12
社團法人中華水土保持學會 102 年度年會 1 無人載具系統(UAS)航拍應於高精度製圖的可行性研究 蘇柏軒 [1*] 蕭宇伸 [2] 王傑民 [3] 陳樹群 [4] 本研究於 2013 6 月使用固定翼無人載具系統(UAS) ,在國立中興大學校園進行縝密且完 整的航空攝影測量,並利用航測軟體 Pix4UAV 製作正射鑲嵌影像與三維數值表面模型,最後進行相關 的精度分析。研究中主要分析不同的航拍任務設計對航拍結果的影響。UAS 方法得到的點位座標值與 距離量,分別和全測儀與全球定位系統(GPS)所得到的結果進行平面及垂直方向之誤差分析。除此之 外,本次航拍結果也和過去中興大學航拍任務進行精度比較。此次研究目的為探討 UAS 航拍應用於高 精度製圖的可行性,並提供後續 UAS 使用者參考。 關鍵詞:無人載具系統、製圖、Pix4UAVA feasibility study on unmanned aircraft systems (UAS) for high accuracy mapping Bo-Hsien Su [1*] Yu-Shen Hsiao [2] Jay-Ming Wang [3] Su-Chin Chen [4] ABSTRACT A rigorous and completed photogrammetric survey with fixed-wing unmanned aerial system (UAS) was carried out on the campus of National Chung Hsing University (NCHU) in June, 2013. The orthophoto mosaics and digital surface model were subsequently made by the software Pix4UAV. We mainly investigate the influence of the distributions of land control points for the UAS survey. The coordinate and distance observations obtained from the mission are compared to those from a total station and GPS, respectively. The accuracies of the UAS survey are also well analyzed at both horizontal and vertical components. In addition, a comparison between this and other UAS surveys on NCHU before is described in detail. Overall, the purpose of this study is to discuss the feasibility of UAS-derived mapping with high accuracy and to help future researchers select an appropriate compromise between cost and precision of UAS photogrammetry. Key Words: unmanned aerial system (UAS), mapping, Pix4UAV. 1國立中興大學水土保持學系碩士生(* 通訊作者 E-mail:[email protected]Master Student, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan 2國立中興大學水土保持學系助理教授 Assistant Professor, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan 3國立中興大學水土保持學系博士生 Doctoral Student, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan 4國立中興大學水土保持學系特聘教授 Professor, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan

無人載具系統(UAS)航拍應於高精度製圖的可行性研究cswcs.org.tw/AM/102/FULL/5-6.pdf〔1〕國立中興大學水土保持學系碩士生(* 通訊作者 E-mail:[email protected]

  • Upload
    vantruc

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

  • 102 1

    (UAS)

    [1*] [2] [3] [4]

    2013 6(UAS)

    Pix4UAV

    UAS

    (GPS)

    UAS

    UAS

    Pix4UAV

    A feasibility study on unmanned aircraft systems (UAS) for

    high accuracy mapping

    Bo-Hsien Su[1*]

    Yu-Shen Hsiao[2] Jay-Ming Wang[3] Su-Chin Chen[4]

    ABSTRACT A rigorous and completed photogrammetric survey with fixed-wing unmanned aerial system

    (UAS) was carried out on the campus of National Chung Hsing University (NCHU) in June, 2013. The

    orthophoto mosaics and digital surface model were subsequently made by the software Pix4UAV. We mainly

    investigate the influence of the distributions of land control points for the UAS survey. The coordinate and

    distance observations obtained from the mission are compared to those from a total station and GPS,

    respectively. The accuracies of the UAS survey are also well analyzed at both horizontal and vertical

    components. In addition, a comparison between this and other UAS surveys on NCHU before is described in

    detail. Overall, the purpose of this study is to discuss the feasibility of UAS-derived mapping with high

    accuracy and to help future researchers select an appropriate compromise between cost and precision of UAS

    photogrammetry.

    Key Words: unmanned aerial system (UAS), mapping, Pix4UAV.

    1 * E-mail:[email protected]

    Master Student, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan 2

    Assistant Professor, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan 3

    Doctoral Student, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan 4

    Professor, Dept. of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan

    mailto:[email protected]

  • 102 2

    (

    (1995)Wolf Dewitt(2000)) UAS(Unmanned

    Aerial System

    (2007) (2004)

    2010

    2008 5 12

    (201020102010)

    UAS

    (,2009) UAS

    (,2011)(, 2000)

    UAS

    UAS

    Pix4UAV

    2013 6

    Chien-Ting Wu (2013) 15

    UAS

    1943

    UAS

    1.

    (UAS)UAS UAS 1 UAS

    1

    S 2

  • 102 3

    S S

    2 Chien-Ting Wu

    210cm 5cm 25cm

    50cm 3

    1

    Table 1 The informations of three flight missions.

    UAS Avian UAS SV-1000 Avian UAS

    1.6 m 1m 1.6 m

    Panasonic DMC-FT2 Canon PowerShot S100 Samsung NX200

    14,000,000 12,000,000 20,000,000

    1/250 1/2000 1/640

    28mm 24mm 24mm

    f/3.3 f/2 f/2.5~f/9

    S S S

    5 12 21

    59 53 162

    2011 11 2013 3 2013 6

    1 UAS SV-1000 Avian UAS

    Fig.1 Apperances of used UAS (left: SV-1000; Right: Avian UAS)

  • 102 4

    2

    Fig.2

    3 (C04)

    Fig.3 Left one shows an artificial target ; right one denotes the locations of all artificial targets

    2.

    (,2009)

    ( 4)( 5)

    ()

  • 102 5

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    6

    2

    4 A03

    Fig.4 The control point A03. The color is close to the road and it is hard to be identified in UAS image.

    5 B33

    Fig.5 The control point B33. It is too small to be identified in UAS image.

  • 102 6

    2

    Table 2 The descriptions of new control points

    6 pix4UAV 15

    Fig.6 The distributions of the image control points in pix4UAV processing.

    3.

    15 3

    (1)(2)(3)(4)

    A18 F01

    A17 F02

    TC01 F03

    A11 F04

    A12 F05

    A13 F06

    A14 F07

    A10 F08

    A08 F09

    A07 F10

    A15-1 F11

    B44 F12

    A03 F13

    A06 F14

    B04-1 F15

  • 102 7

    4.

    23 12 7

    G 11 7 T

    ( 8) Nikon DTM-30

    DTM-332 3

    UAS

    7

    Fig.7 The distributions of the detection points. The red points are on the surface and the yellow ones are

    on the top of buildings.

    3 Nikon DTM-30 DTM-332

    Table 3 The information of the total station Nikon DTM-332

    Nikon DTM-302

    DTM-332

    33X

    / 1/5

    2.300m

    ( 3 + 2 ppm x D )mm

    10.000

    IPX6

  • 102 8

    8 Nikon DTM-30 DTM-332

    Fig.8 The Nikon DTM-322 Total Station.

    5.

    Pix4UAV

    ( EPFL )(C.Strecha , 2012)Pix4UAV

    3D

    Google Earth KML DSM

    UAS

    25 (

    2012) 25

    1.

    4 942.42

    G09 49.83 G09

    10.33

    7.33 25

    5 895.6

    187

    40 70

  • 102 9

    4

    Table 4 The statistics of the elevation accuracies evaluated by detection points on surface.

    (m)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    G01 55.49 58.51 301.73 63.89 839.82 61.20 571.20 55.52 3.05 55.52 2.39 55.64 14.88 55.60 11.07

    G02 55.94 58.85 290.97 61.47 553.47 61.05 510.82 55.81 13.18 55.89 5.45 56.08 13.87 56.02 8.15

    G03 55.92 58.82 289.86 63.34 741.78 60.98 505.92 55.98 6.14 55.97 5.35 56.11 18.80 55.98 6.48

    G04 55.05 58.03 297.57 62.32 727.19 60.11 505.82 55.17 11.35 55.07 2.27 55.28 22.81 55.10 4.48

    G05 54.92 57.54 261.92 63.63 870.94 60.17 524.79 54.96 3.99 54.96 4.11 55.22 29.68 54.95 3.36

    G06 54.67 57.18 251.37 64.09 942.42 60.28 560.94 54.76 9.34 54.71 4.17 54.75 8.17 54.68 1.27

    G07 54.99 57.07 207.62 62.80 780.80 60.60 561.02 55.03 4.11 54.97 2.18 55.04 5.11 55.06 7.02

    G08 56.50 59.05 255.34 63.72 722.24 61.94 543.74 56.53 3.13 56.58 7.72 56.50 0.40 56.54 3.63

    G09 56.07 58.49 242.33 61.39 532.23 61.40 533.63 56.57 49.83 56.03 3.87 56.05 1.32 55.99 7.36

    G10 56.80 59.41 261.67 61.03 423.50 62.08 528.67 56.62 18.04 56.77 2.61 56.68 11.87 56.74 5.45

    G11 57.59 60.72 313.24 60.82 322.89 62.80 521.34 57.33 25.82 57.34 24.71 57.60 1.18 57.60 1.30

    G12 56.66 59.58 292.16 61.44 477.57 61.59 492.54 56.51 15.53 56.65 1.64 56.74 7.39 56.76 9.32

    272.15 661.24 530.04 13.63 5.54 11.29 5.74

    30.54 194.65 24.97 13.37 6.28 9.20 3.07

    5

    Table 5 The statistics of the elevation accuracies evaluated by detection points on top of buildings

    (m) [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    T01 65.5 68.5 302.7 70.5 501.7 71.1 562.2 65.8 24.9 65.9 38.3 65.8 26.9 65.9 39.3

    T02 71.2 74.8 353.2 75.4 419.9 76.9 570.5 71.8 56.4 71.7 46.5 71.3 8.8 71.4 17.1

    T03 89.7 92.5 288.9 97.1 747.9 94.5 484.2 89.2 44.2 89.2 41.2 89.4 29.2 89.3 35.8

    T04 102.7 106.7 404.8 108.0 525.3 107.0 433.1 103.4 71.5 103.2 51.8 102.8 7.7 102.5 24.6

    T05 97.9 101.4 356.2 103.0 514.3 101.9 402.2 98.3 38.6 98.5 61.6 97.5 36.9 97.0 87.2

    T06 82.4 84.3 185.6 78.1 427.8 86.0 357.7 81.8 62.2 81.8 61.2 81.4 103.0 81.8 65.3

    T07 70.7 72.3 158.0 78.3 754.5 76.7 599.0 70.6 16.8 71.2 48.3 69.4 132.9 69.8 92.3

    T08 88.8 92.5 368.9 96.9 815.1 94.4 557.1 89.7 92.4 89.7 95.9 88.4 36.9 88.1 66.2

    T09 69.0 72.1 311.8 78.0 895.6 73.1 411.7 67.2 187.0 70.0 95.6 69.9 91.1 68.3 70.7

    T10 96.6 98.8 217.1 102.3 569.8 102.2 558.8 96.7 10.8 97.7 108.4 96.5 4.9 96.3 30.7

    T11 68.8 71.2 237.8 74.9 603.6 70.3 150.2 68.9 8.9 69.6 73.4 68.7 9.3 68.0 77.9

    289.6 616.0 462.4 55.8 65.6 44.3 55.2

    80.5 161.9 132.1 51.0 24.4 44.2 26.4

  • 102 10

    2.

    6 G01

    580.94

    G01 G01

    60

    8

    7 776.71 T06

    23.40 18.55

    T03 T06

    6

    Table 6 The statistics of the horizontal accuracies evaluated by detection points on surface.

    (m)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    G02 164.89 164.23 66.05 160.60 429.03 165.11 21.41 165.04 14.13 164.69 20.66 165.02 12.32 164.88 1.25

    G03 134.54 134.11 42.87 131.09 345.70 134.74 19.45 134.84 29.77 134.65 10.68 134.77 22.39 134.57 2.59

    G04 164.78 164.15 62.81 160.42 435.78 164.79 1.25 165.04 25.45 164.85 6.83 164.88 9.76 164.66 11.69

    G05 130.77 130.66 11.52 127.36 341.61 130.83 5.56 131.23 46.02 130.80 2.92 130.84 7.08 130.72 5.27

    G06 134.64 134.33 31.55 131.09 355.46 134.51 13.54 134.75 10.45 134.98 33.79 134.74 9.48 134.63 0.96

    G07 147.96 147.53 43.16 144.14 381.79 147.72 23.87 148.09 12.79 148.25 28.82 148.06 9.80 147.89 7.12

    G08 116.18 115.71 46.48 113.25 292.52 115.90 28.01 116.20 1.63 116.54 36.17 116.19 1.38 116.14 4.14

    G09 184.61 185.46 84.69 179.94 466.79 184.53 8.59 184.66 5.07 184.99 37.94 184.78 17.07 184.80 18.45

    G10 205.56 204.70 86.04 200.30 526.54 205.50 5.78 205.60 4.01 205.84 28.13 205.64 8.09 205.67 10.89

    G11 236.98 236.05 93.25 231.17 580.94 237.04 6.27 237.16 17.89 237.35 36.79 237.15 16.42 237.12 13.60

    G12 178.61 177.89 71.72 173.89 472.01 178.69 7.50 178.67 5.86 178.61 0.08 178.61 0.10 178.69 7.47

    58.20 420.74 12.84 15.73 22.07 10.35 7.58

    25.41 87.18 8.92 13.42 14.50 6.58 5.55

  • 102 11

    7

    Table 7 The statistics of the horizontal accuracies evaluated by detection points on top of buildings.

    (m)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    [](m)

    (cm)

    T01 183.54 183.00 53.75 179.41 413.70 183.79 25.08 183.86 32.14 183.96 42.12 183.76 21.95 183.78 24.01

    T02 198.43 197.61 81.86 193.80 463.05 198.41 1.75 198.68 24.55 198.52 8.54 198.48 4.92 198.24 18.60

    T03 233.66 232.02 163.99 225.89 776.71 230.98 267.79 233.49 17.54 233.56 10.07 230.04 362.00 230.95 271.14

    T04 131.68 131.13 55.50 129.58 210.68 131.55 13.45 131.77 8.82 131.87 18.92 131.19 49.09 131.38 30.53

    T05 107.66 107.18 47.86 105.57 208.90 107.89 23.41 107.58 8.11 107.48 18.37 106.71 95.45 107.27 38.71

    T06 233.76 235.94 217.40 230.57 319.70 236.33 256.20 236.62 286.06 236.83 306.97 236.46 269.52 236.26 249.88

    T07 184.90 184.30 59.92 180.04 485.86 184.55 35.05 185.20 30.78 184.86 3.78 183.98 91.51 183.91 99.05

    T08 44.19 44.42 23.26 43.53 65.60 43.97 21.95 44.66 47.75 44.23 3.76 44.13 5.49 44.46 27.64

    T09 59.34 59.33 0.56 58.05 129.07 57.95 138.49 59.84 50.59 58.96 38.17 59.31 2.63 58.88 46.25

    T10 193.37 192.29 107.79 189.26 410.66 191.00 237.22 193.32 5.17 193.27 10.08 193.13 24.23 191.81 155.41

    T11 151.70 150.95 75.20 147.72 397.76 150.61 109.39 151.79 8.52 151.38 31.73 151.16 54.44 151.05 65.31

    80.64

    352.88

    102.71

    47.27

    44.77

    89.20

    93.32

    62.44

    198.29

    105.74

    80.76

    87.99

    118.38

    92.00

    UAS Unmanned Aerial System

    1.

    2. 3. 4. 5. 6.

    UAS

    1. 2012247:79-82

    2. 1995.

    1. 2010

    -29(3):17-36

    2. 2010)

    3. 2007()43 (4):453-459

    4. 2010 DEM

  • 102 12

    5. 2004 3D

    15(2):74-77

    6. 2009 DEM

    33(4):9~13

    7. 2011 3 3.1

    42(2):120-130

    8. 2009 UAV

    9. 2000Kodak DCS210

    5(4):39-54

    10. PR Wolf, BA Dewitt(2000).Elements of photogrammetry: with applications in GIS,Vol. 3,New York:

    McGraw-Hill.

    11. Strecha, C., Kng, O., and Fua, P. (2012),AUTOMATIC MAPPING FROM ULTRA-LIGHT UAV

    IMAGERY.

    12. Wu, C. T., Hsiao, C. Y.,and Hsieh, P. S. (2013). Using UAV and VBS-RTK for Rapid Reconstruction

    of En-vironmental 3D Elevation Data of the Typhoon Morakot Disaster Area and Disaster Scale

    Assessment. Journal of Chinese Soil and Water Conservation, 44(1):23-33.