48
INDICE. CONTENIDO: INTRODUCCIÓN................................................... 2 RESUMEN........................................................ 3 TURBINA PELTON................................................. 4 FUNCIONAMIENTO................................................4 CARACTERÍSTICAS FÍSICAS DE LA RUEDA PELTON....................6 HISTORIA....................................................... 7 LESTER ALLAN PELTON...........................................7 APLICACIÓN..................................................... 8 CLASIFICACIÓN DE LAS TURBINAS PELTON...........................9 DISPOSICIÓN DE EJE HORIZONTAL.................................9 DISPOSICIÓN DE EJE VERTICAL..................................10 SIMBOLOGÍA DE CLASIFICACIÓN DE TURBINAS PELTON................11 DATOS TOMADOS DEL LABORATORIO.................................12 BOMBA CENTRÍFUGA.............................................. 12 DATOS TOMADOS EN EL LABORATORIO..............................14 temperatura ambiental en el laboratorio...................14 CALCULAR:..................................................... 15 SOLUCIÓN:..................................................... 16 1. POTENCIA DEL AGUA (Hpa):..................................16 CAUDAL:...................................................16 ALTURA ÚTIL:..............................................16 REEMPLAZANDO EN LA FÓRMULA:...............................17 2. POTENCIA DEL RODETE (Hpr):................................17 VELOCIDAD ABSOLUTA:.......................................17 VELOCIDAD TANGENCIAL:.....................................18

Turbina Pelton

Embed Size (px)

Citation preview

Page 1: Turbina Pelton

INDICE.

CONTENIDO:INTRODUCCIÓN......................................................................................................................................................... 2

RESUMEN...................................................................................................................................................................... 3

TURBINA PELTON..................................................................................................................................................... 4

FUNCIONAMIENTO.............................................................................................................................................. 4

CARACTERÍSTICAS FÍSICAS DE LA RUEDA PELTON............................................................................6

HISTORIA...................................................................................................................................................................... 7

LESTER ALLAN PELTON....................................................................................................................................7

APLICACIÓN................................................................................................................................................................. 8

CLASIFICACIÓN DE LAS TURBINAS PELTON................................................................................................9

DISPOSICIÓN DE EJE HORIZONTAL..............................................................................................................9

DISPOSICIÓN DE EJE VERTICAL..................................................................................................................10

SIMBOLOGÍA DE CLASIFICACIÓN DE TURBINAS PELTON..................................................................11

DATOS TOMADOS DEL LABORATORIO........................................................................................................12

BOMBA CENTRÍFUGA........................................................................................................................................... 12

DATOS TOMADOS EN EL LABORATORIO................................................................................................14

temperatura ambiental en el laboratorio.......................................................................................14

CALCULAR:................................................................................................................................................................ 15

SOLUCIÓN:................................................................................................................................................................. 16

1. POTENCIA DEL AGUA (Hpa):...............................................................................................................16

CAUDAL:........................................................................................................................................................ 16

ALTURA ÚTIL:............................................................................................................................................. 16

REEMPLAZANDO EN LA FÓRMULA:.................................................................................................17

2. POTENCIA DEL RODETE (Hpr):..........................................................................................................17

VELOCIDAD ABSOLUTA:........................................................................................................................17

VELOCIDAD TANGENCIAL:...................................................................................................................18

REEMPLAZANDO EN LA FÓRMULA:.................................................................................................19

3. POTENCIA AL FRENO (BHp):...............................................................................................................20

VELOCIDAD ANGULAR:.......................................................................................................................... 20

Page 2: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

CONVIRTIENDO A RADIANES:............................................................................................................21

TORQUE:........................................................................................................................................................ 22

REEMPLAZANDO EN LA FÓRMULA:.................................................................................................23

4. EFICIENCIA MECÁNICA ( ɱ m):..........................................................................................................24

5. EFICIENCIA HIDRÁULICA ( ɱ h):.......................................................................................................25

6. EFICIENCIA TOTAL( Tɱ ):......................................................................................................................26

7. TRAZAR CURVAS (HPA Vs TORQUE)................................................................................................27

8. TRAZAR CURVAS (HPR Vs TORQUE)................................................................................................27

9. TRAZAR CURVA (BHp Vs TORQUE).................................................................................................28

10. TRAZAR CURVAS (ɱm Vs RPM)....................................................................................................29

11. TRAZAR CURVAS (ɱh Vs RPM).....................................................................................................30

ANEXO.......................................................................................................................................................................... 34

BIBLIOGRAFÍA......................................................................................................................................................... 37

DURAND CERNA J. EMILIANO Página 1

Page 3: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

INTRODUCCIÓN.

En la actualidad es imposible imaginar la vida sin energía eléctrica, estamos tan acostumbrados a encender y apagar el interruptor de la luz y otros aparatos que muy rara vez nos ponemos a pensar de donde viene esta electricidad; pues bien, un tipo de centrales generadoras son las HIDROELÉCTRICAS, éstas son plantas encargadas de convertir la energía del agua en energía eléctrica, pero más específicamente, la TURBINA es la encargada de transformar esa energía hidráulica en energía mecánica, para posteriormente convertirla en energía eléctrica con un generador. Como decía La turbina es el alma de una central hidroeléctrica y dependiendo de la turbina que se use es la cantidad de electricidad que se produzca. En este capítulo hablaremos de las turbinas de impulso, y específicamente de la turbina PELTON.

DURAND CERNA J. EMILIANO Página 2

Page 4: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

RESUMEN.

Son turbinas de flujo transversal, y de admisión parcial. Directamente de la evolución de los antiguos molinos de agua, y en vez de contar con álabes o palas se dice que tiene cucharas. Están diseñadas para trabajar con saltos de agua muy grandes, pero con caudales pequeños. (Turbina de acción)

Las turbinas Pelton están diseñadas para explotar grandes saltos hidráulicos de bajo caudal. Las centrales hidroeléctricas dotadas de este tipo de turbina cuentan, la mayoría de las veces, con una larga tubería llamada galería de presión para trasportar al fluido desde grandes alturas, a veces de hasta más de doscientos metros. Al final de la galería de presión se suministra el agua a la turbina por medio de una o varias válvulas de aguja, también llamadas inyectores, los cuales tienen forma de tobera para aumentar la velocidad del flujo que incide sobre las cucharas. Una turbina Pelton es uno de los tipos más eficientes de turbina hidráulica. Es una turbomáquina motora, de flujo transversal, admisión parcial y de acción. Consiste en una rueda (rodete o rotor) dotada de cucharas en su periferia, las cuales están especialmente realizadas para convertir la energía de un chorro de agua que incide sobre las cucharas.

DURAND CERNA J. EMILIANO Página 3

Page 5: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

TURBINA PELTON.

Una turbina Pelton es uno de los tipos más eficientes de turbina hidráulica. Es una turbomáquina motora, de flujo transversal, admisión parcial y de acción. Consiste en una rueda (rodete o rotor) dotada de cucharas en su periferia, las cuales están especialmente realizadas para convertir la energía de un chorro de agua que incide sobre las cucharas.

Las turbinas Pelton están diseñadas para explotar grandes saltos hidráulicos de bajo caudal. Las centrales hidroeléctricas dotadas de este tipo de turbina cuentan, la mayoría de las veces, con una larga tubería llamada galería de presión para trasportar al fluido desde grandes alturas, a veces de hasta más de doscientos metros. Al final de la galería de presión se suministra el agua a la turbina por medio de una o varias válvulas de aguja, también llamadas inyectores, los cuales tienen forma de tobera para aumentar la velocidad del flujo que incide sobre las cucharas. Son turbinas de flujo transversal, y de admisión parcial. Directamente de la evolución de los antiguos molinos de agua, y en vez de contar con álabes o palas se dice que tiene cucharas. Están diseñadas para trabajar con saltos de agua muy grandes, pero con caudales pequeños. (Turbina de acción)

Turbina pelton.

FUNCIONAMIENTO.

La tobera o inyector lanza directamente el chorro de agua contra la serie de paletas en forma de cuchara montadas alrededor del borde de una rueda, el doble de la distancia entre el eje de la rueda y el centro del chorro de agua se denomina diámetro Pelton. El agua acciona sobre las cucharas intercambiando energía con la rueda en virtud de su cambio de cantidad de movimiento, que es casi de 180°. Obsérvese en la figura anexa un corte de una pala en el diámetro Pelton; el chorro de agua impacta sobre la pala en el medio, es dividido en dos, los cuales salen de la pala en sentido casi opuesto al que entraron, pero jamás puede salir el chorro de agua en dirección de 180° ya que si fuese así el chorro

DURAND CERNA J. EMILIANO Página 4

Page 6: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

golpearía a la pala sucesiva y habría un efecto frenante. La sección de entrada del fluido a la cuchara se denomina 1, así como 2 a la sección de salida.

El estudio analítico de la interacción agua-pala puede ser sumamente complicado debido al desplazamiento relativo entre la pala y el chorro de agua. Por otro lado se simplifica el estudio de las turbinas Pelton a la sección cilíndrica del diámetro Faubert.

Así la energía convertida por unidad de masa de agua está dada por la ley de Euler de las turbomáquinas:

L=u1Cu1−u2Cu2

Proyección cilíndrica en el diámetro pelton de una cuchara.

DONDE:

L = Es la energía específica convertida. u1 yu2 = Es la velocidad tangencial de la cuchara en los puntos donde el agua llega y

sale de la misma respectivamente. Cu1 y Cu2=  Son, respectivamente, las proyecciones de la velocidad absoluta del fluido

sobre la velocidad tangencial de la cuchara en los puntos de llegada y salida de la misma.

Como la velocidad tangencial de rotación de la rueda Pelton es la misma en todos los puntos del diámetro pelton (recuérdese la fórmula de la velocidad angular u=wr las velocidades u1 yu2  son iguales. Entonces la fórmula de Euler se puede simplificar:

L=u (Cu1−Cu2)

La turbina Pelton es un tipo de turbina de impulso, y es la más eficiente en aplicaciones donde se cuenta con un salto de agua de gran altura.

DURAND CERNA J. EMILIANO Página 5

Page 7: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Dado que el agua no es un fluido compresible, casi toda la energía disponible se extrae en la primera etapa de la turbina. Por lo tanto, la turbina Pelton tiene una sola rueda, al contrario que las turbinas que operan con fluidos compresibles.

CARACTERÍSTICAS FÍSICAS DE LA RUEDA PELTON.

Las turbinas Pelton, como turbinas de acción o impulso, están constituidas por la tubería forzada, el distribuidor y el rodete, ya que carecen tanto de caja espiral como de tubo de aspiración o descarga. Dado que son turbinas diseñadas para operar a altos valores de H, la tubería forzada suele ser bastante larga, por lo que se debe diseñar con suficiente diámetro como para que no se produzca excesiva pérdida de carga del fluido entre el embalse y el distribuidor. El rodete o rueda PELTON está constituido por un disco de acero con álabes, como ya se ha dicho, de doble cuchara ubicados en la periferia de la rueda. Estos álabes puedes estar fundidos con la misma rueda o unidos individualmente por medio de bulones o pernos.

La forma de fabricación más común es por separado álabes y rueda ya que facilita su construcción y mantenimiento. Se funden en una sola pieza rueda y álabes cuando la rueda tiene un gran velocidad específica, con este proceso de fabricación se logra mayor rigidez, solidez uniformidad y montaje rápido.

Esta imagen muestra una PELTON donde los álabes y la rueda están fundidos en una sola pieza.

Aquí se muestra una turbina PELTON donde los álabes están unidos al rodete por medio de pernos.

DURAND CERNA J. EMILIANO Página 6

Page 8: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

 Se debe tener especial cuidado al escoger el material de fabricación adecuado en una turbina pelton; este material debe resistir la fatiga, la corrosión y la erosión; la fundición de grafito laminar y acero, resisten perfectamente estas condiciones cuando son moderadas. Cuando las condiciones trabajo son más drásticas se recurre al acero cliado con níquel, en el orden de 0.7 a 1%, y con un 0.3% de molibdeno. Los aceros con 13% de cromo y los aceros austenoferríticos (Cr 20, Ni 8, Mo3) presentan una resistencia extraordinaria a la cavitación y abrasión.

El Número de álabes suele ser de 17 a 26 por rueda, todo esto dependiendo de la velocidad específica; Cuando se necesita una velocidad alta el número de álabes es pequeño debido a que a mayor velocidad específica, mayor caudal lo que exige álabes más grandes y con esto caben menos en cada rueda.

HISTORIA.Lester Allan Pelton o llamado por sus amigos el carpintero de VGR ya que inventó una de las turbinas más importantes del mundo, carpintero y montador de ejes y poleas, inventó la turbina Pelton en 1879, mientras trabajaba en California. Obtuvo su primera patente en 1880.

LESTER ALLAN PELTON.

Lester Allan Pelton (Vermilion, Ohio, 5 de septiembre de 1829 – Oakland, California, 14 de marzo de 1908) fue uno de los más importantes inventores de finales del siglo XIX y principios del siglo XX. Vivió la gran fiebre del oro de California, en 1850 al comenzar la explotación de los filones de Comstock y otras minas de oro y plata en Nevada. Fabricó con sus propios medios instrumentos que facilitaban el trabajo de explotación de oro. En 2006 fue incluido en el National Inventors Hall of Fame.

DURAND CERNA J. EMILIANO Página 7

Page 9: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Participó en un concurso de la Universidad de California de ruedas hidráulicas donde obtuvo el primer puesto. Sus estudios se orientaron hacia saltos de agua relativamente elevados, llegando al tipo de rueda de cangilones, con acción e inyección parcial por tobera que lleva su nombre, la turbina Pelton.

Su invento básicamente se originó debido al gran inconveniente que presentaba el movimiento de su trituradora mineral al carecer de carbón para tal propósito, por lo que tuvo que idearse una rueda hidráulica que transformara en energía eléctrica la fuerza hidráulica de un salto de agua cercano a su mina. Este fue el primer método práctico para obtener fuerza hidráulica en Norteamérica.

APLICACIÓN.

Existen turbinas Pelton de muy diversos tamaños. Hay turbinas de varias toneladas montadas en vertical sobre cojinetes hidráulicos en las centrales hidroeléctricas. Las turbinas Pelton más pequeñas, solo de unos pocos centímetros, se usan en equipamientos domésticos.

En general, a medida que la altura de la caída de agua aumenta, se necesita menor caudal de agua para generar la misma potencia. La energía es la fuerza por la distancia, y, por lo tanto, una presión más alta puede generar la misma fuerza con menor caudal.

Cada instalación tiene, por lo tanto, su propia combinación de presión, velocidad yvolumen de funcionamiento más eficiente. Usualmente, las pequeñas instalaciones usan paletas estandarizadas y adaptan la turbina a una de las familias de generadores y ruedas, adecuando para ello las canalizaciones. Las pequeñas turbinas se pueden ajustar algo variando el número de toberas y paletas por rueda, y escogiendo diferentes diámetros por rueda. Las grandes instalaciones de encargo diseñan el par torsor y volumen de la turbina para hacer girar un generador estándar.

DURAND CERNA J. EMILIANO Página 8

Page 10: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

CLASIFICACIÓN DE LAS TURBINAS PELTON.

   Las turbinas PELTON se clasifican generalmente por la posición del eje que mueven, por lo tanto existen dos clasificaciones: EJE HORIZONTAL Y EJE VERTICAL.

DISPOSICIÓN DE EJE HORIZONTAL.

En este tipo de turbinas Pelton se facilita la colocación del sistema de alimentación en un plano horizontal, lo que permite aumentar el número de chorros por rueda (4 a 6); con esto se puede incrementar el caudal y tener mayor potencia por unidad. Se acorta la longitud del eje turbina-generador; se amenguan las excavaciones; se puede disminuir el diámetro de rueda y aumentar la velocidad de giro, se reduce en fin el peso de la turbina por unidad de potencia. Esto hace que la utilización de esta disposición en turbinas Pelton sea más ventajosa que la disposición horizontal. Su aplicación es conveniente en aquellos casos donde se tienen aguas limpias que no produzcan gran efecto abrasivo sobre los alabes e inyectores, debido a que la inspección y las reparaciones con este montaje se hacen más difíciles.

Por otra parte, las turbinas Pelton se clasifican también en sencillas (un rodete y un chorro) y múltiples. Las turbinas Pelton se multiplican por el número de chorros, llamándose Pelton doble, triple, etc. Las turbinas Pelton séxtuples (1 rodete de eje vertical y 6 chorros) cayeron un tiempo en desuso, por la complicación que entraña su duodécuple regulación (6 inyectores y 6 pantallas deflectoras y por tanto, 12 servomotores).

En esta disposición solo se pueden instalar turbinas de uno o dos chorros como máximo, debido a la complicada instalación y mantenimiento de los inyectores. Sin embargo, en esta posición, la inspección de la rueda en general es más sencilla, por lo que las reparaciones o desgastes se pueden solucionar sin necesidad de desmontar la turbina.

PELTON de eje horizontal.                            

DURAND CERNA J. EMILIANO Página 9

Page 11: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

    PELTON de 1 chorro eje horizontal.                             PELTON de 2 chorros eje horizontal.

DISPOSICIÓN DE EJE VERTICAL.

En este tipo de turbinas Pelton el número de chorros por rueda se reduce generalmente a uno o dos, por resultar complicada la instalación en un plano vertical de las tuberías de alimentación y las agujas de inyección. Este sistema de montaje encuentra aplicación en aquellos casos donde se tienen aguas sucias que producen deterioros o notable acción abrasiva. Con el eje horizontal se hace también posible instalar turbinas gemelas para un solo generador colocado entre ambas, contrarrestando empujes axiales.

En esta posición se facilita la colocación de alimentación en un plano horizontal y con esto es posible aumentar el número de chorros sin aumentar el caudal y tener mayor potencia por unidad. Se acorta la longitud entre la turbina y el generador, disminuyen las excavaciones y hasta disminuir al diámetro de la rueda y aumentar la velocidad de giro. Se debe hacer referencia que en la disposición vertical, se hace más difícil y, por ende, más caro su mantenimiento, lo cual nos lleva a que esta posición es más conveniente para aquellos lugares en donde se tengan  aguas limpias y que no produzcan gran efecto abrasivo sobre los álabes.

Detalle de una turbina PELTON de eje vertical.

DURAND CERNA J. EMILIANO Página 10

Page 12: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

En esta fotografía se muestra la ventaja de tener la posición de eje en vertical.

SIMBOLOGÍA DE CLASIFICACIÓN DE TURBINAS PELTON.

Existe un formato para  clasificar las turbinas PELTON:

P = # de ruedas

N = # de chorros

H = eje horizontal

V = eje vertical

EJEMPLOS.

P1 N1 - H ==== Eje horizontal, una turbina y un chorro

P1 N2 - H ==== Eje horizontal, una turbina dos chorros

P2 N2 - H ==== Eje horizontal, dos turbina y dos chorros

P1 N4 - V ==== Eje vertical, una turbina 4 chorros

P1 N6 - V ==== Eje vertical, una turbina y 6 chorros

DURAND CERNA J. EMILIANO Página 11

Page 13: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

DATOS TOMADOS DEL LABORATORIO.

BOMBA CENTRÍFUGA.

Las Bombas centrífugas también llamadas Rotodinámicas, son siempre rotativas y son un tipo de bomba hidráulica que transforma la energía mecánica de un impulsor . El fluido entra por el centro del rodete, que dispone de unos álabes para conducir el fluido, y por efecto de la fuerza centrífuga es impulsado hacia el exterior, donde es recogido por la carcasa o cuerpo de la bomba, que por el contorno su forma lo conduce hacia las tuberías de salida o hacia el siguiente rodete se basa en la ecuación de Euler y su elemento transmisor de energía se denomina impulsor rotatorio llamado rodete en energía cinética y potencial requeridas y es este elemento el que comunica energía al fluido en forma de energía cinética.

Las Bombas Centrífugas se pueden clasificar de diferentes maneras:

Por la dirección del flujo en: Radial, Axial y Mixto.

Por la posición del eje de rotación o flecha en: Horizontales, Verticales e Inclinados.

Por el diseño de la coraza (forma) en: Voluta y las de Turbina.

Por el diseño de la mecánico coraza en: Axialmente Bipartidas y las Radialmente Bipartidas.

Por la forma de succión en: Sencilla y Doble.

Aunque la fuerza centrífuga producida depende tanto de la velocidad en la periferia del impulsor como de la densidad del líquido, la energía que se aplica por unidad de masa del líquido es independiente de la densidad del líquido. Por tanto, en una bomba dada que funcione a cierta velocidad y que maneje un volumen definido de líquido, la energía que se aplica y transfiere al líquido, (en pascales, Pa, metros de columna de agua m.c.a. o o pie-lb/lb de líquido) es la misma para cualquier líquido sin que importe su densidad. Tradicionalmente la presión proporcionada por la bomba en metros de columna de agua o pie-lb/lb se expresa en metros o en pies y por ello que se denomina genéricamente como "altura", y aún más, porque las primeras bombas se dedicaban a subir agua de los pozos desde una cierta profundidad (o altura).

Las bombas centrífugas tienen un uso muy extendido en la industria ya que son adecuadas casi para cualquier uso. Las más comunes son las que están construidas bajo normativa DIN 24255 (en formas e hidráulica) con un único rodete, que abarcan capacidades hasta los 500 m³/h y alturas manométricas hasta los 100 metros con motores eléctricos de velocidad normalizada. Estas bombas se suelen montar horizontales, pero también pueden estar verticales y para alcanzar mayores alturas se fabrican disponiendo varios rodetes sucesivos en un mismo cuerpo de bomba. De esta forma se acumulan las presiones parciales que ofrecen cada uno de ellos. En este caso se habla de bomba multifásica o multietapa, pudiéndose lograr de este modo alturas del orden de los 1200 metros para sistemas de alimentación de calderas.

DURAND CERNA J. EMILIANO Página 12

Page 14: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Constituyen no menos del 80% de la producción mundial de bombas, porque es la más adecuada para mover más cantidad de líquido que la bomba de desplazamiento positivo.

No hay válvulas en las bombas de tipo centrífugo; el flujo es uniforme y libre de impulsos de baja frecuencia.

Los impulsores convencionales de bombas centrífugas se limitan a velocidades en el orden de 60 m/s (200 pie/s).

DURAND CERNA J. EMILIANO Página 13

Page 15: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

DATOS TOMADOS EN EL LABORATORIO.

Un motor con las siguientes característica:

RPM. FASE. POTENCIA. I Amp.

3500 3 3Hp 8.08 Amp.

datos importantes a considerar.

Manómetro # 1 (bar).

Manómetro # 2 (bar).

Dinamómetro (Kg).

Caudal (m).

Tacómetro(RPM).

Diámetro de la polea. (Pul).

Diámetro de la turbina. (Pul).

1.80 bar. 2 bares. 0 (Kg). 0.075 m.

1500 RPM. 4 Pul. 10 Pul.

APLICANDO CARGA A LA POLEA/ (FRENO).

1.80 bar. 2bares. 0.1 (Kg). 0.075 m.

1400 RPM. 4 Pul. 10 Pul.

1.80 bar. 2bares. 0.15(Kg). 0.075 m.

1300 RPM. 4 Pul. 10 Pul.

1.80 bar. 2bares. 0.2(Kg). 0.075 m.

1100 RPM. 4 Pul. 10 Pul.

1.80 bar. 2bares. 0.3(Kg). 0.075 m.

900 RPM. 4 Pul. 10 Pul.

1.80 bar. 2bares. 0.4 (Kg). 0.075 m.

750 RPM. 4 Pul. 10 Pul.

temperatura ambiental en el laboratorio.

Temperatura. OCBulbo Seco. 17 OCBulbo Húmedo. 12 OCHumedad relativa. 58 OC

DURAND CERNA J. EMILIANO Página 14

Page 16: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

CALCULAR:1. Hallar la potencia para cada punto.

Potencia del agua (Hpa). Potencia del rodete (Hpr). Potencia del freno (Bhp).

2. Hallar eficiencias.

Eficiencia mecánica. Eficiencia hidráulica. Eficiencia total.

3. Trazar las curva.

Potencia del agua (Hpa). Vs Torque. Potencia del rodete (Hpr). Vs Torque. Potencia del freno (Bhp). Vs Torque. Eficiencia hidráulica (ɱ h). vs RPM. Eficiencia mecánica (ɱ m). Vs RPM.

DURAND CERNA J. EMILIANO Página 15

Page 17: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

SOLUCIÓN:1. POTENCIA DEL AGUA (Hpa):

Hpa= ɣ∗Q∗Hu76

(HP)

DONDE:

ɣ = Peso específico del agua = 1000 Kg-f/m3

Q = Caudal = (m3-Seg). Hu = Altura útil = m. 76 = Factor de conversión (HP) Constante.

Para hallar potencia del agua necesitamos hallar caudal y altura útil.

CAUDAL:

Q=K∗h5 /2

DONDE:

K = 1.416 Constante. H5/2 = Valor tomado en el linimento = 0.075m.

Q=1.416∗〖0.075m〗5/2=0.0022m3/seg .

ALTURA ÚTIL:

Hu= presionmanometricapeso espesifico (ɣ )

PRESION MANOMETRICA: 1.80 bar. =18354.9Kg−f

m2

DURAND CERNA J. EMILIANO Página 16

Page 18: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Hu=18354.9Kg− f

m2

1000Kg− fm3

=18.3549m

REEMPLAZANDO EN LA FÓRMULA:

Hpa= ɣ∗Q∗Hu76

(HP )

Hpa=1000Kg−

f

m3∗0.0022m3

seg∗18.3549m

760.53HP

2. POTENCIA DEL RODETE (Hpr):

Hpr=Q∗ƿ∗υ∗(C 1−υ )∗(1+K∗cosᵦ2 )

76∗g(HP)

DONDE:

Q = caudal. g = gravedad. U = Velocidad tangencial. C1 = Velocidad absoluta. K = Constante de diseño de los álabes = 0.9

ᵦ2 = Angulo ≈ 10o

Para hallar potencia del rodete necesitamos hallar, velocidad absoluta, velocidad tangencial.

VELOCIDAD ABSOLUTA:

DURAND CERNA J. EMILIANO Página 17

Page 19: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

C1=Cd∗(√2∗g∗Hu)

DONDE:

Cd = 0.98 dato constante de descarga. Hu =18.3549m

C1=0.98∗(√ 2∗9.81mseg∗18.3549m)=18.59m/ seg

VELOCIDAD TANGENCIAL:

U=π∗D∗N60

DONDE:

D = diámetro de la turbina = 10pul. = 25.4cm.

1pul = 2.54cm = 10 * 2.54 = 25.4cm. =0.25400m.

N = datos tomados del tacómetro 1400 RPM.

o Punto #1.

U=π∗0.25400m∗1400 RPM60

=18.6192 RPM

o Punto #2.

U=π∗0.25400m∗1300 RPM60

=17.2892 RPM

o Punto #3.

U=π∗0.25400m∗1100RPM60

=14.6293 RPM

DURAND CERNA J. EMILIANO Página 18

Page 20: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

o Punto #4.

U=π∗0.25400m∗900 RPM60

=11.9695RPM

o Punto #5.

U=π∗0.25400m∗750 RPM60

=9.9746 RPM

REEMPLAZANDO EN LA FÓRMULA:

Hpr=Q∗ƿ∗υ∗(C 1−υ )∗(1+K∗cosᵦ2 )

76∗g(HP)

PUNTO # 1:

Hpr=

0.0022m3

seg∗1000m3

seg∗18.6192 RPM∗(18.59 mseg−18.6192RPM )∗(1+1.416∗cos (10 ) )

76∗9.81mseg

=−0.0038Hp

PUNTO # 2:

Hpr=

0.0022m3

seg∗1000m3

seg∗17.2892 RPM∗(18.59 mseg−17.2892RPM )∗(1+1.416∗cos (10 ) )

76∗9.81mseg

=0.1589HP

PUNTO # 3:

DURAND CERNA J. EMILIANO Página 19

Page 21: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Hpr=

0.0022m3

seg∗1000m3

seg∗14.6293 RPM∗(18.59 mseg−14.6293 RPM )∗(1+1.416∗cos (10 ) )

76∗9.81mseg

=0.4094HP

PUNTO # 4:

Hpr=

0.0022m3

seg∗1000m3

seg∗11.9695RPM∗(18.59 mseg−11.9695RPM )∗(1+1.416∗cos (10 ))

76∗9.81mseg

=0.5599HP

PUNTO # 5:

Hpr=

0.0022m3

seg∗1000m3

seg∗9.9746 RPM∗(18.59 mseg−9.9746RPM )∗(1+1.416∗cos (10 ) )

76∗9.81mseg

=0.6072HP

3. POTENCIA AL FRENO (BHp):

BHp=T∗ω=(HP )

DONDE:

T= Torque.W= Velocidad angular.

Para hallar potencia al freno necesitamos hallar, velocidad angular, torque.

VELOCIDAD ANGULAR:

DURAND CERNA J. EMILIANO Página 20

Page 22: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

TOMANDO LOS DATOS DE TODOS LOS PUNTOS.

Punto. #1 1400 RPM.Punto. #2 1300 RPM.Punto. #3 1100 RPM.Punto. #4 900 RPM.Punto. #5 750 RPM.

CONVIRTIENDO A RADIANES:

Punto. #1

ω=1400

revmin

∗2πrad

1rev∗1min

60 seg=146.60 rad /seg

Punto. #2

ω=1300

revmin

∗2πrad

1rev∗1min

60 seg=136.14 rad /seg

Punto. #3

ω=1100

revmin

∗2πrad

1 rev∗1min

60 seg=115.19rad /seg

Punto. #4

ω=900

revmin

∗2 πrad

1 rev∗1min

60 seg=94.25 rad / seg

Punto. #5

DURAND CERNA J. EMILIANO Página 21

Page 23: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

ω=750

revmin

∗2πrad

1rev∗1min

60 seg=78.54 rad /seg

TORQUE:T=f∗d

DONDE:

f = fuerza originada por la fricción, medido por el dinamómetro.d = diámetro de la polea, en radio = 4pul = 10.16cm. =0.10160m

0.10160m/2R=0.0508m

Dinamómetro (Kg).

0 (Kg).

CARGA0.1 (Kg).0.15(Kg).0.2(Kg).0.3(Kg).0.4 (Kg).

DURAND CERNA J. EMILIANO Página 22

Page 24: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Punto #1T=0.1Kg∗0.0508m=0.00508Kg−m

Punto #2T=0.15Kg∗0.0508m=0.00762Kg−m

Punto #3T=0.2Kg∗0.0508m=0.01016Kg−m

Punto #4T=0.3Kg∗0.0508m=0.01524Kg−m

Punto #5T=0.4Kg∗0.0508m=0.02032Kg−m

REEMPLAZANDO EN LA FÓRMULA:

BHp=T∗ω=(HP )

PUNTO # 1:

BHp=0.00508Kg−m∗146.60 radseg

=0.7447HP

PUNTO # 2:

BHp=0.00762Kg−m∗136.14 radseg

=1.03738HP

PUNTO # 3:

BHp=0.01016Kg−m∗115.19 radseg

=1.1703HP

PUNTO # 4:

BHp=0.01524Kg−m∗94.25 radseg

=1.4364HP

PUNTO # 5:

DURAND CERNA J. EMILIANO Página 23

Page 25: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

BHp=0.02032Kg−m∗78.54 radseg

=1.5959HP

4. EFICIENCIA MECÁNICA ( ɱ m):

BHP 0.7447HP 1.03738HP 1.1703HP 1.4364HP 1.5959HP

HPr−0.0038Hp 0.1589Hp 0.4094Hp 0.5599H p 0.6072Hp

ɱm=BHpHpr

PUNRO # 1:

ɱm= 0.7447HP−0.0038Hp

=−195.97

PUNRO # 2:

ɱm=1.03738HP0.1589Hp

=6.5285

PUNRO # 3:

ɱm=1.1703HP0.4094Hp

=2.8586

DURAND CERNA J. EMILIANO Página 24

Page 26: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

PUNRO # 4:

ɱm= 1.4364HP0.5599H p

=2.5656

PUNRO # 15

ɱm=1.5959HP0.6072Hp

=2.6283

5. EFICIENCIA HIDRÁULICA ( ɱ h):

ɱh=HPrHPa

HPR −0.0038Hp 0.1589Hp 0.4094Hp 0.5599H p 0.6072Hp

HPA0.53HP

PUNTO # 1:

ɱh=−0.0038Hp0.53HP

=−0.0072

PUNTO # 2:

ɱh=0.1589Hp0.53HP

=0.2998

PUNTO # 3:

ɱh=0.4094Hp0.53HP

=0.7725

PUNTO # 4:

DURAND CERNA J. EMILIANO Página 25

Page 27: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

ɱh=0.5599H p0.53HP

=1.0564

PUNTO # 5:

ɱh=0.6072Hp0.53HP

=1.1457

6. EFICIENCIA TOTAL( Tɱ ):

ɱm=BHpHPA

BHP0.7447HP 1.03738HP 1.1703HP 1.4364HP 1.5959HP

HPA0.53HP

PUNTO # 1:

ɱT=0.7447HP0.53HP

=1.4051

PUNTO # 2:

ɱT=1.03738HP0.53HP

=1.9573

PUNTO # 3:

DURAND CERNA J. EMILIANO Página 26

Page 28: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

ɱT=1.1703HP0.53HP

=2.2081

PUNTO # 4:

ɱT=1.4364HP0.53HP

=2.7102

PUNTO # 5:

ɱT=1.5959HP0.53HP

=3.0111

7. TRAZAR CURVAS (HPA Vs TORQUE).

Hpa. Torque.0.53 0.00508

0.8 1 1.2 1.4 1.6 1.8 2 2.20

0.1

0.2

0.3

0.4

0.5

0.6

TORQUE.

POTE

NCI

A D

EL A

GU

A (H

PA)

8. TRAZAR CURVAS (HPR Vs TORQUE).

HPr Torque.-0.0038 0.00508

DURAND CERNA J. EMILIANO Página 27

Page 29: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

0 2 4 6 8 10 120

2

4

6

8

10

12

TORQUE.

POTE

NCI

A D

EL R

OD

ETE

(HPR

)

HPr Torque.0.1589 0.00762

0 2 4 6 8 10 120

2

4

6

8

10

12

TORQUE

POTE

NCI

A D

EL R

OD

ETE

(HPR

)

9. TRAZAR CURVA (BHp Vs TORQUE).

DURAND CERNA J. EMILIANO Página 28

Page 30: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

BHp Torque.0.74168 0.00508

0 2 4 6 8 10 120

2

4

6

8

10

12

TORQUE

POTE

NCI

A A

L FR

ENO

(BH

P)

BHP Torque1.03738 0.00762

0 2 4 6 8 10 120

2

4

6

8

10

12

TORQUE.

POTE

NCI

A D

EL F

REN

O (B

HP)

10.TRAZAR CURVAS (ɱm Vs RPM).

DURAND CERNA J. EMILIANO Página 29

Page 31: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

ɱm Vs RPM-0.0072 1400

0 2 4 6 8 10 120

2

4

6

8

10

12

RPM

EFIC

IEN

CIA

MEC

AN

ICA

m)

ɱm Vs RPM0.2998 1300

0 2 4 6 8 10 120

2

4

6

8

10

12

RPM

EFIC

IEN

CIA

MEC

AN

ICA

(ɱm

)

11.TRAZAR CURVAS (ɱh Vs RPM).

DURAND CERNA J. EMILIANO Página 30

Page 32: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

ɱh Vs RPM1.4051 1400

0 2 4 6 8 10 120

2

4

6

8

10

12

RPM

EFIC

IEN

CIA

HID

RAU

LICA

(ɱh)

ɱh Vs RPM3.0111 750

0 2 4 6 8 10 120

2

4

6

8

10

12

RPM

EFIC

IEN

CIA

HID

RAU

LICA

(ɱh)

DURAND CERNA J. EMILIANO Página 31

Page 33: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

1. POTENCIA DEL AGUA (Hpa):

0.53HP

CAUDAL (Q):

0.0022m3/seg .

ALTURA ÚTIL (Hu): 18.3549m

2. POTENCIA DEL RODETE(Hpr):

−0.0038Hp 0.1589Hp 0.4094Hp 0.5599H p 0.6072Hp

VELOCIDAD ABSOLUTA (C1):

18.59m /seg

VELOCIDAD TANGENCIAL (U):

18.6192RPM 17.2892RPM 14.6293 RPM 11.9695RPM 9.9746 RPM

3. POTENCI

DURAND CERNA J. EMILIANO Página 32

Page 34: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

A AL FRENO (BHp):

0.7447HP 1.03738HP 1.1703HP 1.4364HP 1.5959HP

VELOCIDAD ANGULAR (w):

1400 RPM=146 rad /seg1300 RPM=136.14 rad /seg1100RPM=115.19rad / seg900 RPM=94.25 rad / seg750 RPM=78.54 rad /seg

TORQUE (T):

0.00508Kg−m 0.00762Kg−m 0.01016Kg−m 0.01524Kg−m 0.02032Kg−m

4. EFICIENCIA MECÁNICA (ɱm):

−195.97 6.5285 2.8586 2.5656 2.6283

5. EFICIENCIA Hidráulica (ɱh):

−0.0072 0.2998 0.7725 1.0564 1.1457

6. EFICIENCIA TOTAL (ɱT):

1.4051 1.9573 2.2081 2.7102 3.0111

DURAND CERNA J. EMILIANO Página 33

Page 35: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

ANEXO.

Turbina pelton.

DURAND CERNA J. EMILIANO Página 34

Page 36: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Aplicación.

DURAND CERNA J. EMILIANO Página 35

Page 37: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

Detalle de una turbina PELTON de eje vertical.

En esta fotografía se muestra la ventaja de tener la posición de eje en vertical.

DURAND CERNA J. EMILIANO Página 36

Page 38: Turbina Pelton

TURBINAS PELTON / CAPIME / UANCV

PELTON de eje horizontal.                            

    PELTON de 1 chorro eje horizontal.                             PELTON de 2 chorros eje horizontal.

BIBLIOGRAFÍA.

http://es.wikipedia.org/wiki/Turbina_Pelton

http://es.wikipedia.org/wiki/Lester_Allan_Pelton

http://electrical-engineering-portal.com/lester-allan-pelton-father-hydroelectric-power

http://members.tripod.com/mqhd_ita.mx/u3.htm

http://fluidos.eia.edu.co/hidraulica/articuloses/maquinashidraulicas/turbinas/turbinas.html

http://es.wikipedia.org/wiki/Bomba_centr%C3%ADfuga

DURAND CERNA J. EMILIANO Página 37