks to

the recent advances in single-photon detection technology. Alternatively, mechanisms

to photoionize the trapped charges through sub-band energy illumination in order to

reduce afterpulsing have also been investigated [41]. Therefore, it is quite reasonable to

expect such characteristics in the next-generation gated APDs in Clavis2 or recently-

manufactured QKD devices. In such QKD systems, not only can Eve attack more often,

but also expect detections from photons to exceed those from afterpulses.

Figure 6(c) shows some optimized attacks (IestE = 0.5037 for the new detector

parameters and no preprocessing) that satisfy all the three conditions. In particular,

the positive leakage IactE − IestE , which is likely to be higher when preprocessing is also

used, implies that the security of the QKD system would be breached.

At lower channel transmission values (T < 0.25), attack regimes with a positive

leakage of final secret key may be found by means of more exhaustive optimization of the

simulation. At higher transmission values (T > 0.25), Eve’s attack should have better

chances of succeeding because Alice’s quantum states have more photons on average,

which raises the photonic detection probability (effectively suppressing the afterpulsing

probability) in Bob. However, the calculation of IestE in the security proof [23] is valid

only for channel lengths above 24 km, translating roughly into T < 0.33. More photons

from Alice also raise the chances of better photon-number-splitting attacks [11,25] which

would have to be countered by increasing IestE in privacy amplification, thereby requiring

Eve to work harder.

Nonetheless, it is clear that our attack on a QKD system equipped with less noisy

APDs would succeed at least for a range of channel transmissions. Furthermore, a

finite amount of preprocessing – supposed to provide more security to Alice and Bob –

would actually relax the constraints on Eve. Finally, the Trojan-horse strategy could

be combined with other hacking strategies, such as the after-gate attack [9], to enhance

Eve’s performance.

Possible improvements and extensions

An optimization over the complete space of all parameters that define the attack strategy

is out of the scope of this work, but a powerful adversary can easily do so and is likely

to find a new set of parameters with better attack performance. A possible extension

of the strategy is to manipulate the frames from Bob to Alice as well: more precisely,

to replace the legitimate bright pulses in the slots chosen for the attack burst with even

brighter ones. This would increase the chances that these slots eventually yield valid

detections in Bob. Unfortunately, an increased optical power, even if only for a few

Page 16: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 16

pulses in the frame, portends a risk for Eve because the monitoring detectors in Alice

may raise an alarm. However, if the monitoring system in Alice either does not function

properly, or can be fooled [42], then this method holds a lot of promise.

Yet another attack optimization is non-demolition measurement [43, 44] of the

photon numbers of the WCPs exiting Alice. Using it, Eve can simply withhold her

attack in the slots that contain 0 photons. This would reduce the dark counts (from

afterpulsing), yet effectively increase her correlations with the raw key. Finally, with

regards to the attack setup shown in figure 3, Eve could:

• gather more information (per phase modulation) by suitably tweaking her LO to

homodyne multiple back-reflections and improve the quality of the phase readout,

• periodically track the phase drift in her setup and adjust the relative phase between

the signal and LO, e.g., by using an extra phase modulator in the LO arm, to always

read out at an optimal phase difference, and/or

• enhance the success rate of discrimination by using better quantum measurement

strategies [45] and post-processing techniques, e.g., taking the difference of

consecutive pulses and then integrating over the properly-chosen time window.

These methods would facilitate ∼ 100% correlations between Eve’s homodyne output

and Bob’s modulation (see figure 4) while relaxing the brightness requirement, i.e.,

µE→B may be lowered, thus bringing down the afterpulsing probability. Another way

to achieve the same goal would be to employ longer wavelengths to attack (as the

afterpulsing response of the APDs is conjectured to be lower) and/or to depopulate the

traps by means of photoionization. Eve could try to use ∼ 1700 nm for her Trojan-horse

pulses to reduce afterpulsing. A CW illumination at a longer wavelength ∼ 1950 nm may

depopulate the traps (created due to the Trojan-horse pulses at some other wavelength)

by means of photoionization [41].

The attack setup shown in figure 3 can be used virtually against any kind of QKD

system, including CVQKD devices [27,28]; it only needs a careful delay and polarization

control and interferometric stability. By integrating a variable optical delay line and

splicing the different components, it could readily be assembled into a portable setup.

Finally, the strategy detailed above can also be attuned to attack entanglement-based

QKD systems that may not have proper safeguards against Trojan-horse attacks. More

significantly, it may be used even to break the BB84 protocol in such cases.

Countermeasures

Experimentally speaking, isolators and wavelength filters have been the most suitable

countermeasures against Trojan-horse type attacks for one-way QKD systems [4]. While

the former cannot be used in a two-way QKD system like Clavis2, the latter can certainly

be useful. In a related context, one must also scrutinize (high and unwarranted) back-

reflections from the interfaces inside the QKD device that could pose risks as explained

in section 2. With such analysis, it might be possible to incorporate Trojan-horse

Page 17: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 17

attacks into theoretical security proofs and neutralize them by correct levels of privacy

amplification. Moreover, security proofs should also carefully examine and quell the

undesired effects of preprocessing. Some technical countermeasures specifically for the

Clavis2 system could be:

• installing a watchdog detector with a switch at the entrance of Bob that randomly

routes a small fraction of incoming signals to this detector,

• opening the door for Eve for a smaller time duration, i.e., reducing the width of

phase modulation voltage pulse, and

• monitoring Bob’s APDs in real time [46].

Except the watchdog detector countermeasure, all others require modifications only in

the electronic control system and hence are recommended.

Note that Bob’s vulnerability to the Trojan-horse attack only arises because the

SARG04 protocol is used. For BB84 (including its decoy-state version), interrogating

Bob’s modulator gives Eve no advantage [4], except when this is used to counterattack

the four-state patch to the detector efficiency mismatch attacks [24, 47]. However both

BB84 and SARG04 are vulnerable to interrogating Alice’s modulator.

6. Conclusion

In conclusion, we have demonstrated the operation of a setup to launch a Trojan-horse

attack on a commercial QKD system from ID Quantique. Our objective is to read the

state of the phase modulator in Bob to break the SARG04 protocol. We have shown that

this phase readout can be performed in real-time with a high success rate, and analyzed

various constraints and problems in mounting a full attack on the system. These arise

mainly due to the afterpulsing noise induced in the single-photon detectors of Bob by

the bright Trojan-horse pulses from Eve. We have devised and numerically modeled

an attack strategy to keep the overall QBER (which increases due to the afterpulsing

noise) below the abort threshold, while allowing Eve to obtain the maximum possible

correlations with the raw key. Although, on our Clavis2 system, this does not exceed the

theoretical security estimate that Alice and Bob make about Eve’s correlations, we have

shown that similar or future QKD systems with less-noisy detectors may be hacked using

this strategy. We have also proposed some mechanisms to improve the performance

of the attack. With some simple modifications, our attack setup and strategy could

be applied against many other quantum cryptographic implementations, including

entanglement-based, continuous-variable, and measurement-device-independent QKD

systems. Finally, we have proposed both general and specific countermeasures that can

be easily adopted in most QKD systems.

Acknowledgments

We would like to thank Matthieu Legre from ID Quantique, Denis Sych, Christoffer

Wittmann, and Lars Lydersen for useful discussions. We also gratefully acknowledge

Page 18: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 18

Lothar Meier and Adam Kappel for their assistance in design of electronics. This

work was supported by the Research Council of Norway (grant no. 180439/V30),

Industry Canada, DAADppp mobility program financed by NFR (project no. 199854)

and DAAD (project no. 50727598). E.A. acknowledges support from CryptoWorks21.

V.M. acknowledges support from University Graduate Center in Kjeller.

Appendix

Operation of plug-and-play QKD

Here we simulate the operation of the QKD system. A Clavis2 frame consists of

Nf = 1075 slots spaced 0.2µs apart. This implies Nf optical signals are sent by Bob to

Alice in the forward path of the plug-and-play scheme, Nf detection gates are opened by

Bob to measure the Nf weak coherent pulses (WCPs) coming back from Alice4. Alice

attenuates these optical signals properly so that the mean photon number of the WCPs

(in the quantum channel) is as dictated by the protocol; for SARG04 the optimal value

is µSARG04 = 2√T , where T is the channel transmission [23].

By means of a Monte Carlo simulation based on experimental parameters, we

modelled the frame-based QKD operation from hereon. We created an array of random

positive integers that are Poisson-distributed to mimic (the photon numbers of) a

Clavis2 frame exiting Alice. Each pulse in the frame was stochastically subjected to

all the relevant transmission or detection events; to be precise, they were modelled by a

sequence of Bernoulli trials. For example, if the transmission of the quantum channel is

denoted by T , then each of the n photons in a pulse at Alice’s exit undergoes a Bernoulli

trial yielding success/1 [failure/0] with a probability of T [1− T ]. The total number

of photons in a pulse reaching Bob can then be evaluated as the sum of the outcomes

of all n trials. Similarly, for a pulse containing m photons impinging on an APD with

single-photon detection efficiency η, a detection click (success) is obtained if at least one

of the m Bernoulli trials yielded a 1.

Figure A1 charts the different events in Bob: right from the arrival of a photonic

frame to the registration of clicks, taking the withdrawal of Ndt = 50 gates (due to

deadtime) into account. The transmission of the quantum channel connecting Alice and

Bob is assumed to be T = 0.25 (with channel attenuation α = 0.2 dB/km, this would

imply ∼ 30 km long channel). The transmission inside Bob is TB = 0.45. The total

detection probabilities in figure A1(c) are calculated using pj(l) = sj(l) + dj − sj(l)× djfor each slot l ∈ [1, Nf ] and for j = 0 and 1. In this expression, d0/1 represents the

dark count probability per gate for D0/D1. The photonic detection probability is

sj(l) = 1−(1− ηj)m(l) for j = 0 and 1; here m(l) is the number of photons impinging on

4In practice, Bob has an asymmetric interferometer as shown in figure 1(b) so an optical signal

actually consists of two (unequally bright) pulses. As it does not affect our analysis, we will use ‘signal’

and ‘pulse’ interchangeably to keep the explanation simple.

Page 19: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 19

���

��

�����

���

�������

���������������

��

�������

�����������

��

���

������

�������������������

������

��

������������

�����������

��������������

���

�������������

��

�������

���������������������������������

���������������

��������

���������������������������������������

����

��������

���������

�����������

����������

������

��

���������

��

������

�������������

��

��������������

��������������

�����

��

��

�������������������

���

��

����������

��

��������������������

��������

�������������������

����

����

������������

�����������������������������������

���������

�����������

���������

�����������

���

������

�����������������

����

��

����������������������������

��

��������

��

�������������������������������

�������

���

���������������

��

����

����������

��

�����

���������

��������

��

��

����������

�����

��

������������������

������������

���

��������������

�����

���������������������������������

��������������������������������������������

����

������������������

����������

�����������������

��

��

��

�����

�������������������

�����

������������

����

200 400 600 800 1000

1

2

���

��

�������������������������������������������������������

���

������

�������������������

����������������������������������

��������������

���

������������������

�������

���������������������������������

���������������

�����������������������������������������������������

��������

���������

�����������

����������

�������

���������

��

������

�����������������������������������������������������

��������������������

���

��

����������

��

�����������������������������

�������������������

��������

����

������������

���������������������������������������������������������������������

�����������

���

��������������������������

������

�������������������������������

��

���������

���������������������������������

�������

���������������

��

����

����������

����������������������������

�����������

��������

������������������

������������

������������������

�������

���

���������������������������������

��������������������������������������������

����

�����������������������������

�����������������

������������

�������������������������������������������

200 400 600 800 1000

1

2

��������������

���

�������

���������������

��

�������

�����������

���������������������������������

������

��

������������

��������������������������������������������

��

��������������������������������������������������������������������

���������������������������������������

�������������������������������������������������������

��������������������������������

��

��������������

��������������

�����

���

�������������������������������������������������������������

������������������������������

������������������������������������������������������������

���������

�����������

���������������������������

������

����������������������

����

����������������������������������������

����������������������������������

����������

����������������������������������

�����

���������

��������

���

����������������

��������������������������������������

����������������

�������

��������������������������������������������������������������������������������������������������������

�������������������������������

��

��

�������������������������

�����

������������

����

200 400 600 800 1000

1

2

��������������

���

�������

���������������

��

�������

�����������

���������������������������������

������

��

������������

��������������������������������������������

��

��������������������������������������������������������������������

���������������������������������������

�������������������������������������������������������

��������������������������������

��

��������������

��������������

�����

���

�������������������������������������������������������������

������������������������������

������������������������������������������������������������

���������

�����������

���������������������������

������

����������������������

����

����������������������������������������

����������������������������������

����������

����������������������������������

�����

���������

��������

���

����������������

��������������������������������������

����������������

�������

��������������������������������������������������������������������������������������������������������

�������������������������������

��

��

�������������������������

�����

������������

����

200 400 600 800 1000

0.050.100.150.200.25

���

��

�������������������������������������������������������

���

������

�������������������

����������������������������������

��������������

���

������������������

�������

���������������������������������

���������������

�����������������������������������������������������

��������

���������

�����������

����������

�������

���������

��

������

�����������������������������������������������������

��������������������

���

��

����������

��

�����������������������������

�������������������

��������

����

������������

���������������������������������������������������������������������

�����������

���

��������������������������

������

�������������������������������

��

���������

���������������������������������

�������

���������������

��

����

����������

����������������������������

�����������

��������

������������������

������������

������������������

�������

���

���������������������������������

��������������������������������������������

����

�����������������������������

�����������������

������������

�������������������������������������������

200 400 600 800 1000

0.050.100.150.200.250.30

slot no.

a) Poisson-distributed photonic frame arriving in Bob from the quantum channel

c) Corresponding detection probabilities in each of the 1075 gates of the frame

b) Photons split and redirected to D0/D1 or both depending on Alice-Bob bases

photo

n n

o., D

0

pro

babili

ty o

fdete

ction, D

0

photo

n n

o., D

1

pro

babili

ty o

fdete

ction, D

1

Click

No clickslot no.200 400 600 800 1000

d) clicks with the double clicks taken into accountBernoulli-process simulated sequential deadtime imposition and

0

00

Figure A1. Simulation of the physical-layer operation of SARG04 in Clavis2 at

channel transmission T = 0.25. (a) Photon number statistics of the WCP train (mean

photon number µSARG04 = 1) that reaches Bob after traversing the quantum channel.

In each of the 1075 slots, Alice randomly prepared one of four states Z0, Z1, X0, X1.

(b) Bob randomly chose Z or X basis in each slot too; if his basis coincides with the

preparation-basis of Alice, all photons in that slot are directed to one of D0 or D1

(depending on Alice’s secret bit). For dissimilar basis choice, photons are randomly

split across D0 and D1. (c) Resultant detection probabilities for D0 and D1 in each

slot/gate; calculation details are given in the main text. (d) Subsequent detection-click

pattern (vertical black bars with rotated-red or straight-blue squares).

Table A1. Various detection-related parameters in Clavis2. The numerical

parameters for the exponential decay due to afterpulses were estimated in Ref. [9].

The cumulative probability to get a random click after Ndt = 50 gates from afterpulses

alone surpasses 80%. The subscript j = 0/1 in a variable affiliates it to D0/D1.

D0 D1

Single-photon detection efficiency, ηj 0.12 0.10

Dark noise probability, dj 1.16× 10−4 3.63× 10−4

Afterpulse probability amplitude, A1j 3.572× 10−2 10.68× 10−2

Afterpulse decay constant, τ1j (µs) 1.159 0.705

Afterpulse probability amplitude, A2j 2.283× 10−2 5.054× 10−2

Afterpulsing decay constant, τ2j (µs) 4.277 3.866

a specific detector in the lth slot (shown in figure A1(b)), and η0 and η1 are the single-

photon detection efficiencies of D0 and D1, respectively. Table A1 lists the various

parameters relevant to the detectors.

Page 20: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 20

polarizationtiming

andinfo extractor

1

4

3

2 BobAlice

FOSb

quantum channel MUX

1

4

3

2

FOSaEve low-loss line ( )TLL

Trojan-horseattack apparatus

tap coupler

beamdump

quantum channel

attacked slot T T( = )LL

substituted slot T T

extinguished slot T

( = )

( =0)LL

slot no.

200 400 600 800 1000

Nss

= 266

������������������������������������������������������������������������������������������������������������������������������������������������ ����������������������������������� ����������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������� ������� �������

Nab

= 7 Nel

= 35Nel0

=144

b)

a)

Figure A2. Technical implementation details of the frame manipulation strategy. (a)

Eve plants two bi-directional 2×2 fast optical switches FOSa and FOSb near Alice

and Bob, respectively. The solid orange line represents the quantum channel (normal

transmission T ) containing an optical tap along with the two switches. The dashed

cyan line is Eve’s highly-transmissive channel which may be implemented by a low-loss

delay line. The operational details of the switches during the quantum key exchange

are described in the text. (b) In a frame sent by Alice to Bob, Eve diverts all the slots

marked in green and yellow (four sets of Nab and three sets of Nss, respectively) onto

a highly-transmissive channel. The slots marked in grey (three sets of Nel and one

Nel0) are blocked. FOS: fast optical switch, MUX: multiplexer, ab: attack burst, ss:

substitution sequence, el : extinguished length.

Eve’s strategy

Figure A2(a) shows a possible full implementation of the Trojan-horse attack described

in section 4, by using off-the-shelf optical switches [35] and a low-loss line. The switches

are connected by two lines: the quantum channel containing an optical tap additionally,

and a highly-transmissive channel (with transmission TLL). If a slot l ∈ [1, Nf ] diverted

by Eve on the highly-transmissive channel had n photons at Alice’s exit, then it has

a high chance of having n photons at Bob’s entrance too. The low-loss line with the

characteristics we model (TLL = 0.9 instead of 0.25 for the normal line) currently does

not exist. However, its implementation can in principle be possible in the future, by

using an improved optical fiber or high-efficiency quantum teleportation.

When Bob sends a frame to Alice, the switches are in crossed positions (FOSb:

1 → 4 and FOSa: 2 → 3) so that the frame essentially traverses the quantum

channel undisturbed. The tap is used for obtaining polarization information and

synchronization, required later in preparation of the Trojan-horse pulses. Since the

pulses in the forward path are relatively bright, a few photons stolen would not be

noticed by Alice.

For the return path, i.e., from Alice to Bob, Eve manipulates the slots as determined

by the attack pattern of figure A2(b). This pattern is essentially a repetition of the

triad {Nab, Nel, Nss} imposed in the reverse direction (i.e., going from Nf to 1) on

an entire QKD frame. The number of unbroken triads that can fit inside a frame

is k = bNf/ (Nab +Nel +Nss)c, where b·c denotes the floor operation. This leaves

exactly Nu = Nf − k (Nab +Nel +Nss) unaccounted slots in the beginning of the frame;

Page 21: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 21

if Nu > Nab, then we add yet another attack burst Nab and extinguish the remaining

Nel0 = Nu − Nab slots, as also shown in figure A2(a) with k = 4 and Nu = 151.

Otherwise, we simply extinguish Nel0 = Nu slots.

Using this pattern, Eve physically manipulates the frame in the following way: slots

up to Nel0 are extinguished by being directed onto a beam dump (FOSa: 3 → 2 and

FOSb 4 → 2). The next Nab + Nss slots pass through the low-loss line (both FOSa

and FOSb in positions 3 → 1) to Bob. Using the Trojan-horse attack apparatus (see

figure 3), Eve reads Bob’s PM settings for the attack burst, i.e., the first Nab of these

slots. The remaining Nss slots, or the substitution sequence, simply travel to Bob via the

low-loss line. The switches then flip again for an extinguished length of Nel slots. This

sequence is repeated until the end of the frame is reached with the last Nab gates always

attacked. Attacking the last few slots causes less afterpulsing, because the detector

gates are not applied after the frame end.

References

[1] Bennett C H and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing

Proceedings of IEEE International Conference on Computers, Systems and Signal Processing

(Bangalore, India) p 175

[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145

[3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev.

Mod. Phys. 81 1301

[4] Vakhitov A, Makarov V and Hjelme D R 2001 J. Mod. Opt. 48 2023

[5] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320

[6] Nauerth S et al 2009 New J. Phys. 6 065001

[7] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photonics 4

686

[8] Li H W et al 2011 Phys. Rev. A 84 062308

[9] Wiechers et al 2011 New J. Phys. 13 013043

[10] Jain N et al 2011 Phys. Rev. Lett. 107 110501

[11] Jiang M S et al 2012 Phys. Rev. A 86 032310

[12] Saleh B E A and Teich M C 1991 Fundamentals of Photonics (Wiley, New York).

[13] Bethune D S and Risk W P 2000 IEEE J. Quantum Electron. 36 340

[14] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 J. Cryptology 5 3

[15] Breguet J, Mueller A and Gisin N 1994 J. Mod. Opt. 41 2405

[16] Townsend P 1998 IEEE Photon. Technol. Lett. 10 1048

[17] Rarity J G and Tapster P R 1992 Phys. Rev. A 45 2052

[18] Mueller A, Herzog T, Huttner B, Tittel W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793

[19] Walenta N et al 2014 New J. Phys. 16 013047

[20] ETSI GS QKD 005 V1.1.1: “Quantum key distribution (QKD); Security proofs” (ETSI, 2010)

[21] Stucki D, Gisin N, Guinnard O, Ribordy G and Zbinden H 2002 New J. Phys. 4 41

[22] Scarani V, Acın A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901

[23] Branciard C, Gisin N, Kraus B and Scarani V 2005 Phys. Rev. A 72 032301

[24] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313

[25] Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330

[26] Datasheet of Clavis2, available at ID Quantique website www.idquantique.com

[27] Jouguet P et al 2013 Nat. Photonics 7 378

[28] Khan I et al 2013 Phys. Rev. A 88 010302

Page 22: Trojan-horse attacks threaten the security of practical ... · 3 Friedrich-Alexander University Erlangen-Nurn berg ... Trojan-horse attacks threaten the security of practical quantum

Trojan-horse attacks threaten the security of practical quantum cryptography 22

[29] Liu Y et al 2013 Phys. Rev. Lett. 111 130502

[30] Silva T F et al 2013 Phys. Rev. A 88 52303

[31] Beller J 1998 OTDRs and Backscatter Measurements in Fiber Optic Test and Measurement, D.

Derickson, ed. (Prentice-Hall, Englewood Cliffs, NJ).

[32] Lydersen L et al 2011 Phys. Rev. A 84 032320

[33] Haitz R H 1965 J. Appl. Phys. 36 3123; Cova S, Lacaita A and Ripamonti G 1991 IEEE Electron.

Dev. Lett. 12 685

[34] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135

[35] Nanona ultra-fast optical switch, www.bostonati.com; NanoSpeed, www.agiltron.com

[36] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501

[37] Patel K A et al 2012 Electron. Lett. 48 111

[38] Walenta N et al 2012 J. Appl. Phys. 112 063106

[39] Restelli A, Bienfang J C and Migdall A L 2013 Appl. Phys. Lett. 102 141104

[40] Korzh B et al 2014 Appl. Phys. Lett. 104 081108

[41] Krainak M A 2005 Proc. Lasers and Electro-Optics (CLEO) 1 588

[42] Sajeed S, Radchenko I, Kaiser S, Bourgoin J-P, Monat L, Legre M and Makarov V to appear in

online proceedings of QCrypt 2014 (Paris, France)

[43] Xiao Y F et al 2008 Opt. Express 16 21462

[44] Braginsky V B and Khalili F Y 1996 Rev. Mod. Phys. 68 1

[45] Wittmann C et al 2008 Phys. Rev. Lett. 101 210501

[46] Silva T F, Xavier G B, Temporao G P and von der Weid J P 2012 Opt. Express 20 18911

[47] Qi B, Fung C-H F, Lo H-K and Ma X 2007 Quantum Inf. Comput. 7 73