34
University of California, Berkeley PLASMA PLASMA PROCESSING IN THE 21ST CENTURY M.A. Lieberman Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 icpig23May05 1

University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

PLASMA PROCESSING IN THE 21ST CENTURY

M.A. Lieberman

Department of Electrical Engineering and Computer SciencesUniversity of California

Berkeley, CA 94720

icpig23May05 1

Page 2: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

OUTLINE

• The nanoelectronics revolution

• Plasma etching

• Dual frequency capacitive discharges

• Decoupling high and low frequencies

• Standing wave and skin effects

• Conclusions

icpig23May05 2

Page 3: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

THE NANOELECTRONICS REVOLUTION

• Transistors/chip doubling every 2 years since 1959• 500,000-fold decrease in cost for the same performance• In 20 years one computer as powerful as all those

in Silicon Valley today

EQUIVALENT AUTOMOTIVE ADVANCE

• 4 million km/hr• 1 million km/liter• Never break down• Throw away rather than pay parking fees• 3 cm long × 1 cm wide• Crash 3× a day

icpig23May05 3

Page 4: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

THE INVENTION OF THE TRANSISTOR

icpig23May05 4

Page 5: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

FIRST INTEGRATED CIRCUIT AND MICROPROCESSOR

icpig23May05 5

Page 6: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

MOORE’S LAW

• “Transistors/chip double every 18 months” — Gordon Moore (1965)(Transistor size shrinking; chip size growing)

• Now a self-fulfilling prophecy

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 201510

2

103

104

105

106

107

108

109

1010

Year

Tra

nsis

tors

/Chi

p

4004

8086

80286 i386

i486 Pentium

Pentium Pro Pentium II

Pentium III

Pentium IV

Itanium

2 yr doubling

Montecito

• “No exponential is forever. . .but we can delay ‘forever”’(Gordon Moore, 2003)

icpig23May05 6

Page 7: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

DOUBLE/TRI GATE TRANSISTORS

• Both structures can be built with current ic fabrication techniques• CMOS can be scaled another 20 years!• State of the art (2005):

– In manufacture:50 nm (200 atoms) gate length1.5 nm (5 atoms) gate oxide thickness

– Smallest fabricated CMOS transistor (FinFET, UC Berkeley):12 nm (48 atoms) gate length

– Limiting gate length from simulations (desktop ic):4 nm (16 atoms) gate length

icpig23May05 7

Page 8: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

LOW TEMPERATURE INDUSTRIAL DISCHARGES

Lighting,Radiationsources

Electricity

Mechanicalenergy

HeatChemistry

Low temperatureplasma discharges

Plasma displaysGas lasersFluorescent lampsArc lightingElectron and ion beam sources

Electric power switch gearMHD power generation

Plasma thrusters

p < 1 Torrp > 1 Torr

Plasma-assisted materials processing

Microelectronics etching, deposition, oxidation, implantation, passivationLiquid crystal display and solar cell depositionsAerospace and automotive ceramic and metal coatings, films, paintsMetallurgical melting, refining, welding, cutting, hardeningCeramics synthesis, ultrapure powders, nanopowdersFood packaging permeability barriersTextile adhesion treatmentsMedical materials bio-compatibility treatments, sterilization, cleaningArchitectural and automotive glass coatings

icpig23May05 8

Page 9: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

ANISOTROPIC ETCHING

︷ ︸︸ ︷ ︷ ︸︸ ︷Wet etching Ion-enhanced plasma etching

icpig23May05 9

Page 10: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

RECIPE FOR PLASMA ETCHING

1. Start with inert molecular gas CF4

2. Make discharge to create reactive species:CF4 −→ CF3 + F

3. Species reacts with material, yielding volatile product:Si + 4F −→ SiF4 ↑

4. Pump away product5. Source of anisotropy:

Energetic ions bombard trench bottom, but not sidewalls:(a) Increase etching reaction rate at trench bottom(b) Clear passivating films from trench bottom

Mask

PlasmaIons

icpig23May05 10

Page 11: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

EVOLUTION OF ETCHING DISCHARGES

FIRST GEN-ERATION

SECONDGENER-ATION

THIRD GEN-ERATION ? ?

icpig23May05 11

Page 12: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

WHY DUAL FREQUENCY CAPACITIVE DISCHARGES?

• Motivation for capacitive discharge– Low cost– Robust uniformity over large area– Control of dissociation (fluorine)

• Motivation for dual frequency– Independent control of ion flux and ion energy

High frequency voltage controls ion fluxLow frequency controls ion energy

• A critical application for dielectric etch

icpig23May05 12

Page 13: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

TYPICAL OPERATING CONDITIONS

• R ∼ 15–30 cm, L ∼ 1–3 cm• p ∼ 30–300 mTorr, C4F8/O2/Ar feedstock• High frequency fh ∼ 27.1–160 MHz, Vh ∼ 200–500 V• Low frequency fl ∼ 2–13.56 MHz, Vl ∼ 500–1500 V• Absorbed powers Ph, Pl ∼ 500–3000 W

~

~

Vl

Vh

+

+

~

~

Vl

Vh

+

+

Diode (2 electrodes) Triode (3 electrodes)

icpig23May05 13

Page 14: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

CONTROL OF PLASMA DENSITY

• Particle balance =⇒ electron temperature Te

(independent of plasma density)=⇒ Te ∼ 2–6 eV

• Electron power balance =⇒ plasma density n(once electron temperature Te is known)

n ∝ Pe

• In these dischargesPe = power absorbed by electrons ∝ ω2Vrf

=⇒ n ∝ ω2Vrf

• Make ω2hVh � ω2

l Vl

Vh controls plasma density (ion flux)

icpig23May05 14

Page 15: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

CONTROL OF ION ENERGY

• Ion bombarding energy is total dc bias voltage across sheath

Ei ∼ |Vh + Vl|• Make Vl � Vh

Vl controls ion energy

• Combined condition for independent control of ion flux and energy

ω2h

ω2l

� Vl

Vh� 1

1. M.A. Lieberman, J. Kim, J.P. Booth, J.M. Rax and M.M. Turner,

SEMICON Korea Etching Symposium, p. 23 (2003)

2. H.C. Kim, J.K. Lee, and J.W. Shon, Phys. Plasmas 10, 4545 (2003)3. P.C. Boyle, A.R. Ellingboe, and M.M. Turner, J. Phys. D: Appl. Phys.

37, 697 (2004)

icpig23May05 15

Page 16: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

GLOBAL MODEL OF DISCHARGE

• Asymmetric diode (plate areas Aa and Ab)

~ Vl+

~ Vh

+

– Lsalsah

sbhsbl

Ab

Aa

(ωh)

(ωl)

• Low frequency Child law sheaths• High frequency homogeneous sheaths• Ion particle balance, and electron and ion power balance• All high and low frequency heating terms

icpig23May05 16

Page 17: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

RESULTS FOR 27.1/2 AND 60/2 MHz

• Aa = 544 cm2, Ab = 707 cm2, L = 1.6 cm, p = 190 mTorr argonfh = 27.1 MHz fh = 60 MHz

0 100 200 300 400 5000

5

10

15

x 1016

Ph (W)

n0 (

m-3

)

Vl = 900 VVl =1200 VVl =1500 VVl =1800 V

0 100 200 300 400 5000

200

400

600

800

1000

1200

1400

Ph (W)

Eia

(V

)

0 100 200 3000

0.5

1

1.5

2

x 1017

n0 (

m-3

)

Vl = 900 VVl =1200 VVl =1500 VVl =1800 V

0 100 200 3000

200

400

600

800

1000

1200

Eia

(V

)

Ph (W)

Ph (W)

The high/low frequencydecoupling is goodbut not perfect

The high/low frequencydecoupling is betterbut not perfect

icpig23May05 17

Page 18: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

1. DUAL FREQUENCY STOCHASTIC HEATING?

• High frequency sheath oscillates over nearly uniform ion density

Bulk plasma

High frequency homogeneoussheath motion Ions

Electrons

Wall

Stochasticheating

Bulk plasma

High frequency Child lawsheath motion

Ions Electrons

Wall

Stochasticheating

Bulk plasma

High frequency step modelsheath motion

Ions

Electrons

Wall

Stochasticheating

(Lieberman, 1988) (Lieberman, 1988) (Kaganovich, 2002)Sstoc = 0 Sstoc ≠ 0 Sstoc ≠ 0

Dual frequencysheath

Bulk plasma

High frequencynear-homogeneous

sheath motion

Ions Electrons

Stochasticheating???

Wall

icpig23May05 18

Page 19: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

2. COUPLING OF VOLTAGES?

• Additive assumption?Ei ≈ 0.41 (Vl + Vh)

• Current-driven homogeneous model gives

Ei =38

Vl + Vh − 23

VlVh

Vl + Vh︸ ︷︷ ︸

cross termWorst case for crossterm is 1

6 (Vl + Vh) when Vl = Vh

• Cross term for Child law sheaths?Voltage-driven discharges?Real systems driven through matching networks?

icpig23May05 19

Page 20: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

3. ION POWER SUPPLIED BY SOURCES?

• For single frequency capacitive discharges

Electron power =Pe ∝ ω2Vrf ∝ n

Ion power =Pi ∝ ω2V 2rf ∝ nVrf � Pe

⇒ RF power source supplies Pe and Pi

• For dual frequency discharges

Electron power =Pe ∝ ω2hVh ∝ n

Ion power =Pi ∝ ω2Vh (Vl + Vh) � Pe

High frequency source supplies Pe

Which sources supply the ion power? Is Pil/Pih = Vl/Vh?

icpig23May05 20

Page 21: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

TRIPLE FREQUENCY RF DISCHARGE

• IEDF depends on rf bias period/ion transit time across sheath

~

~

Vl1

Vh

+

+

~ Vl2

+

Power

Bias

(60–160 MHz)

(13.6 MHz)

(1 MHz)

Ions

f(E)

E 1

EE 2

E i

Coburn and Kay (1972)

icpig23May05 21

Page 22: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

WIDTH OF ION ENERGY DISTRIBUTION

(Argon, 600 V rf bias, 1011 cm−3 density)

0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.25

0.50

0.75

1.00

1.25

theory

simulations

theo

ry

x

x

13.56 MHz

1 MHz

RF bias period/ion transit time across sheath

Ion

ener

gy w

idth

Ion

ener

gy m

axim

um

1. V. Georgieva, A. Bogaerts, and R. Gijbels, Phys. Rev. E 69, 026406 (2004)

2. J.K. Lee, O.V. Manuilenko, N.Y. Babaeva, H.C. Kim, and J.W. Shon,

Plasma Sources Sci. Technol. 14, 89 (2005)3. S. Shannon, D. Hoffman, J.G. Yang, A. Paterson, and J. Holland,

submitted to Journal of Applied Physics (May 2005)

icpig23May05 22

Page 23: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

HIGH FREQUENCY ELECTROMAGNETIC EFFECTS

• High frequency and large area ⇒ standing wave effects

• High frequency ⇒ high density ⇒ skin effects

• Previous studies of capacitive discharges mostly based on electro-statics, not full set of Maxwell equations

=⇒ no standing wave or skin effects

M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, and M.M. Turner,

Plasma Sources Sci. Technol. 11, 283 (2002)

icpig23May05 23

Page 24: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

CYLINDRICAL CAPACITIVE DISCHARGE

Consider only the high frequency source

~+–

2R

s

s

2d 2lPlasma

Vh

z

r

Sheath

Sheath

Fields cannot pass through metal plates

(1) Vs excites radially outward wave in top vacuum gap(2) Outward wave excites radially inward wave in plasma

icpig23May05 24

Page 25: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

BASIC PHYSICS

• Plasma is (weakly) lossy dielectric slab

κp = 1 −ω2

p

ω(ω − jνm)where

ωp = (e2ne/ε0m)1/2 = plasma frequencyνm = electron-neutral collision frequency

• TM modes with Hφ ∼ ejωt

• Maxwell’s equations∂Hφ

∂z= −jωε0κpEr (inductive field)

1r

∂(rHφ)∂r

= jωε0κpEz (capacitive field)

∂Er

∂z− ∂Ez

∂r= −jωµ0Hφ

• Choose some uniform density ne and sheath width s

• Solve with appropriate boundary conditionsicpig23May05 25

Page 26: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

SURFACE WAVE MODE

• Power enters the plasma via a surface wave mode:

PlasmaStandingwave

Decay(weak)Decay

Surface Wave Mode

λδ

s2ds

• Radial wavelength for surface wave (low density limit):

λ ≈ λ0√1 + d/s

∼ λ0

3

with λ0 = c/f the free space wavelength• Axial skin depth for surface wave:

δ ∼ c

ωp

• There are also evanescent modes leading to edge effects near r = R

icpig23May05 26

Page 27: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

POWER DEPOSITION VERSUS RADIUS AT 13.56 MHz

• R = 50 cm, d = 2 cm, s = 0.4 cm (λ ≈ 9–10 m)• Pcap (dash), Pind (dot) and Ptot (solid) as a function of r

ne = 109 cm−3

δ = 16.7 cmne = 1010 cm−3

δ = 5.3 cm

Pow

er/a

rea

r (cm)0 25 50

0.5

1

0

Total

Capacitive

Inductive

Edgeeffect

Pow

er/a

rea

r (cm)0 25 50

0.5

1

0

Total

Capacitive

Inductive

Edgeeffect

Small stand-ing wave andskin effects

Large skin ef-fect

icpig23May05 27

Page 28: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

POWER DEPOSITION VERSUS RADIUS AT 40.7 MHz

• R = 50 cm, d = 2 cm, s = 0.4 cm (λ ≈ 3 m)• Pcap (dash), Pind (dot) and Ptot (solid) as a function of r

ne = 109 cm−3

δ = 15.9 cmne = 7×109 cm−3

δ = 6.3 cm

Pow

er/a

rea

r (cm)0 25 50

0.5

1

0

Total

Capacitive

Inductive

Edgeeffect

Pow

er/a

rea

r (cm)0 25 50

0.5

1

0

Total

Capacitive Inductive

Edgeeffect

Large stand-ing wave ef-fect

Standing waveand skin ef-fects cancel

icpig23May05 28

Page 29: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

EXPERIMENTAL RESULTS FOR STANDING WAVES

20×20 cm dischargep = 150 mTorr50 W rf power

The standing wave ef-fect is seen at 60 MHzand is more pronouncedat 81.36 MHz

(A. Perret, P. Chabert, J-P Booth, J. Jolly, J. Guillon and Ph. Auvray,

Appl. Phys. Lett. 83, 243, 2003)

icpig23May05 29

Page 30: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

TRANSMISSION LINE MODELS

• Parallel plane transmission line model with local (in x) particle andenergy balance to determine density ne(x) and sheath width sm(x)

x = x0x = 0

~ Vrf

+

EdgeMidplane

+

V

I

Z' = jωL'

Y'=G'(V)+jωC'(V)

Sheath capacitance Ion energy loss

Stochastic heating

Ohmic heating

Plasma inductance

+

V(x)

dxλ/λ0 ≈ 40V1/10rf L−1/2f−2/5

P. Chabert, J.L. Raimbault, J.M. Rax, and M.A. Lieberman,

Phys. Plasmas 11, 1775 (2004)

icpig23May05 30

Page 31: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

SUPPRESSION OF STANDING WAVE EFFECTS

• Shaped electrode (and diel plate) eliminate standing wave effects

• Increased overall thickness in center compared to edge keeps voltageacross discharge section constant

• The electrode shape is a Gaussian, independent of the plasma prop-erties

L. Sansonnens and J. Schmitt, Appl. Phys. Lett. 82, 182 (2003)

P. Chabert, J.L. Raimbault, J.M. Rax, and A. Perret, Phys. Plasmas 11, 4081 (2004)

icpig23May05 31

Page 32: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

EXPERIMENTAL CONFIRMATION

• 5–250 mTorr argon, 50–300 W

H. Schmitt et al, J. Appl. Phys. 95, 4559 (2004)

icpig23May05 32

Page 33: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

SKIN EFFECTS?

• Skin effects =⇒ radial nonuniformities at high densities when

δ <∼ 0.45√

d R

δ ∝ 1√n

= collisional or collisionless skin depth

d = bulk plasma half-thicknessR = discharge radius

• Control of skin effects?

1. M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, and M.M. Turner,

Plasma Sources Sci. Technol. 11, 283 (2002)

2. P. Chabert, J.L. Raimbault, P. Levif, J.M. Rax, and M.A. Lieberman,

submitted to Physics of Plasmas, May 2005

icpig23May05 33

Page 34: University of California, Berkeleylieber/plasmaproc21cent.pdfUniversity of California, Berkeley P L A S M A THE NANOELECTRONICS REVOLUTION • Transistors/chip doubling every 2 years

University of California, Berkeley PLASMA

CONCLUSIONS

• Transistors will scale to nano-sizes — 4nm–12nm gate lengths

• Nanoelectronics drives the development of processing discharges

• Dual frequency capacitive reactors are increasingly important fornext-generation dielectric etching

• The high and low frequencies can be well-decoupled

• Standing wave effects can be controlled

• Plasma processing has a bright future in the 21st century!

icpig23May05 34