52
1 Network Switching Subsystems Uiversal Media Gateway (UMG8900) Typical Data Configurations Notes extracted from Huawei UMG8900 CD Guide About This Chapter The following table lists the contents of this chapter. Section Describes A.1 Configuring Basic Data The equipment data of the UMG8900 and the interworking data between the UMG8900 and the MSOFTX3000. Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

UMG 8900 Typical Data Configurations

  • Upload
    akwai

  • View
    1.448

  • Download
    26

Embed Size (px)

Citation preview

Page 1: UMG 8900 Typical Data Configurations

1

Network Switching Subsystems

Uiversal Media Gateway (UMG8900) Typical Data Configurations

Notes extracted from Huawei UMG8900 CD Guide

About This Chapter

The following table lists the contents of this chapter.

Section DescribesA.1 Configuring Basic Data The equipment data of the UMG8900 and the interworking data

between the UMG8900 and the MSOFTX3000.A.2 Configuring Data for Interworking with the BSC in One-Gateway Networking

The interworking data between the UMG8900 and the BSC in one-gateway networking.

A.3 Configuring Data for Interworking with the BSC in Multi-Gateway TDM Networking

The interworking data between the UMG8900 and the BSC in multi-gateway TDM networking.

A.4 Configuring Data for Interworking with the RNC in Multi-Gateway ATM Networking

The interworking data between the UMG8900 and the RNC in multi-gateway ATM networking.

A.5 Configuring Data for Interworking with the GMSC

The interworking data between the UMG8900 and the GMSC through the ISUP trunk.

A.6 Configuring Data for Interworking with the PSTN Switch

The interworking data between the UMG8900 and the PSTN switch.

Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 2: UMG 8900 Typical Data Configurations

2

(UMG8900) Typical Data Configurations

 A.1 Configuring Basic Data

A.1.1 Data Planning

To configure the access network structure data, make sure that you have set the basic data, such as equipment data and local office data.For the description purpose, all the examples in this chapter use the same basic data.

Equipment Data Plan

Equipment configuration

In this example, the UMG8900 adopts SSM-256 frame self-cascading. The UMG8900 is configured with a main control frame, a central switch frame and a service frame, as shown in Figure A-2, Figure A-3 and Figure A-1.Figure A-1 UMG8900 board configuration of the service frame

 Figure A-2 UMG8900 board configuration of the main control frame

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 3: UMG 8900 Typical Data Configurations

3

(UMG8900) Typical Data Configurations

Figure A-3 UMG8900 board configuration of the central switch frame

  Board information

Table A-1 lists the basic information of major boards in the UMG8900 main control frame.

Table A-1 Basic information of major boards in the main control frame of the UMG8900

Board Frame No. Slot No. Position Slot No. of Assistant BoardMOMU 1 7 Front board 8MOMU 1 8 Front board 7MSPF 1 10 Front board -MSPF 1 11 Front board -MASU 1 12 Front board 13MASU 1 13 Front board 12MTCB 1 0 Front board -MTCB 1 1 Front board -MTCB 1 2 Front board -MTCB 1 3 Front board -ME32 1 14 Back board -ME32 1 15 Back board -MA4L 1 12 Back board -MA4L 1 13 Back board -MNET 1 7 Back board 8MNET 1 8 Back board 7MTNB 1 6 Back board 9MTNB 1 9 Back board 6MCMB 1 4 Back board 5MCMB 1 5 Back board 4MPPB 1 2 Back board -MPPB 1 3 Back board -MCLK 1 0 Back board 1MCLK 1 1 Back board 0

 Table A-2 Basic information of major boards in the central switch frame of the UMG8900

Board Frame No. Slot No. Position Slot No. of Assistant BoardMMPU 0 7 Front board 8MMPU 0 8 Front board 7MFLU 0 0 Front board -MFLU 0 1 Front board -MNET 0 7 Back board 8MNET 0 8 Back board 7MTNB 0 6 Back board 9MTNB 0 9 Back board 6MBLU 0 0 Back board -MBLU 0 1 Back board -

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 4: UMG 8900 Typical Data Configurations

4

(UMG8900) Typical Data Configurations

 Table A-3 Basic information of major boards in the service frame of the UMG8900

Board Frame No. Slot No. Position Slot No. of Assistant BoardMMPU 2 7 Front board 8MMPU 2 8 Front board 7MNET 2 7 Back board 8MNET 2 8 Back board 7MTNB 2 6 Back board 9MTNB 2 9 Back board 6MS2L 2 0 Back board -MS2L 2 1 Back board -MS2L 2 2 Back board -MS2L 2 3 Back board -ME32 2 12 Back board -ME32 2 13 Back board -ME32 2 14 Back board -ME32 2 15 Back board -

 Basic information of FE portsTable A-4 lists the basic information of fast Ethernet (FE) ports.

Table A-4 Basic information of FE ports

SN Parameter Value1 IP address of the H.248-bearing FE port 11.140.15.3/255.255.0.02 IP address of UMG8900 for SIGTRAN 11.140.15.15/255.255.0.0

 Local Office Data Plan

Table A-5 lists the UMG8900 local office information.

Table A-5 UMG8900 local office information

SN Parameter Value1 Local office SPC (for the national

network)001133 (in 24-bit code format)

2 Local office SPC (for the national reserved network)

1004 (in 14-bit code format)

3 IP address and port number of the local entity

Using MIR interface of NET board in the frame on which SPF board is located for SIGTRAN; IP address: 11.140.15.15/255.255.0.0

4 CS mode UMG8900 as the server; MSOFTX3000 as the clientNote : SPC = Signaling Point Code

 Data Plan for Interworking with the MSOFTX3000

Table A-6 Data for the UMG8900 to interwork with the MSOFTX3000

SN Parameter Value1 Bearer and transport mode of H.248 SCTP/IP2 IP address of MSOFTX3000 10.140.15.1/255.255.0.03 IP address of UMG8900 11.140.15.3/255.255.0.04 Local SCTP port number on the MSOFTX3000 side

(Server)8001

5 Local SCTP port number on the UMG8900 side (Client) 6001, 6002 

A.1.2 Script

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 5: UMG 8900 Typical Data Configurations

5

(UMG8900) Typical Data Configurations

Configuring Equipment Data

The main control frame SSM-256 is configured by the system by default. Thus, you do not need to configure it and you cannot delete it. Perform the following steps with scripts:

Step 1     Add a central switch frame and a service frame.

Description

Add a central switch frame and a service frame.

Script ADD FRM: FN=0, FV=SSM256, FT=SWITCH, SHF=0, LOC=BOTTOM, FNM="Central Switch";ADD FRM: FN=2, FV=SSM256, FT=SERVICE, CN=BLU0, GECAS=YES, TDMCAS=YES, SHF=0, LOC=TOP, FNM="Service Frame";

Note Null

Step 2 Add boards of the main control frameDescription

Add boards of the main control frame.

Script ADD BRD: FN=1, SN=6, BP=BACK, BT=TNU, BS=ONEBACKUP, HBT=MTNB, BN=0;ADD BRD: FN=1, SN=9, BP=BACK, BT=TNU, BS=ONEBACKUP, HBT=MTNB, BN=0;ADD BRD: FN=1, SN=0, BP=FRONT, BT=VPU, ADS=ACTIVE, BS=LOADSHARE, HBT=MTCB, BN=0;ADD BRD: FN=1, SN=1, BP=FRONT, BT=VPU, ADS=ACTIVE, BS=LOADSHARE, HBT=MTCB, BN=1;ADD BRD: FN=1, SN=2, BP=FRONT, BT=VPU, ADS=ACTIVE, BS=LOADSHARE, HBT=MTCB, BN=2;ADD BRD: FN=1, SN=3, BP=FRONT, BT=VPU, ADS=ACTIVE, BS=LOADSHARE, HBT=MTCB, BN=3;ADD BRD: FN=1, SN=10, BP=FRONT, BT=SPF, BS=LOADSHARE, HBT=MSPF, BN=0;ADD BRD: FN=1, SN=11, BP=FRONT, BT=SPF, BS=LOADSHARE, HBT=MSPF, BN=1;ADD BRD: FN=1, SN=0, BP=BACK, BT=CLK, BS=ONEBACKUP, HBT=MCLK, BN=0;ADD BRD: FN=1, SN=1, BP=BACK, BT=CLK, BS=ONEBACKUP, HBT=MCLK, BN=0;ADD BRD: FN=1, SN=2, BP=BACK, BT=PPU, BS=LOADSHARE, HBT=MPPB, BN=0;ADD BRD: FN=1, SN=3, BP=BACK, BT=PPU, BS=LOADSHARE, HBT=MPPB, BN=1;ADD BRD: FN=1, SN=4, BP=BACK, BT=CMU, BS=ONEBACKUP, HBT=MCMB, BN=30;ADD BRD: FN=1, SN=5, BP=BACK, BT=CMU, BS=ONEBACKUP, HBT=MCMB, BN=30;ADD BRD: FN=1, SN=12, BP=FRONT, BT=ASU, BS=ONEBACKUP, HBT=MASU, BN=0;ADD BRD: FN=1, SN=13, BP=FRONT, BT=ASU, BS=ONEBACKUP, HBT=MASU, BN=1;ADD BRD: FN=1, SN=12, BP=BACK, BT=A4L, BS=NULLBACKUP, HBT=MA4L, BN=0;ADD BRD: FN=1, SN=13, BP=BACK, BT=A4L, BS=NULLBACKUP, HBT=MA4L, BN=1;ADD BRD: FN=1, SN=14, BP=BACK, BT=E32, ADS=ACTIVE, BS=LOADSHARE, HBT= ME32, BN=0;ADD BRD: FN=1, SN=15, BP=BACK, BT=E32, ADS=ACTIVE, BS=LOADSHARE, HBT= ME32, BN=1;

Note Null

 Step 3     Set boards of the central switch frame.

Description

Add a central switch frame and a service frame.

Script ADD BRD: FN=0, SN=6, BP=BACK, BT=TNU, BS=ONEBACKUP, HBT=MTNB, BN=0;ADD BRD: FN=0, SN=9, BP=BACK, BT=TNU, BS=ONEBACKUP, HBT=MTNB, BN=0;ADD BRD: FN=0, SN=0, BP=FRONT, BT=FLU, BS=NULLBACKUP, HBT=MFLU, BN=0;ADD BRD: FN=0, SN=1, BP=FRONT, BT=FLU, BS=NULLBACKUP, HBT=MFLU, BN=0;ADD BRD: FN=0, SN=0, BP=BACK, BT=BLU, BS=ONEBACKUP, HBT=MBLU, BN=0;ADD BRD: FN=0, SN=1, BP=BACK, BT=BLU, BS=ONEBACKUP, HBT=MBLU, BN=0;

Note Null Step 4     Set boards of the service frame.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 6: UMG 8900 Typical Data Configurations

6

(UMG8900) Typical Data Configurations

Description

Add a central switch frame and a service frame.

Script ADD BRD: FN=2, SN=6, BP=BACK, BT=TNU, BS=ONEBACKUP, HBT=MTNB, BN=2;ADD BRD: FN=2, SN=9, BP=BACK, BT=TNU, BS=ONEBACKUP, HBT=MTNB, BN=2;ADD BRD: FN=2, SN=9, BP=BACK, BT=TNU, HBT=MTNB, BS=ONEBACKUP, BN=2;ADD BRD: FN=2, SN=0, BP=BACK, BT=S2L, BS=LOADSHARE, HBT=MS2L, BN=0;ADD BRD: FN=2, SN=1, BP=BACK, BT=S2L, BS=LOADSHARE, HBT=MS2L, BN=1;ADD BRD: FN=2, SN=2, BP=BACK, BT=S2L, BS=LOADSHARE, HBT=MS2L, BN=2;ADD BRD: FN=2, SN=3, BP=BACK, BT=S2L, BS=LOADSHARE, HBT=MS2L, BN=3;ADD BRD: FN=2, SN=12, BP=BACK, BT=E32, ADS=ACTIVE, BS=LOADSHARE, HBT=ME32, BN=2;ADD BRD: FN=2, SN=13, BP=BACK, BT=E32, ADS=ACTIVE, BS=LOADSHARE, HBT=ME32, BN=3;ADD BRD: FN=2, SN=14, BP=BACK, BT=E32, ADS=ACTIVE, BS=LOADSHARE, HBT=ME32, BN=4;ADD BRD: FN=2, SN=15, BP=BACK, BT=E32, ADS=ACTIVE, BS=LOADSHARE, HBT=ME32, BN=5;

Note Null Step 5     Modify configuration of clock board.

Description

Modify configuration of clock board. Set Select Mode of Reference Source to Manual, Type of clock signal of external synchronous output to 2.048 MHz and Clock Level to Level Two.

Script MOD CLK: BRDTYPE=CLK, MODE=MANUAL, GRADE=TWO, TYPE=EXT2MHZ, SRC=EXT;Note Null

 Step 6     Set the system time manually.

Description

Set the system time manually.

Script SET TIME: ST=SETTIME, DATE=2007&01&10, TIME=10&38&38;Note Null

 

Configuring Local Office Data

Perform the following steps with scripts:

Step 1     Set local office SPC information.Description

Set local office SPC information. When the M3UA is transferred, the local office signaling point information required being configured.

Script SET OFI: NAME="UMG8900", NATVLD=YES, NATRESVLD=YES, SERACH0=NAT, SERACH1=NATB, NATOPC=001133, NATRESOPC=1004, NATLEN=LABEL24, NATRESLEN=LABEL14;

Note Null Step 2     Set IP address of the FE port on the MPPB board to 11.140.15.3.

Description

Set IP address of the FE port on the MPPB board to 11.140.15.3.

Script ADD IPADDR: BT=PPU, BN=0, IFT=ETH, IFN=0, IPADDR="11.140.15.3", MASK="255.255.0.0", FLAG=MASTER, INVLAN=NO;

Note Null Step 3     Set IP address of the FE port on the MNET board to 11.140.15.25.

Description

Set IP address of the FE port on the MNET board to 11.140.15.25.

Script ADD IPADDR: BT=OMU, BN=0, IFT=ETH, IFN=0, IPADDR="11.140.15.25", MASK="255.255.0.0";Note Null

 

Configure Data for Interworking with the MSOFTX3000

Perform the following steps with scripts:

Step 1     Set a virtual MGW ID.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 7: UMG 8900 Typical Data Configurations

7

(UMG8900) Typical Data Configurations

Description Set a virtual MGW ID.Script SET VMGW: VMGWID=1, MIDTYPE=IP, MID="11.140.15.3:6001", IPNUM=10000, TDMNUM=30000,

AUTOSWP=YES;Note Null

 Step 2     Set parameters of the H.248 protocol.

Description

Set parameters of the H.248 protocol: Set the parameters of the H.248 protocol to default values.

Script SET H248PARA: VMGWID=1, CT=BINARY, TT=SCTP;Note Null

 Step 3     Add an MGC.

Description Add an MGC.Script ADD MGC: VMGWID=1, MGCIDX=0, MIDTYPE=IP, MID="10.140.15.1:8001", MSS=MASTER;Note Null

 Step 4     Add an H.248 signaling link.

Description Add an H.248 signaling link.Script ADD H248LNK: LINKID=48, VMGWID=1, MGCIDX=0, TT=SCTP, LOCALIP="11.140.15.3",

LOCALPORT=6001,PEERIP="10.140.15.1",PEERPORT=8001, LINKNAME="link1", FN=1, SN=2, BP=BACK;ADD H248LNK: LINKID=49, VMGWID=1, MGCIDX=0, TT=SCTP, LOCALIP="11.140.15.3", LOCALPORT=6002,PEERIP="10.140.15.1",PEERPORT=8001, LINKNAME="link2", FN=1, SN=3, BP=BACK;

Note Null   Step 5     Activate VMGW 1.

Description Activate VMGW 1.Script ACT VMGW: VMGWID=1;Note Null

 

A.2 Configuring Data for Interworking with the BSC in One-Gateway Networking

A.2.1 Introduction

Typical Networking Model

When the MSOFTX3000 interworks with BSCs through one UMG8900, the BSCs belong to the same UMG8900. The MSOFTX3000, together with the UMG8900, provides an MSC. The networking mode features simple structure and easy maintenance.This section describes data configuration of the networking mode. Figure A-4 shows a typical networking model.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 8: UMG 8900 Typical Data Configurations

8

(UMG8900) Typical Data Configurations

Figure A-4 Typical networking model for MSOFTX3000 to interwork with BSCs in one-gateway networking

 The UMG8900 supports embedded SG functions. Thus, it can realize the signaling adaptation from the switched circuit network (SCN) to the IP packet network. Through the UMG8900, signaling adopted by the BSC, MSC and PSTN is adapted and transferred to the MSOFTX3000. In this way, the network structure is optimized and the networking cost is reduced. In the above model, the MSOFTX3000 connects with the UMG8900 (with embedded SG function) through M2UA links, exchanges BSSAP messages with BSCs, and controls the UMG8900 to set up voice channels with BSCs. The structure of the protocol stack on the MSOFTX3000 side is BSSAP/SCCP/MTP3/M2UA/SCTP/IP, and that on the BSC side is BSSAP/SCCP/MTP.To enable the MSOFTX3000 to interwork with the BSCs, you need to configure data for the UMG8900 to interwork with:

MSOFTX3000 BSC 1 and BSC 2

For data configuration on the MSOFTX3000 side, see section "1.2 Configuring Data for Interworking with BSC in One-Gateway Networking" in Chapter 1 "Networking of the Access Network."

Application RequirementsIn this example, it is required to meet the following requirements by configuring data on the UMG8900 side:

Between the MSOFTX3000 and each BSC, 64 A-interface trunk circuits are enabled through the UMG8900. Between the MSOFTX3000 and the UMG8900, two M2UA linksets based on different WBSGs are enabled. Through the embedded SG function of the UMG8900, two 64-kbit/s MTP links are enabled between the MSOFTX3000 and

BSC 1. Each of the two M2UA linksets bears the BSSAP service of one MTP link. Through the embedded SG function of the UMG8900, two 64-kbit/s MTP links are enabled between the MSOFTX3000 and

BSC 2. Each of the two M2UA linksets bears the BSSAP service of one MTP link. SCCP connections can be set up successfully between the MSOFTX3000 and each BSC.

Interworking Parameters

Tables from Table A-7 to Table A-8 list the interworking data.

Table A-7 Data for the MSOFTX3000 to interwork with the UMG8900 (with SG embedded)

SN Parameter Value1 IP address of the WIFM of MSOFTX3000 10.140.15.1/255.255.0.02 IP address of the UMG8900 PPU board 11.140.15.3/255.255.0.03 IP address of UMG8900 for SIGTRAN 11.140.15.15/255.255.0.04 SCTP port number of M2UA link on MSOFTX3000 side

(Client)M2UA link 0: 2914M2UA link 1: 2920

5 SCTP port number of M2UA link on UMG8900 side (Server) 29146 Transmission mode of M2UA linkset Load-sharing

 Table A-8 Data for the UMG8900 (with SG embedded) to interwork with the BSC 1

SN Parameter Value1 E1 interface data Access mode: 75 W coaxial cable unbalanced grounding

Frame structure: DOUBLE_FRAMELine code structure: HDB3

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 9: UMG 8900 Typical Data Configurations

9

(UMG8900) Typical Data Configurations

SN Parameter Value2 E32 timeslot planning E32 number 0: 0–1023

 Table A-9 Data for UMG8900 (with SG embedded) to interwork with the BSC 2

SN Parameter Value1 E1 interface data Access mode: 75 W coaxial cable unbalanced grounding

Frame structure: DOUBLE_FRAMELine code structure: HDB3

2 E32 timeslot planning E32 number 1: 1024–2047 A.2.2 Script

Configuring Data Between UMG8900 (with SG embedded) and the MSOFTX3000

Perform the following steps with scripts:

Step 1     Add IP address of the SPF interface.

Description

Add IP address of the SPF interface.

Script ADD IPADDR: BT=SPF, BN=1, IFT=ETH, IFN=0, IPADDR="11.140.15.15", MASK="255.255.0.0";Note Null

 Step 2     Add an L2UA linkset to the MSOFTX3000.

Description Add an L2UA linkset to the MSOFTX3000.Script ADD L2UALKS: PROTYPE=M2UA, LKS=0;

ADD L2UALKS: PROTYPE=M2UA, LKS=1;Note Null

 Step 3     Add two L2UA links from the SPF board 0 to the MSOFTX3000.

Description Add two L2UA links from the SPF board 0 to the MSOFTX3000.Script ADD L2UALNK: PROTYPE=M2UA, BN=1, LNKNO=0, LKS=0, LOCALPN=2914,

LOCALIP1="11.140.15.15", REMOTEPN=2914, REMOTEIP1="10.140.15.1", PRIO=0;ADD L2UALNK: PROTYPE=M2UA, BN=1, LNKNO=1, LKS=1, LOCALPN=2914, LOCALIP1="11.140.15.15", REMOTEPN=2920, REMOTEIP1="10.140.15.1", PRIO=0;

Note Null Configuring Data Between UMG8900 (with SG embedded) and BSC 1

Perform the following steps with scripts:

Step 1     Set E1 port attributes.

Description Set E1 port attributes.Script SET E1PORT: FN=1, SN=14, SPN=0, EPN=31, FS=DOUBLE_FRAME, TXCS=HDB3, RXCS=HDB3;Note Null

 Step 2     Add resources to BSC 1.

Description Add resources to BSC 1.Script ADD TDMIU: BT=E32, BN=0, TIDFV=0, TIDLV=1023, VMGWID=1, RT=EXTERN;Note Null

 Step 3     Add an MTP2 link to BSC 1.

Description Add an MTP2 link to BSC 1.Script ADD MTP2LNK: LNKNO=0, IFBT=E32, IFBN=0, OPN=0, E1T1N=0, STRTTS=16, SPFBN=1,

SUBBN=0, LNKTYPE=M2UA64K, LKS=0, BINIFID=101;Note Null

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 10: UMG 8900 Typical Data Configurations

10

(UMG8900) Typical Data Configurations

Configuring Data Between the UMG8900 (with SG embedded) and BSC 2

Perform the following steps with scripts:

Step 1     Set E1 port attributes.

Description Set E1 port attributes.Script SET E1PORT: FN=1, SN=15, SPN=0, EPN=31, FS=DOUBLE_FRAME, TXCS=HDB3, RXCS=HDB3;Note Null

 Step 2     Add resources to BSC 2.

Description Add resources to BSC 2.Script ADD TDMIU: BT=E32, BN=1, TIDFV=1024, TIDLV=2047, VMGWID=1, RT=EXTERN;Note Null

 Step 3     Add an MTP2 link to BSC 2.

Description Add an MTP2 link to BSC 2.Script ADD MTP2LNK: LNKNO=1, IFBT=E32, IFBN=1, OPN=0, E1T1N=1, STRTTS=16, SPFBN=1,

SUBBN=0, LNKTYPE=M2UA64K, LKS=0, BINIFID=102;Note Null

 

A.2.3 Commissioning Guideline

After completing the above configuration, follow the steps in the table below to verify it.

Verifying Whether the Connection Between UMG8900 and MSOFTX3000 is Normal

Item Action NoteNetwork connections

Check whether the IP interface indicator LINK mapping the HUB/LAN Switch connected to the peer end is on. If yes, it indicates that the connection at the physical layer is set up.

If the indicator LINK is off, check the following: Whether the network cable is connected and

connected tight. Whether HUB/LAN Switch of the peer end is powered

on.On the LMT client, use the PING utility to check the communication status between the MPPB board and the MSOFTX3000.If the ping command succeeds, it indicates that the communication is normal.

If any exception occurs, check the following: Whether the network cable connection is correct. Whether the MPPB board runs normally. Whether the network device (such as LAN Switch)

that connects with the MPPB board works normally. Whether the MSOFTX3000 works normally.

H.248 links Run DSP H248LNK to check whether the link state is Normal. The results displayed include: Local master address Local port number Peer master address Destination port number Transmission layer protocol for

bearing H.248 links

When H.248 adopts a connection-oriented protocol, SCTP or TCP, as a transport layer protocol, if the H.248 link state is Normal, it indicates that the link for the transport layer is set up. In this case, check whether the upper layer H.248 and VMGW ID are matched.When H.248 adopts UDP, even if the links are in normal state, it cannot be concluded that the bottom layer protocol is configured correctly, because there is no process of setting up links.

H.248 link configuration

Check whether the following data acquired in the previous step is consistent as that on the MGC side: Local master address Local port number Peer master address Destination port number Transmission protocol

Check whether the following data is the same: Local master address on the UMG8900 side and peer

master address on the MGC side Local port number on the UMG8900n side and

destination port number on the MGC side Peer master address on the UMG8900 side and local

master address on the MGC side Destination port number on the UMG8900 side and

local port number on the MGC side

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 11: UMG 8900 Typical Data Configurations

11

(UMG8900) Typical Data Configurations

Item Action NoteSCTP parameters

Run LST SCTPINIT to check whether the SCTP protocol stack parameters of the PPU/MPU/OMU boards match those on the MGC side.

Other SCTP parameters need not to be configured. Thus, you can use the default values. Check whether the check algorithms of the both sides are CRC32 or ADLER 32. If not, the SCTP link setup fails.Note that when you have modified SCTP attributes, restart the PPU/MPU/OMU boards to enable the setting.

H.248 parameters

Run LST H248PARA to check whether the parameters match those on the MGC side.

Check whether the following parameters are consistent with those on the MGC side: H.248 codec type Transmission protocol type Authentication type Authentication password

VMGW ID Run LST VMGW to check whether the virtual MGW ID is consistent with that on the MGC side.

-

M2UA commissioning

Run LST L2UALKS to check whether the L2UA linksets are correctly configured.

They are configured as planned.

Run DSP L2UALKS to check whether the L2UA linkset state is normal.

The linksets are in the state of Active.

Run LST L2UALK to check whether the L2UA links are correctly configured.

Same as the planned: Protocol type: M2UA Local/remote SCTP port number: The interworking

parameter Client/server: The interworking parameter

Run DSP L2UALK to check whether the L2UA link state is normal.

The links are in the state of Active.

Run LST TDMIU to check whether the trunk type is correct.

Trunk type: External timeslot

Run LST MTP2LNK to check whether the MTP2 links are correctly configured.

They are configured as planned.

 Checking Whether the Connection Between the UMG8900 and the BSC is Normal

Item Action NoteTDM commissioning

Run DSP E1PORT to check whether the frame structure and line code structure are correctly configured.

They are configured as planned (consistent with those of the interworking device).

Run LST TDMIU to check whether the TDM timeslot is configured as that is planned.

It is configured as planned.

 

A.3 Configuring Data for Interworking with the BSC in Multi-Gateway TDM Networking

A.3.1 Introduction

Typical Networking Model

When the MSOFTX3000 is interworking with multiple UMG8900s, the BSC connected to the MSOFTX3000 only accesses a single UMG8900. Among the UMG8900s, the media type is TDM and the connection mode is not all MGW connection. In this networking model, BSCs of the different areas can access the proximate UMG8900. Through the TDM bearer network, any two BSCs connected to the same MSOFTX3000 can exchange media streams with each other. This section describes data configuration on the UMG8900-1 side. Figure A-5 shows a typical networking model.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 12: UMG 8900 Typical Data Configurations

12

(UMG8900) Typical Data Configurations

Figure A-5 Typical networking model for MSOFTX3000 to interwork with BSCs in multi-gateway TDM networking

 According to different networking planning, in addition to MTP2-M2UA and MTP3-M3UA connections, the signaling transfer function of the UMG can also be realized through the semi-permanent connection. In the above model, the MSOFTX3000 provides MTP links to exchange BSSAP messages with BSCs through the semi-permanent connection of the UMG8900, and controls the UMG8900 to set up voice channels with BSCs. The protocol stack structure on both the MSOFTX3000 side and BSC side are BSSAP/SCCP/MTP3/MTP2/MTP1. To enable the MSOFTX3000 to interwork with the BSCs, you need to configure data for the UMG8900-1 to interwork with:

Data for the MSOFTX3000 to interwork with the UMG8900-1 Data for the UMG8900-1 to interwork with the UMG8900-3 Data for the UMG8900-1 to interwork with the BSC 3 Semi-permanent connection data between MSOFTX3000 and BSC 3 on UMG8900-1

For data configuration on the MSOFTX3000 side, see section "1.4 Configuring Data for Interworking with BSC in Multi-Gateway Networking" in Chapter 1 "Networking of the Access Network."

Application RequirementsIn this example, it is required to meet the following requirements by configuring data on the UMG8900-1 side:

Between the MSOFTX3000 and BSCs, 64 A-interface trunk circuits are enabled through the UMG8900-1. Between the MSOFTX3000 and BSC 3, two 64-kbit/s MTP links are enabled through the UMG8900-1. Among the UMG8900s, the media type is TDM. The media streams between UMG8900-1 and UMG8900-2 must

be transferred through UMG8900-3. SCCP connections can be set up successfully between the MSOFTX3000 and BSC 3.

Data configuration on the UMG8900-2 and UMG8900-3 sides is similar as that on UMG8900-1 side. Thus, it is not repeated here.

Interworking Parameters

Table A-10 TDM interworking data between UMG8900-1 and UMG8900-3

SN Parameter Value1 Interface board Service frame: 4 *S2Ls, 3 *E32s2 E1 port configuration Frame structure: DOUBLE_FRAME

Send/receive line code structure: HDB33 SDH overhead byte Send/receive C2: 2

Send/receive J0: MGW SDH DEFAULTSend/receive J1: MGW SDH DEFAULTSend/receive J2: MGW SDH DEFAULT

4 SDH interface attributes Frame type: SDHFraming format: Huawei modePayload type: E1

6 SDH interface protect Interface type: SDHProtect: APS 1: NNumber of working channels: 6

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 13: UMG 8900 Typical Data Configurations

13

(UMG8900) Typical Data Configurations

SN Parameter Value7 TDM timeslot planning S2L number 0: 2048–6143

S2L number 1: 6144–10239S2L number 2: 10240–14335S2L number 3: 14336–18431E32 number 4: 18432–19455E32 number 5: 19456–20479

 Table A-11 Data for the UMG8900-1 to interwork with the BSC 3

SN Parameter Value1 E1 interface data Access mode: 75 Ω coaxial cable unbalanced grounding

Frame structure: DOUBLE_FRAMELine code structure: HDB3

2 E32 timeslot planning E32 number 3: 20480–21503 A.3.2 Script

Configuring TDM Interworking Data Between UMG8900-1 and UMG8900-3

Perform the following steps with scripts:

Step 1     Set E1 port attributes.Description Set E1 port attributes.Script SET E1PORT: FN=2, SN=14, SPN=0, EPN=31, FS=DOUBLE_FRAME, TXCS=HDB3, RXCS=HDB3;

SET E1PORT: FN=2, SN=15, SPN=0, EPN=31, FS=DOUBLE_FRAME, TXCS=HDB3, RXCS=HDB3;Note Null

                                Step 2     Set overhead bytes of SDH.

Description Set overhead bytes of SDHScript SET SDHFLAG: BT=S2L, BN=0, PN=0, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH

DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=0, PN=1, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=1, PN=0, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=1, PN=1, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=2, PN=0, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=2, PN=1, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=3, PN=0, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";SET SDHFLAG: BT=S2L, BN=3, PN=1, RxC2=2, TxC2=2, RxJ0="MGW SDH DEFAULT", TxJ0="MGW SDH DEFAULT", RxJ1="MGW SDH DEFAULT", TxJ1="MGW SDH DEFAULT", RxJ2="MGW SDH DEFAULT", TxJ2="MGW SDH DEFAULT";

Note Null 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 14: UMG 8900 Typical Data Configurations

14

(UMG8900) Typical Data Configurations

Step 3     Set SDH port attributes.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 15: UMG 8900 Typical Data Configurations

15

(UMG8900) Typical Data Configurations

Description Set SDH port attributes.Script SET S2LPORT: BT=S2L, BN=0, FT=SDH, MODE=HUAWEI, TYPE=E1, MODE2=HUAWEI;

SET S2LPORT: BT=S2L, BN=1, FT=SDH, MODE=HUAWEI, TYPE=E1, MODE2=HUAWEI;SET S2LPORT: BT=S2L, BN=2, FT=SDH, MODE=HUAWEI, TYPE=E1, MODE2=HUAWEI;SET S2LPORT: BT=S2L, BN=3, FT=SDH, MODE=HUAWEI, TYPE=E1, MODE2=HUAWEI;

Note Null Step 4     Add two protect groups.

Description Add two protect groups. Set the four S2L boards to interface protect of 1: 3 backup.Script ADD PG: PGID=0, IFT=SDH/SONET, TYPE=APS1VSN, CHNNUM=3;

ADD PG: PGID=1, IFT=SDH/SONET, TYPE=APS1VSN, CHNNUM=3;Note Null

 Step 5     Add optical interface 0 of the four S2L boards to the protect group 0, optical interface 1 to the protect group 1 and

set S2L board 3 as the standby board.

Description Add optical interface 0 of the four S2L boards to the protect group 0, optical interface 1 to the protect group 1 and set S2L board 3 as the standby board.

Script ADD PGIF: FN=2, SN=3, IFN=0, PGID=0, CHN=0;ADD PGIF: FN=2, SN=0, IFN =0, PGID=0, CHN=1;ADD PGIF: FN=2, SN=1, IFN =0, PGID=0, CHN=2;ADD PGIF: FN=2, SN=2, IFN =0, PGID=0, CHN=3;ADD PGIF: FN=2, SN=3, IFN=1, PGID=1, CHN=0;ADD PGIF: FN=2, SN=0, IFN=1, PGID=1, CHN=1;ADD PGIF: FN=2, SN=1, IFN=1, PGID=1, CHN=2;ADD PGIF: FN=2, SN=2, IFN=1, PGID=1, CHN=3;

Note Null 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 16: UMG 8900 Typical Data Configurations

16

(UMG8900) Typical Data Configurations

    Step 6     Start the protect group controller.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 17: UMG 8900 Typical Data Configurations

17

(UMG8900) Typical Data Configurations

Description Start the protect group controller.Script SET PG: PGID=0, CMDT=START_CONTROLLER;

SET PG: PGID=1, CMDT=START_CONTROLLER;Note Null

 Step 7     Add TDM resources.

Description Add TDM resources.Script ADD TDMIU: BT=S2L, BN=0, TIDFV=1048, TIDLV=6143, VMGWID=1, RT=EXTERN;

ADD TDMIU: BT=S2L, BN=1, TIDFV=6144, TIDLV=10239, VMGWID=1, RT=EXTERN;ADD TDMIU: BT=S2L, BN=2, TIDFV=10240, TIDLV=14335, VMGWID=1, RT=EXTERN;ADD TDMIU: BT=S2L, BN=3, TIDFV=14336, TIDLV=18431, VMGWID=1, RT=EXTERN;ADD TDMIU: BT=E32, BN=4, TIDFV=18432, TIDLV=19455, VMGWID=1, RT=EXTERN;ADD TDMIU: BT=E32, BN=5, TIDFV=19456, TIDLV=20479, VMGWID=1, RT=EXTERN;

Note Null 

Configuring TDM Bearer Data of UMG8900-1

Perform the following steps with scripts:

Step 1     Set E1 port attributes.

Description Set E1 port attributes.Script SET E1PORT: FN=2, SN=13, SPN=0, EPN=31, FS=DOUBLE_FRAME, TXCS=HDB3, RXCS=HDB3;Note Null

 Step 2     Add TDM resource to BSC 3.

Description Add TDM resource to BSC 3.Script ADD TDMIU: BT=E32, BN=3, TIDFV=20480, TIDLV=21503, VMGWID=1, RT=EXTERN;Note Null

 Configuring Semi-permanent Interworking Data of UMG8900-1

Description Add two semi-permanent connections from BSC 3 to the MSOFTX3000.Script ADD SPC: ID=0, SPCN="BSC3_MGC", CT=TDM_TDM, CD=DDIR, STFN=2, STSN=14, SPN=0, STS=0,

DTFN=1, DTSN=14, DPN=2, DTS=0;ADD SPC: ID=1, SPCN="BSC3_MGC", CT=TDM_TDM, CD=DDIR, STFN=2, STSN=14, SPN=1, STS=0, DTFN=1, DTSN=14, DPN=3, DTS=0;

Note Null A.3.3 Commissioning Guideline

After completing the above configuration, follow the steps in the table below to verify it.

Verifying Whether the H.248 Connection Between the UMG8900 and the MSOFTX3000 is Normal

Item Action NoteNetwork connections

Check whether the IP interface indicator LINK mapping the HUB/LAN Switch connected to the peer end is on. If yes, it indicates that the connection at the physical layer is set up.

If the indicator LINK is off, check the following: Whether the network cable is connected and connected

tight. Whether HUB/LAN Switch of the peer end is powered on.

On the LMT client, use the PING utility to check the communication status between the MPPB board and the MSOFTX3000.If the ping command succeeds, it indicates that the communication is normal.

If any exception occurs, check the following: Whether the network cable connection is correct. Whether the MPPB board runs normally. Whether the network device (such as LAN Switch) that

connects with MPPB works normally. Whether the MSOFTX3000 works normally.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 18: UMG 8900 Typical Data Configurations

18

(UMG8900) Typical Data Configurations

Item Action NoteH.248 links Run DSP H248LNK to check whether

the link state is Normal. The results displayed include: Local master address Local port number Peer master address Destination port number Transmission layer protocol for

bearing H.248 links

When H.248 adopts a connection-oriented protocol, SCTP or TCP, as a transport layer protocol, if the H.248 link state is Normal, it indicates that the link for the transport layer is set up. In this case, check whether the upper layer H.248 and VMGW ID are matched.When H.248 adopts UDP, even if the links are in normal state, it cannot be concluded that the bottom layer protocol is configured correctly, because there is no process of setting up links

H.248 link configuration

Check whether the following data acquired in the previous step is consistent as that on the MGC side:

Local master address Local port number Peer master address Destination port number Transmission protocol

Check whether the following data is the same: Local master address on the UMG8900 side and peer

master address on the MGC side Local port number on the UMG8900n side and destination

port number on the MGC side Peer master address on the UMG8900 side and local

master address on the MGC side Destination port number on the UMG8900 side and local

port number on the MGC sideSCTP parameters

Run LST SCTPINIT to check whether the SCTP protocol stack parameters of the PPU/MPU/OMU boards match those on the MGC side.

Other SCTP parameters need not to be configured. Thus, you can use the default values. Check whether the check algorithms of the both sides are CRC32 or ADLER 32. If not, the SCTP link setup fails.Note that when you have modified SCTP attributes, restart the PPU/MPU/OMU boards to enable the setting.

H.248 parameters

Run LST H248PARA to check whether the parameters match those on the MGC side.

Check whether the following parameters are consistent with those on the MGC side: H.248 codec type Transmission protocol type Authentication type Authentication password

VMGW ID Run LST VMGW to check whether the virtual MGW ID is consistent with that on the MGC side.

-

 

Checking Whether the TDM Connection Between UMG8900s is Normal

Item Action NoteE1 interface attributes

Run DSP E1PORT to display the port specified.

Check whether the frame structure and line code structure are consistent with those of the interworking device.

E1 port state Run DSP E1PORT. If no port is specified, the E1 port state is displayed.

If the port state is normal, OK is displayed.

Overhead byte of SDH interface

Run LST SDHFLAG. Check whether the SDH overhead byte is consistent with that of the interworking device.

SDH interface attributes

Run DSP S2LPORT. Check whether the following data is consistent with that of the interworking device: Frame type Framing format Payload type

TDM endpoint configuration

Run LST TDMIU. Check whether the TDM endpoint configuration is correct.

Checking Whether the Semi-permanent Connection on UMG8900s is Normal

Item Action NoteSemi-permanent connection

Run LST SPC. Check whether the semi-permanent connection is correctly configured, including: State: Normal. Type: TDM-TDM. Direction: Bi-direction Frame number: Same as the actual number Slot number: Same as the actual number Port number: Same as the actual number Timeslot: Same as the one that is planned

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 19: UMG 8900 Typical Data Configurations

19

(UMG8900) Typical Data Configurations

A.4 Configuring Data for Interworking with the RNC in Multi-Gateway ATM Networking

A.4.1 Introduction

Typical Networking

When the MSOFTX3000 is interworking with multiple UMG8900s, the RNCs connected to the MSOFTX3000 access to their nearest UMG8900s respectively. The media type between UMG8900s is ATM; the connection mode is all MGW connection. In this networking, RNCs in different areas can access to the nearest UMG8900s. Through the ATM bearer network between UMG8900s, the interworking of media streams can be realized between any two RNCs under the MSOFTX3000. This section describes data configuration in the networking mode. Figure A-6 shows a typical networking model.

Figure A-6 Typical networking model for the MSOFTX3000 interworking with RNCs in multi-gateway ATM networking

 The UMG8900 supports the embedded SG function that can fulfill the adaptation from signaling to the IP packet network in SCN. Through the UMG8900, the nearest signaling of RNC can be accessed. After adaptation, the signaling is forwarded to the MSOFTX3000 for optimizing the network structure and reducing the networking cost. In the above model, the MSOFTX3000 connects with the UMG8900 through M3UA links, exchanges RANAP messages with RNCs through the UMG8900 (with embedded SG function), and controls the UMG8900 to set up voice channels with the RNC. The structure of the protocol stack on the MSOFTX3000 side is RANAP/SCCP/M3UA/SCTP/IP, and that on the RNC side is RANAP/SCCP/MTP3B/SAAL/ATM. To enable the MSOFTX3000 to interwork with the RNCs, you need to configure data for the UMG8900-1 to interwork with:

MSOFTX3000 UMG8900-2 RNC 1

For data configuration on the MSOFTX3000 side, see section 1.8 "Configuring Data for Interworking with RNC (multi-gateway ATM networking)" of Chapter 1 "Networking of the Access Network."

Application Requirements

In this example, it is required to meet the following requirements by configuring data on the UMG8900-1 side: Between the MSOFTX3000 and UMG8900-1, two M3UA links are enabled. Between the UMG8900-1 and UMG8900-2, the ATM interworking is set up. SCCP links can be successfully set up between the MSOFTX3000 and RNC 1.

Interworking Parameters

Table A-12 Interworking parameters between UMG8900-1 (with SG embedded) and the MSOFTX3000

SN Parameter Value1 SPC (for the national reserved network) of MSOFTX3000 3076 (in 14-bit code format)2 SPC (for the national reserved network) of UMG8900 1004 (in 14-bit code format)3 Local SCTP port number of M3UA link on MSOFTX3000 side

(Client)M3UA link 0: 8302M3UA link 1: 8303

4 Local SCTP port number of M3UA link on UMG8900 side (Server)

6303

5 Traffic mode of M3UA linkset Load-sharing traffic mode

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 20: UMG 8900 Typical Data Configurations

20

(UMG8900) Typical Data Configurations

SN Parameter Value6 Working mode of MSOFTX3000 in the M3UA protocol AS7 Working mode of UMG8900 in the M3UA protocol SG

 Table A-13 ATM interworking parameters between UMG8900-1 and UMG8900-2

SN Parameter Value1 Interface board 2 MA4Ls2 SDH overhead bytes C2 bytes: 2

J0 bytes: MGW SDH DEFAULTJ1 bytes: MGW SDH DEFAULTK1 bytes: 0K2 bytes: 0

3 SDH interface protection Interface type: ATMProtect type: APS 1+1Recover mode: Non-recoverOperation mode: BidirectionalDevice mode: No optical splitter used

6 PVC traffic parameters Peak cell rate: 10000 kbit/sCell delay variation tolerance: 1000 kbit/sMaximum bust size: 64 bytesSustainable cell rate: 5000 kbit/sMaximum cell delay variation tolerance: 200ms

7 PVC Signaling PVC: VPI (4)/VCI (8)Bearer PVC: VPI (6–8)/VCI (10–23)

8 SPC On UMG8900-1 side:0x1000, for international networks, 14 bits in lengthOn UMG8900-2 side:0x2000, for international networks, 14 bits in length

9 NSAP addresses On UMG8900-1 side:47.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.6On UMG8900-2 side:47.1.2.3.4.5.6.7.8.9.9.8.7.6.5.4.3.2.1.6

10 The maximum number of users allowed

10000

11 The ownership of AAL2PATH

On UMG8900-1 side: LOCALOn UMG8900-2 side: REMOTE

 Table A-14 Interworking parameters between RNC 1 and UMG8900-1 (with SG embedded)

SN Parameter Value1 SDH optical interface

parametersS1=0; C2=19;J0=MGW SDH DEFAULT;J1=MGW SDH DEFAULT;K1=0; K2=0

2 PVC traffic parameters PCR = 10000 kbit/s, SCR = 5000 kbit/s3 PVC Bearer PVC: VPI/VCI=6/22

Signaling PVC: VPI/VCI=5/336 Link code 0, 17 UMG8900 ATM address 47.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.68 RNC ATM address 47.1.2.3.4.5.6.7.8.9.9.8.7.6.5.4.3.2.1.69 Path ID 1

 A.4.2 Script

Configuring Interworking Data Between UMG8900-1 (with SG embedded) and the MSOFTX3000

Perform the following steps with scripts:

Step 1     Set an M3UA local entity.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 21: UMG 8900 Typical Data Configurations

21

(UMG8900) Typical Data Configurations

Description Set an M3UA local entity. Set Local entity type to Signaling gateway, Network ID to National_reserved, and Source signaling point code to 1004.

Script ADD M3LE: LEX=0, LET=SG, NI=NATB, OPC="1004";Note Null

                                Step 2     Set an M3UA destination entity.

Description Set an M3UA destination entity. Set Destination entity type to Application_server, Net ID to National_reserved, and M3UA Local entity index to 0.

Script ADD M3DE: DEX=0, DET=AS, NI=NATB, DPC=3076, LEX=0;Note Null

 Step 3     Set an M3UA link set.

Description Set an M3UA link set. Set Link set index to 0 and Adjacent destination entity index to 0.Script ADD M3LKS: LSX=0, LSN="To MSC Server", ADX=0;Note Null

 Step 4     Set an M3UA route.

Description Set an M3UA route. Set Destination entity index to 0, and Linkset index to 0.Script ADD M3RT: RN="To MSC Server", DEX=0, LSX=0;Note Null

 Step 5     Set M3UA links from the SPF to the MSOFTX3000.

Description Set M3UA links from the SPF to the MSOFTX3000.Script ADD M3LNK: LNK=0, BT=SPF, BN=1, LKN="TO MGC", LIP1="11.140.15.15", LP=6303,

RIP1="10.140.15.1", RP=8302, LSX=0, ASF=ACTIVE;ADD M3LNK: LNK=1, BT=SPF, BN=1, LKN="TO MGC", LIP1="11.140.15.15", LP=6303, RIP1="10.140.15.1", RP=8303, LSX=0, ASF=ACTIVE;

Note Null Configuring ATM Interworking Data Between UMG8900-1 and UMG8900-2

Perform the following steps with scripts:

Step 1     Set SDH interface overhead bytes.Description

Set SDH interface overhead bytes.

Script SET SDHFLAG: BT=ASU, FN=1, SN=12, PN=0, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=12, PN=1, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=12, PN=2, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=12, PN=3, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=13, PN=0, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=13, PN=1, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=13, PN=2, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;SET SDHFLAG: BT=ASU, FN=1, SN=13, PN=3, C2=2, J0="MGW SDH DEFAULT", J1="MGW SDH DEFAULT", K1=0, K2=0;

Note Null

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 22: UMG 8900 Typical Data Configurations

22

(UMG8900) Typical Data Configurations

Step 2     Set four protection groups.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 23: UMG 8900 Typical Data Configurations

23

(UMG8900) Typical Data Configurations

Description Set SDH interface protection: Set four protection groups.Script ADD PG: PGID=1, IFT=ATM, TYPE=APS1PLUS1, RTVM=NOT_RECOVER,

OPM=BIDIRECTIONAL,OPTSM=DISABLE;ADD PG: PGID=2, IFT=ATM, TYPE=APS1PLUS1, RTVM=NOT_RECOVER, OPM=BIDIRECTIONAL,OPTSM=DISABLE;ADD PG: PGID=3, IFT=ATM, TYPE=APS1PLUS1, RTVM=NOT_RECOVER, OPM=BIDIRECTIONAL,OPTSM=DISABLE;ADD PG: PGID=4, IFT=ATM, TYPE=APS1PLUS1, RTVM=NOT_RECOVER, OPM=BIDIRECTIONAL, PTSM=DISABLE;

Note Null Step 3     Set waiting time for recovery.

Description Set SDH interface protection: Set waiting time for recovery.Script SET WRTIME: PGID=1, WTIME=600;

SET WRTIME: PGID=2, WTIME=600;SET WRTIME: PGID=3, WTIME=600;SET WRTIME: PGID=4, WTIME=600;

Note Null Step 4     Set signal defect.

Description Set SDH interface protection: Set signal defect.Script SET SIGDEFECT: PGID=1, SDFLAG=SD_ENABLE;

SET SIGDEFECT: PGID=2, SDFLAG=SD_ENABLE;SET SIGDEFECT: PGID=3, SDFLAG=SD_ENABLE;SET SIGDEFECT: PGID=4, SDFLAG=SD_ENABLE;

Note Null 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 24: UMG 8900 Typical Data Configurations

24

(UMG8900) Typical Data Configurations

                                Step 5     Set protection groups to which the optical interface belongs.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 25: UMG 8900 Typical Data Configurations

25

(UMG8900) Typical Data Configurations

Description Set SDH interface protection: Set protection groups to which the optical interface belongs.Script ADD PGIF: FN=1, SN=12, IFN=0, PGID=1, CHN=1;

ADD PGIF: FN=1, SN=12, IFN=1, PGID=2, CHN=1;ADD PGIF: FN=1, SN=12, IFN=2, PGID=3, CHN=1;ADD PGIF: FN=1, SN=12, IFN=3, PGID=4, CHN=1;ADD PGIF: FN=1, SN=13, IFN=0, PGID=1, CHN=0;ADD PGIF: FN=1, SN=13, IFN=1, PGID=2, CHN=0;ADD PGIF: FN=1, SN=13, IFN=2, PGID=3, CHN=0;ADD PGIF: FN=1, SN=13, IFN=3, PGID=4, CHN=0;

Note Null Step 6     Start the protocol controller of protection groups.

Description Set SDH interface protection: Start the protocol controller of protection groups.Script SET PG: PGID=1, CMDT=START_CONTROLLER;

SET PG: PGID=2, CMDT=START_CONTROLLER;SET PG: PGID=3, CMDT=START_CONTROLLER;SET PG: PGID=4, CMDT=START_CONTROLLER;

Note Null                                Step 7     Set the traffic parameters table.

Description Set SDH interface protection: Set the traffic parameters table.Script ADD PVCTRF: INDEX=0, PCR=10000, CDVT=1000, MBS=64, SCR=5000, MAXCDT=200;Note Null

 Step 8     Set TIMERCU.

Description Set SDH interface protection: Set TIMERCU.Script ADD PVCTCU: BN=0, INDEX=0;Note Null

 Step 9     Add a signaling PVC.

Description Set a PVC. Add a signaling PVC.Script ADD PVC: FN=1, SN=12, PN=0, PVCTYPE=SIGNAL, STARTVPI=4, STARTVCI=8;Note Null

Step 10     Add a bearer PVC.

Description Set a PVC. Add a bearer PVC.Script ADD PVC: FN=1, SN=12, PN=0, PVCTYPE=BEARER, STARTVPI=6, STARTVCI=10, ENDVCI=14, UPC=NO,

TS=NO, RXTRAFIDX=0, TXTRAFIDX=0, TMRCUIDX=0;ADD PVC: FN=1, SN=12, PN=1, PVCTYPE=BEARER, STARTVPI=7, STARTVCI=15, ENDVCI=20, UPC=NO, TS=NO, RXTRAFIDX=0, TXTRAFIDX=0, TMRCUIDX=0;ADD PVC: FN=1, SN=12, PN=2, PVCTYPE=BEARER, STARTVPI=8, STARTVCI=21, ENDVCI=23, UPC=NO, TS=NO, RXTRAFIDX=0, TXTRAFIDX=0, TMRCUIDX=0;

Note Null                            Step 11     Add an SAAL link.

Description Set the control plane of the transport network layer: Add an SAAL link.Script ADD SAALLNK: LNK=0, FN=1, SN=12, PN=0, VPI=4, VCI=8;Note Null

                            Step 12     Add an MTP3B source signaling point.

Description Set the control plane of the transport network layer: Add an MTP3B source signaling point.Script SET OFI: NAME="MGW1", INTVLD=YES, INTRESVLD=NO, NATVLD=NO, NATRESVLD=NO, SERACH0=INT,

INTOPC=1000, INTLEN=LABEL14, STPFLAG=YES;Note Null

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 26: UMG 8900 Typical Data Configurations

26

(UMG8900) Typical Data Configurations

                           Step 13     Add an MTP3B destination signaling point.

Description Set the control plane of the transport network layer: Add an MTP3B destination signaling point.Script ADD MTP3BDPC: INDEX=0, NAME="MGW2", NI=INT, DPC=2000, DSPTYPE=OTHER, OPC=1000;Note Null

 Step 14     Add an MTP3B linkset.

Description Set the control plane of the transport network layer: Add an MTP3B linkset.Script ADD MTP3BLKS: INDEX=0, DPCIDX=0;Note Null

 Step 15     Add an MTP3B link.

Description Set the control plane of the transport network layer: Add an MTP3B link.Script ADD MTP3BLNK: LNK=0, LINKSETINDEX=0, SLC=4, SAALLINKINDEX=0;Note Null

 Step 16     Add an MTP3B route.

Description Set the control plane of the transport network layer: Add an MTP3B route.Script ADD MTP3BRT: INDEX=0, DPCIDX=0, LINKSETINDEX=0;Note Null

                            Step 17     Add a Q.AAL2 local node.

Description Set the control plane of the transport network layer: Add a Q.AAL2 local node.Script ADD QAAL2LOCNODE: NSAPADDR="47.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.6";Note Null

                            Step 18     Add a Q.AAL2 adjacent node.

Description Set the control plane of the transport network layer: Add a Q.AAL2 adjacent node.Script ADD QAAL2ADJNODE: ANI=0, DPCIDX=0, NSAPADDR="47.1.2.3.4.5.6.7.8.9.9.8.7.6.5.4.3.2.1.6";Note Null

 Step 19     Set ATM resources in the VMGW.

Description Set the user plane of the transport network layer: Set ATM resources in the VMGW.Script SET AAL2VMGW: BN=0, VMGWID=1, MAXUSERNUM=10000;Note Null

 Step 20     Add AAL2PATH.

Description Set the user plane of the transport network layer: Add AAL2PATH. Set the VPI to 6, 7 and 8 in turn. When the VPI is set to different values, set the VCI to values within a range of 10–23 respectively. As a result, 42 AAL2PATHs are set up. The maximum number of users born over each link is 248, and 10416 users in total can be born. Only two commands are listed here.

Script ADD AAL2PATH: ANI=0, PATHID=1, FN=1, SN=12, PN=0, VPI=6, VCI=10, OWNERSHIP=LOCAL;ADD AAL2PATH: ANI=0, PATHID=1, FN=1, SN=12, PN=0, VPI=6, VCI=11, OWNERSHIP=LOCAL;

Note Null 

Configuring Interworking Data Between UMG8900-1 and RNC 1

Perform the following steps with scripts:

Step 1     Set SDH interface overhead bytes.

Description Set SDH interface overhead bytes.Script SET SDHFLAG: BT=ASU, FN=1, SN=12, PN=1, S1=0, C2=19, J0="MGW SDH DEFAULT", J1="MGW SDH

DEFAULT", K1=0, K2=0;Note Null

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 27: UMG 8900 Typical Data Configurations

27

(UMG8900) Typical Data Configurations

Step 2     Set the traffic parameters table.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 28: UMG 8900 Typical Data Configurations

28

(UMG8900) Typical Data Configurations

Description Set the traffic parameters table.Script ADD PVCTRF: INDEX=0, PCR=10000, SCR=5000;Note Null

                                Step 3     Set TIMERCU.

Description Set TIMERCU.Script ADD PVCTCU: BN=0, INDEX=0;Note Null

                               Step 4     Add two signaling PVCs.

Description Set PVCs. Add two PVCs. Set VPI to 5 and VCI to 33.Script ADD PVC: FN=1, SN=12, PN=0, PVCTYPE=SIGNAL, STARTVPI=5, STARTVCI=33, ENDVPI=5, ENDVCI=34;Note Null

                                 Step 5     Add a bearer PVC.

Description Set a PVC. Add a bearer PVC. Set VPI to 6 and VCI to 22.Script ADD PVC: FN=1, SN=12, PN=0, PVCTYPE=BEARER, STARTVPI=6, STARTVCI=22, UPC=NO, TS=NO,

RXTRAFIDX=0, TXTRAFIDX=0, TMRCUIDX=0;Note Null

 Step 6     Add two SAAL links.

Description Add two SAAL links.Script ADD SAALLNK: LNK=1, FN=1, SN=12, PN=0, VPI=5, VCI=33;

ADD SAALLNK: LNK=2, FN=1, SN=12, PN=0, VPI=5, VCI=34;Note Null

                                Step 7     Add an MTP3B source signaling point.

Description Add an MTP3B source signaling point. Set Local signaling index to 0, Signaling network ID to National reserved network, National reserved network code to 1004, National reserved structure to 14 bits and STP function to Yes.

Script SET OFI: NAME="UMG8900", INTVLD=NO, INTRESVLD=NO, NATVLD=NO, NATRESVLD=YES, SERACH0=NATB, NATRESOPC=1004, NATRESLEN=LABEL14, SPFLAG=YES;

Note Null Step 8     Add an MTP3B destination signaling point.

Description Add an MTP3B destination signaling point. Set DPC index to 0, Destination signaling name to R99_RNC, Signaling network ID to National reserved network, Destination signaling point type to RNC, Corresponding OPC to 1004 and Corresponding server DPC to c04.

Script ADD MTP3BDPC: INDEX=1, NAME="R99_RNC", NI=NATB, DPC=3332, DSPTYPE=R99_RNC, OPC=1004, SERVERDPC=3076;

Note Null Step 9     Add an MTP3B linkset.

Description Add an MTP3B linkset.Script ADD MTP3BLKS: INDEX=0, DPCIDX=0;Note Null

 Step 10     Add MTP3B links.

Description Add MTP3B links.Script ADD MTP3BLNK: LNK=1, LINKSETINDEX=0, SLC=0, SAALLINKINDEX=1;

ADD MTP3BLNK: LNK=2, LINKSETINDEX=0, SLC=1, SAALLINKINDEX=2;Note Null

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 29: UMG 8900 Typical Data Configurations

29

(UMG8900) Typical Data Configurations

                            Step 11     Add an MTP3B route.

Description Add an MTP3B route.Script ADD MTP3BRT: INDEX=0, DPCIDX=0, LINKSETINDEX=0;Note Null

                            Step 12     Add a Q.AAL2 local node.

Description Add a Q.AAL2 local node.Script ADD QAAL2LOCNODE: NSAPADDR="47.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.8.9.6";Note Null

 Step 13     Add a Q.AAL2 adjacent node.

Description Add a Q.AAL2 adjacent node.Script ADD QAAL2ADJNODE: ANI=1, DPCIDX=0, NSAPADDR="47.1.2.3.4.5.6.7.8.9.9.8.7.6.5.4.3.2.1.6";Note Null

 Step 14     Set ATM resources in the VMGW.

Description Set ATM resources in the VMGW.Script SET AAL2VMGW: BN=0, VMGWID=1, MAXUSERNUM=4096;Note Null

 Step 15     Add AAL2PATH.

Description Add AAL2PATH.Script ADD AAL2PATH: ANI=1, PATHID=1, FN=1, SN=12, PN=0, VPI=6, VCI=22, OWNERSHIP=LOCAL;Note Null

 A.4.3 Commissioning Guideline

After completing the above configuration, follow the steps in the table below to verify it.

Checking Whether H.248 Connections Between UMG8900 and the MSOFTX3000 Are Normal

Item Action NoteNetwork connections

Check whether the IP interface indicator LINK mapping the HUB/LAN Switch connected to the peer end is on. If yes, it indicates that the connection at the physical layer is set up.

If the indicator LINK is off, check the following: Whether the Ethernet cable is inserted firmly Whether the HUB/LAN Switch at the peer end is powered

off Whether the cable is faulty

On the LMT client, use the interface tracing function "PING" to check the communication between the MPPB board and the MSOFTX3000.If the ping command succeeds, it indicates that the communication is normal.

In case of failure, check the following: Whether the Ethernet cables are correctly connected Whether the MPPB board works normally Whether devices (such as a LAN Switch) connected with

the MPPB board works normally Whether the MSOFTX3000 works normally

H.248 signaling links

Use DSP H248LNK to check whether the links are in Normal state. For further steps, note down the output including: Local master address Local port number Peer master address Destination port number The protocol of transport layer

bearing H.248 links

When H.248 adopts a connection-oriented protocol, SCTP or TCP, as a transport layer protocol, if the H.248 link state is Normal, it indicates that the link for the transport layer is set up. In this case, check whether the upper layer H.248 and VMGW ID are matched.When H.248 adopts UDP, even if the links are in normal state, it cannot be concluded that the bottom layer protocol is configured correctly, because there is no process of setting up links.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 30: UMG 8900 Typical Data Configurations

30

(UMG8900) Typical Data Configurations

Item Action NoteSettings of H.248 signaling links

Check whether the parameters obtained from last step are consistent with those on the MGC side. The parameters include: Local master address Local port number Peer master address Destination port number Transport protocol

Check whether local master address and local port number on the UMG8900 side are the same as peer master address and destination port number on the MGC side. Check whether peer master address and destination port number on the UMG8900 side are the same as local master address and local port number on the MGC side.

SCTP parameters

Use LST SCTPINIT to check whether SCTP protocol stack parameters of PPU/MPU/OMU boards are consistent with those on the MGC side.

Because other SCTP parameters require users' better understanding of protocols, generally it is unnecessary to set the parameters. Use default values directly. Check the authentication algorithm of both ends is the same (the same as CRC32 or ADLER32). If not, SCTP links cannot be set up successfully.Note: After change of SCTP attributes, the modified parameters become valid only after you restart PPU/MPU/OMU boards.

H.248 parameters

Use LST H248PARA to check parameters of the H.248 protocol are consistent with those on the MGC side.

Check whether the following items in the H.248 protocol are the same as those on the MGC side: Codec type Transport protocol type Authentication type Authentication ciphertext

VMGW ID Use LST VMGW to check virtual MGW ID on the UMG8900 side is consistent with that on the MGC side.

-

 Checking Whether ATM Connections Between UMG8900s Are Normal

Item Action NoteSettings of SDH interface overhead bytes

Execute LST SD HFLAG. Check SDH interface overhead bytes of the local device are the same as those of the connected device.

Settings of traffic parameters

Execute LST PVCTRF. Check traffic parameters of the local device are the same as those of the connected device.

Status of SAAL link Execute DSP SAALLNK. In normal cases, Connection normal is displayed for link status.

Whether the MTP-3b DSP is reachable.

Execute DSP MTP3BLNK. In normal cases, Available is displayed for Operation status, and Active is displayed for Activated status.

Status of adjacent nodes Execute DSP QAAL2ADJNODE.

In normal cases, Normal is displayed for Status.

 Checking Whether Connections Between the UMG8900 and the RNC Are Normal

Item Action NoteNetwork connections

Check the indicator LINK of ASU back board is normal (the green indicator is on). If the indicator is off, it indicates the physical connection is faulty.

The indicator LINK is on when the physical connection is normal, and is off in other cases. 

Network connections

On the LMT client, use the interface tracing function "PING" to check the communication between the MPPB and the MSOFTX3000.If the ping command succeeds, it indicates that the communication is normal.

In case of failure, check the following: Whether the Ethernet cables are correctly

connected Whether the MPPB works normally Whether devices (such as a LAN Switch) connected

with the MPPB works normally Whether the MSOFTX3000 works normally

ATM commissioning

Use LST PVCTRF and check whether the configuration of traffic parameters is consistent with data planned.

It is configured as planned.

Use LST VCCMR to check whether the VCC subnet masks and reference values are correct.

-

Use LST PVC to check whether the PVC type is correct, and whether the range of VPI/VCI

For the AAL5 signaling service, PVC type is signaling. For AAL2 speech bearer service, PVC type is Forward.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 31: UMG 8900 Typical Data Configurations

31

(UMG8900) Typical Data Configurations

Item Action Noteis within the range of VCC subnet masks and reference values.

If VCC subnet mask and reference value are set to default values respectively, the value range of VPI is from 0 to 7, and that of VCI is from 0 to 127.

Use LST SAALLNK to check whether the configuration of SAAL parameters is correct.

It is configured as planned.

Use DSP SAALLNK to check whether the status of SAAL links is normal.

Connection normal is displayed for Link status.

Use LST OFI to check whether the configuration of local office information is correct.

It is configured as planned.

Use LST MTP3BDPC to check whether the configuration of MTP3B DSP is correct.

It is configured as planned.

Use DSP MTP3BDPC to check whether the status of MTP3B DSP is normal.

Accessible is displayed for Operation status.

Use LST MTP3BLNK to check whether the configuration of MTP3B links is correct.

It is configured as planned.

Use DSP MTP3BLNK to check whether the status of MTP3B links is normal.

Accessible is displayed for Operation status.Active is displayed for Activated status.

Use LST QAAL2LOCNODE to check whether the configuration of NSAP address of local nodes is correct.

It is configured as planned.

Use DSP QAAL2ADJNODE to check whether the configuration of NSAP address of adjacent nodes is correct, and the status of adjacent nodes is normal.

It is configured as planned.Normal is displayed for Status.

Use LST AAL2VMGW to check whether the configuration of the maximum users' amount of ATM resources in the VMGW is correct.

It is configured as planned.

Use DSP AAL2PATH to check whether the configuration of AAL2 PATH is correct.

It is configured as planned.

M3UA commissioning

Use LST M3LE to check whether the configuration of M3UA local entity is correct.

It is configured as planned.Type of local entity is set to SG.

Use LST M3DE to check whether the configuration of M3UA destination entity is correct.

It is configured as planned. If the UMG8900 and the MSC server are directly connected, Type of destination entity is set to AS.If STP device is needed during signaling exchange between the UMG8900 and the MSC server, Type of destination entity is set to SP.

Use LST M3LNK to check whether the configuration of M3UA links is correct.

It is configured as planned (CS mode should be set to SERVER).

Use DSP M3LNK/ M3DLNK to check whether the status of links is normal.

Active is displayed for Link status.

 

A.5 Configuring Data for Interworking with the GMSC

A.5.1 Introduction

Typical Networking

Figure A-7 shows the typical networking model for the UMG8900 interworking with the GMSCFigure A-7 Typical networking model for the UMG8900 interworking with the GMSC

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 32: UMG 8900 Typical Data Configurations

32

(UMG8900) Typical Data Configurations

Application Requirements

It is required to meet the following requirements by configuring data on the UMG8900 side: The UMG8900 interworks with the GMSC, and the TDM bearer is adopted. The signaling gateway (SG) is embedded into the UMG8900. According to the MTP3-M3UA, the UMG8900 transfers

the signaling on the GMSC side to the MSOFTX3000.

Interworking ParametersAssume that the data, such as hardware data on the UMG8900 and the MWG control data, is configured. This section describes the interworking data between the UMG8900 and the GMSC. Planning the interworking data between the UMG8900 and the GMSC is planning the timeslots as shown in Table A-15.

Table A-15 Interworking parameters between the UMG8900 and the GMSC

SN Parameter Value1 Timeslot planning for the E32 board E32 number 0: 0–1023

E32 number 1:1024–2047 Table A-16 lists the parameters transferred through the MTP3-M3UA signaling

Table A-16 Parameters transferred through the MTP3-M3UA signaling

SN Parameter Value1 UMG8900 signaling point code 129796, national network, 24-bit length2 MSOFTX3000 signaling point code 129792, national network, 24-bit length3 Local Master address bearing M3UA The MIR interface on the NET board of the main control frame is used

as the SIGTRAN interface, that is, it shares the same physical interface with the gateway control interface. The IP address of this interface is 10.10.2.1/24.

4 Number of local port bearing M3UA 6000 (connecting SPF 0 to the master MSOFTX3000)7000 (connecting SPF 1 to the master MSOFTX3000)

5 IP address and port No. of the active MSOFTX3000

192.168.0.1/24, 8000

6 IP address and port No. of the standby MSOFTX3000

172.16.0.1/24, 8001

7 CS mode The UMG8900 is the Server and the MSOFTX3000 is the Client.8 GMSC signaling point code 130826, national network, 24-bit length9 STP signaling point code 130825, national network, 24-bit length10 Two MTP3 links connected with the VMSC MTP3 link 0 occupies timeslot 16 of port 1 on E32 0. Subboard 0 of

SPF 0 performs processing, with the link code as 0. MTP3 link 1 occupies timeslot 16 of port 1 on E32 1. Subboard 0 of SPF 1 performs processing, with the link code as 1.

11 Two MTP3 links connected with the STP MTP3 link 2 occupies timeslot 16 of port 10 on E32 0. Subboard 1 of SPF 0 performs processing, with the link code as 0.MTP3 link 3 occupies timeslot 16 of port 10 on E32 1. Subboard 1 of SPF 1 performs processing, with the link code as 1.

 

A.5.2 Script

Configuring TDM Bearer with GMSC

Description

Configure TDM Bearer with the GMSC

Script ADD TDMIU: BT=E32, BN=0, TIDFV=0, TIDLV=1023, VMGWID=0, HOSTID=30, RT=EXTERN;ADD TDMIU: BT=E32, BN=1,TIDFV=1024, TIDLV=2047, VMGWID=0, HOSTID=30 , RT=EXTERN;

  Configuring MTPS Signaling Data

Perform the following steps with scripts:

Step 1     Configure MTP2 link 0 to the GMSC.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 33: UMG 8900 Typical Data Configurations

33

(UMG8900) Typical Data Configurations

Description

The configurations of MTP2 link 0 to the GMSC are as follows: Configuring MTP2 link 0 to the GMSC. Timeslot 16 of port 1 on E32 0 is occupied, the link is processed by

subboard 0 on SPF 0, and Link type is set to MTP3 64K LINK. Configuring MTP2 link 1 to the GMSC. Timeslot 16 of port 1 on E32 1 is occupied, the link is processed by

subboard 0 on SPF 1, and Link type is set to MTP3 64K LINK:Script ADD MTP2LNK: LNKNO=0, IFBT=E32, IFBN=0, E1T1N=1, STRTTS=16, SPFBN=0, SUBBN=0,

LNKTYPE=MTP364K;ADD MTP2LNK: LNKNO=1, IFBT=E32, IFBN=1, E1T1N=1, STRTTS=16, SPFBN=1, SUBBN=0, LNKTYPE=MTP364K;

 Step 2     Configure MTP2 link 0 to the STP.

Description

The configurations of MTP2 link 0 to the STP are as follows:l  Configuring MTP2 link 2 to the STP. Timeslot 16 of port 10 on E32 0 is occupied, the link is processed by

subboard 1 on SPF 0, and Link type is set to MTP3 64K LINK.l  Configuring MTP2 link 3 to the STP. Timeslot 16 of port 10 on E32 1 is occupied, the link is processed by

subboard 1 on SPF 1, and Link type is set to MTP3 64K LINK.Script ADD MTP2LNK: LNKNO=2, IFBT=E32, IFBN=0, E1T1N=10, STRTTS=16, SPFBN=0, SUBBN=1,

LNKTYPE=MTP364K;ADD MTP2LNK: LNKNO=3, IFBT=E32, IFBN=1, E1T1N=10, STRTTS=16, SPFBN=1, SUBBN=1, LNKTYPE=MTP364K;

                              Step 3     Configure local office information.

Description

Configure local office information with National network valid set to YES, National network code to 129796, SP function and Restart function to NO, and STP function to YES.

Script SET OFI: NAME="UMG8900", INTVLD=NO, INTRESVLD=NO, NATVLD=YES, NATRESVLD=NO, SERACH0=NAT, NATOPC=129796, NATLEN=LABEL24, SPFLAG=NO, STPFLAG=YES, RESTARTFLAG=NO;

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 34: UMG 8900 Typical Data Configurations

34

(UMG8900) Typical Data Configurations

Step 4     Configure MTP3 DSP 0 (GMSC).

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 35: UMG 8900 Typical Data Configurations

35

(UMG8900) Typical Data Configurations

Description

Configure MTP3 DSP 0 with DSP name set to GMSC, DSP to 130826, OPC index to 0, Adjacent flag to YES, and STP function to NO.

Script ADD N7DSP: INDEX=0, NAME="GMSC", NI=NAT, DPC=130826, OSPINDEX=0, STP=NO, ADJACENT=YES; Step 5     Configure MTP3 DSP 1 (STP).

Description

Configure MTP3 DSP 1 with DSP name set to STP, DSP to 130825, OPC index to 0, Adjacent flag to YES, and STP function to YES.

Script ADD N7DSP: INDEX=1, NAME="STP", NI=NAT, DPC=130825, OSPINDEX=0, STP=YES, ADJACENT=YES; Step 6     Configure an MTP3 link set to the GMSC.

Description

Configure an MTP3 link set to the GMSC with Adjacent DSP index set to 0.

Script ADD N7LKS: INDEX=0, NAME="To GMSC", DSPIDX=0; Step 7     Configure an MTP3 link set to the STP.

Description Configure an MTP3 link set to the STP with Adjacent DSP index set to 1.Script ADD N7LKS: INDEX=1, NAME="To STP", DSPIDX=1;

 Step 8     Configure an MTP3 route to the GMSC.

Description

The configurations of the MTP3 route to the GMSC are as follows: Configuring an active MTP3 route to the GMSC with Linkset index, DSP index and Route priority set to

0. Configuring an standby MTP3 route to the GMSC with Linkset index and Route priority set to 1

Script ADD N7RT: INDEX=0, NAME="Master Route_GMSC", LKSIDX=0, DSPIDX=0, PRI=0;ADD N7RT: INDEX=1, NAME="Slave Route_GMSC", LKSIDX=1, DSPIDX=0, PRI=1;

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 36: UMG 8900 Typical Data Configurations

36

(UMG8900) Typical Data Configurations

Step 9     Configure an MTP3 route to the STP.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 37: UMG 8900 Typical Data Configurations

37

(UMG8900) Typical Data Configurations

Description Configure an MTP3 route to the STP with Linkset index set to 1 and Route priority set to 0.Script ADD N7RT: INDEX=2, NAME="To STP", LKSIDX=1, DSPIDX=1, PRI=0;

 Step 10     Configure an MTP3 link to the GMSC.

Description

The configurations of the MTP3 link to the GMSC are as follows: Configuring MTP3 link 0 to the GMSC with Linkset index, Signaling link code and MTP2 link index to 0 Configuring MTP3 link 1 to the GMSC with Linkset index set to 0, and Signaling link code and MTP2

link index to 1Script ADD N7LNK: INDEX=0, NAME="To GMSC", LKSIDX=0, SLC=0, SNDSLC=0, MTP2NO=0;

ADD N7LNK: INDEX=1, NAME="To GMSC", LKSIDX=0, SLC=1, SNDSLC=1, MTP2NO=1; Step 11     Configure an MTP3 link to the STP.

Description

The configurations of the MTP3 link to the STP are as follows:Configuring MTP3 link 2 to the STP with Linkset index set to 1, Signaling link code set to 0, and MTP2 link

index to 2.Configuring MTP3 link 3 to the STP with Linkset index and Signaling link code set to 1 and MTP2 link index to 3

Script ADD N7LNK: INDEX=2, NAME="To STP", LKSIDX=1, SLC=0, SNDSLC=0, MTP2NO=2;ADD N7LNK: INDEX=3, NAME="To STP", LKSIDX=1, SLC=1, SNDSLC=1, MTP2NO=3;

 

Configuring M3UA Signaling Data

The SIGTRAN interface and the gateway control interface share one physical interface (the OMC interface on the NET in the main control frame). Because the gateway control interface has been set with the IP address of the physical interface and the route to the MSOFTX3000, you need not set the SIGTRAN interface and route.

Perform the following steps with scripts:

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 38: UMG 8900 Typical Data Configurations

38

(UMG8900) Typical Data Configurations

Step 1     Configure an M3UA local entity.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 39: UMG 8900 Typical Data Configurations

39

(UMG8900) Typical Data Configurations

Description

Configure an M3UA local entity with Local Entity Type set to signaling_Gateway and Source signaling Point Code to 129796.

Script ADD M3LE: LEX=0, LET=SG, NI=NAT, OPC=129796; Step 2     Configure an M3UA destination entity.

Description

Configure an M3UA destination entity with Destination Entity Type set to Apllication_Server, Destination signaling Point Code to 129792, Network Mode to Engross_Mode, Adjacent Flag to Yes, and Local Entity Index to 0.

Script ADD M3DE: DEX=0, DET=AS, NI=NAT, DPC=129792, NM=ENGROSS, ADF=YES, LEX=0; Step 3     Configure an M3UA link set.

Description

Configure an M3UA link set with Adjacent Destination Entity Index set to 0, Traffic Mode to Loadshare_Mode, and Working Mode to SGP.

Script ADD M3LKS: LSX=0, LSN="To MSOFTX3000", ADX=0, TM=LOADSHARE, WM=SGP; Step 4     Configure an M3UA route

Description

Configure an M3UA route with Destination Entity Index and Link Set Index set to 0.

Script ADD M3RT: RN="To MSOFTX3000", DEX=0, LSX=0;                                Step 5     Configure M3UA links to the MSOFTX3000.

Description

Configure M3UA links to the MSOFTX3000 with CS Mode set to SERVER, Active Standby Flag to Active, and priority of the active MSOFTX3000 to 0.

Script ADD M3LNK: LNK=0, BT=SPF, BN=0, LKN="SPF0_Master MSC", LIP1="10.10.2.1", LP=6000, RIP1="192.168.0.1", RP=8000, CS=SERVER, PR=0, LSX=0, ASF=ACTIVE;ADD M3LNK: LNK=2, BT=SPF, BN=1, LKN="SPF1_Master MSC", LIP1="10.10.2.1", LP=7000, RIP1="192.168.0.1", RP=8001, CS=SERVER, PR=0, LSX=0, ASF=ACTIVE;

 

A.5.3 Commissioning Guideline

Checking Whether the Connection Between the UMG8900 and the BSC Is Normal

Item Action NoteTDM commissioning

Run DSP E1PORT to check whether the frame structure and line code structure are correctly configured.

They are configured as planned (consistent with those of the interworking device).

Run LST TDMIU to check whether the TDM timeslot is configured as that is planned.

It is configured as planned.

 

A.6 Configuring Data for Interworking with the PSTN Switch

A.6.1 Introduction

Typical Networking

The UMG8900 and the MSOFTX3000 cooperate as an MSC server. The MSOFTX3000 can exchange signaling with the PSTN switch through the UMG8900 when links to the MGC and the PSTN switch are configured.Figure A-8 shows the typical networking model for the UMG8900 interworking with the PSTN switch.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 40: UMG 8900 Typical Data Configurations

40

(UMG8900) Typical Data Configurations

Figure A-8 Typical networking model for the UMG8900 interworking with the PSTN switch

 Application RequirementsIt is required to meet the following requirements by configuring data on the UMG8900 side:

Connecting with the PSTN switch through TDM for service interoperation with the PSTN. Providing embedded signaling gateway and adopting M2UA to forward SS7 signaling from the PSTN to the

MSOFTX3000.Interworking ParametersAssume that the data such as the hardware data and the MWG control data on the UMG8900 is configured. This section describes the interworking data between the UMG8900 and the PSTN switch.Before configuring data, operators must negotiate the interworking parameters between the MSOFTX3000 and the UMG8900, as shown in Table A-17 and Table A-18.

Table A-17 Interworking parameters between the UMG8900 and the PSTN switch

SN Parameter Value1 S2L board timeslot planning S2L 0: 0–4095

S2L 1: 4096–8191S2L 2: 8192–12287S2L 3: 12288–16383

2 Interfaces on the four S2L boards are in 3:1 backup protection mode

S2L 3 serves as the protect channel

 Table A-18 Interworking parameters for signaling transfer from the PSTN switch to the MSOFTX3000

SN Parameter Value1 Local IP address bearing SS7 signaling SPF 0: 10.1.1.1/24

SPF 1: 10.1.1.2/242 Number of local SCTP port bearing SS7 signaling 45453 IP address of the interface with which the router directly connects the SPF

board10.1.1.254/24

4 Peer IP address (active MSOFTX3000) bearing SS7 signaling 192.168.0.1/246 Number of peer SCTP port bearing SS7 signaling 12127 MTP2 link type 64k MTP2 links for M2UA8 TDM timeslots occupied by MTP2 links Timeslot 16, complying with

those on the PSTN switch 

A.6.2 Script

Configuring TDM Bearer with the PSTN Switch

Perform the following steps with scripts:Step 1     Configure protect groups.

Description

Configure two protect groups. Set interfaces on the four S2L boards to be in 1:3 backup protection mode.

Script ADD PG: PGID=0, IFT=SDH/SONET, TYPE=APS1VSN, CHNNUM=3;ADD PG: PGID=1, IFT=SDH/SONET, TYPE=APS1VSN, CHNNUM=3;

 Step 2     Add optical interfaces on the four S2L boards to protect groups.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 41: UMG 8900 Typical Data Configurations

41

(UMG8900) Typical Data Configurations

Description

Add optical interface 0 on the four S2L boards to protect group 0 and optical interface 1 to protect group 1, and set S2L 3 to be the standby board.

Script ADD PGIF: FN=2, SN=3, IFN=0, PGID=0, CHN=0;ADD PGIF: FN=2, SN=0, IFN =0, PGID=0, CHN=1;ADD PGIF: FN=2, SN=1, IFN =0, PGID=0, CHN=2;ADD PGIF: FN=2, SN=2, IFN =0, PGID=0, CHN=3;ADD PGIF: FN=2, SN=3, IFN=1, PGID=1, CHN=0;ADD PGIF: FN=2, SN=0, IFN=1, PGID=1, CHN=1;ADD PGIF: FN=2, SN=1, IFN=1, PGID=1, CHN=2;ADD PGIF: FN=2, SN=2, IFN=1, PGID=1, CHN=3;

 Step 3     Start protection controllers.

Description

Start protection controllers.

Script SET PG: PGID=0, CMDT=START_CONTROLLER;SET PG: PGID=1, CMDT=START_CONTROLLER;

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 42: UMG 8900 Typical Data Configurations

42

(UMG8900) Typical Data Configurations

Step 4     Add TDM resources to the PSTN switch.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 43: UMG 8900 Typical Data Configurations

43

(UMG8900) Typical Data Configurations

Description

Add TDM resources to the PSTN switch.

Script ADD TDMIU: BT=S2L, BN=0, TIDFV=0, TIDLV=4095, VMGWID=0, HOSTID=30, RT=EXTERN;ADD TDMIU: BT=S2L, BN=1, TIDFV=4096, TIDLV=8191, VMGWID=0, HOSTID=30, RT= EXTERN;ADD TDMIU: BT=S2L, BN=2, TIDFV=8192, TIDLV=12287, VMGWID=0, HOSTID=30, RT= EXTERN;ADD TDMIU: BT=S2L, BN=3, TIDFV=12288, TIDLV=16383, VMGWID=0, HOSTID=30, RT= EXTERN;

 

Configuring Signaling Transfer Based on MTP2-M2UA

Perform the following steps with scripts:

Step 1     Configure IP addresses to interfaces on the SPF board.

Description

Assign IP addresses to interfaces on the SPF board.

Script ADD IPADDR: BT=SPF, BN=0, IFT=ETH, IFN=0, IPADDR="10.1.1.1", MASK="255.255.255.0";ADD IPADDR: BT=SPF, BN=1, IFT=ETH, IFN=0, IPADDR="10.1.1.2", MASK="255.255.255.0";

 Step 2     Configure routes.

Description

Add routes from the SPF board to the MSOFTX3000s.

Script ADD ROUTE: BT=SPF, BN=0, DSTIP="192.168.0.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.1.1.254";ADD ROUTE: BT=SPF, BN=1, DSTIP="192.168.0.1", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="10.1.1.254";

 Step 3     Configure L2UA link sets to the MSOFTX3000s.

Description

Configure L2UA link sets to the MSOFTX3000s.

Script ADD L2UALKS: PROTYPE=M2UA, LKS=0;ADD L2UALKS: PROTYPE=M2UA, LKS=1;

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 44: UMG 8900 Typical Data Configurations

44

(UMG8900) Typical Data Configurations

Step 4     Configure L2UA links.

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering

Page 45: UMG 8900 Typical Data Configurations

45

(UMG8900) Typical Data Configurations

Description

Configure L2UA links from SPF 0 and SPF 1 to the MSOFTX3000s.

Script ADD L2UALNK: PROTYPE=M2UA, BN=0, LNKNO=0, LKS=0, LOCALPN=4545, LOCALIP1="10.1.1.1", REMOTEPN=1212, REMOTEIP1="192.168.0.1", PRIO=0;ADD L2UALNK: PROTYPE=M2UA, BN=1, LNKNO=2, LKS=1, LOCALPN=4545, LOCALIP1="10.1.1.2", REMOTEPN=1212, REMOTEIP1="192.168.0.1", PRIO=0;

 Step 5     Configure MTP2 links.

Description

Configure MTP2 links to the PSTN switch.

Script ADD MTP2LNK: LNKNO=0, IFBT=S2L, IFBN=0, OPN=0, E1T1N=0, STRTTS=16, SPFBN=0, SUBBN=0, LNKTYPE=M2UA64K, LKS=0, BINIFID=0;ADD MTP2LNK: LNKNO=1, IFBT=S2L, IFBN=0, OPN=0, E1T1N=1, STRTTS=16, SPFBN=1, SUBBN=0, LNKTYPE=M2UA64K, LKS=1, BINIFID=1;

Note The BINIFID should be consistent with that on the MSOFTX3000 side. A.6.3 Commissioning Guideline

After completing the above configuration, follow the steps in the table below to verify it.

Item Action Notecheck the status of the M2UA link

Run DSP L2UALNK to check the status of the M2UA link between the UMG8900 and the MGC.

Normally, the M2UA link is activated.

Check the configuration of the M2UA link

Run LST L2UALNK to check whether the Local Master address, local SCTP port No., Peer Master address and peer SCTP port No. of the M2UA link are consistent with those at the MGC side. In addition, check whether the M2UA link at the UMG8900 side works in server mode, and whether the M2UA link at the MSOFTX3000 side works in client mode.

-

 

.Compiled by Andrew Wai – NSS Engineer – Mobile Engineering