32
Yonsei University Optoelectronics (16/2) High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering Yonsei University Waveguide and Directional Coupler MODE Simulation

Waveguide and Directional Coupler MODE Simulationtera.yonsei.ac.kr/class/2017_2_1/project/Design Exercise... · 2017-11-13 · Waveguide and Directional Coupler MODE Simulation. Optoelectronics

  • Upload
    others

  • View
    56

  • Download
    0

Embed Size (px)

Citation preview

Yonsei UniversityOptoelectronics (16/2)

High-Speed Circuits & Systems Lab.Dept. of Electrical and Electronic Engineering

Yonsei University

Waveguide and DirectionalCoupler

MODE Simulation

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Lumerical Solutions3D Maxwell solver(FDTD)

Modal analysis(MODE)

Charge transport & heat transfer(DEVICE)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Lumerical MODE Solution• FDE(Finite Difference Eigenmode) solver

-Calculate physical properties of waveguide modes-Solve Maxwell’s equations for cross-sectional mesh

• 2.5D varFDTD(Finite Difference Time Domain)-Time domain simulation with approximation-2D simulation speed with 3D accuracy

• EME(Eigenmode Expansion) solver-Frequency domain simulation

Most simulations will be held with these solvers

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

License Setting

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

MODE Window

Script File Editor

Command Window

3D Structure Viewer

Structure Setting

Simulation Setting Simulation

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Waveguide Structure• Drawing structure

– Example) Make strip waveguide– Height: 220 nm– Width: 500 nm– Length: 30 μm– Core material: Si– Cladding material: SiO2

500nm

220nm

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Structure Build(GUI)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Structure Build(GUI)• Cladding

You can use both (x & span) or (x min & max) for setup

Mesh order: If materifolded, choose materwhich has smaller meorder

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Structure Build(GUI)• Cladding

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Structure Build(GUI)• Core

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup(GUI)• Eigenmode Solver

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup(GUI)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup(GUI)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup(GUI)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup(GUI)

Simulation

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

MODE Solutions

Calculatedmodes

Infers whether the mode is true or notfrom effective index

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Confinement Factor

Boundarysetting

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Group Index(ng)

④Change to group index

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Sweep WidthSweep waveguide width from 100nm to 300nm with 50nm step

To verify single mode condition

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Sweep Results

SiO2 refractive index: 1.44

Single modecondition

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Design Exercise 2-1What is the single-mode condition for the given thickness of rib waveguide? Also, calculate group index(ng) for the single-mode rib waveguide.

-220nm thick & 100nm slab at 1550nm

Due: 27 Nov. in class

100nm

Width

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Tips for Design Exercise 2-1• Condition for guidance of rib waveguide

:neff_total>neff1:Making same environment as strip waveguide

• How to get neff1:Use 1-D Z:X prop simulation in FDE solver

neff1 neff1

Calculateeffective index here

Optoelectronics (17/2)Optoelectronics (17/2)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Waveguide coupler• Y-branch coupler

• Ideally 50:50 power splitter• Bezier Curve• Curve shape change due to x2, y2

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Y-branch coupler• Waveguide structure group

Put waveguide structure value in here

Change the shape of curve• Download y_splitter.lms file at YSCEC

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Structure (cladding)• Rectangular

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup• 2.5D FDTD Solver Setting(Variational FDTD Solver)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup• Source Setting

(MODE source)

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup• Monitor 1 Setting (Frequency domain field and power)

-Frequency point should be large enough

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Simulation Setup• Monitor 2 Setting (Frequency domain field and power)

-Frequency point should be large enough

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Run Simulation• After setup, run simulation

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Result• Monitor 1 (Right click) Visualize T• Monitor 2 (Right click) add to visualizer 1 T

50:50 power splitting for each wavelength

Yonsei UniversityOptoelectronics (16/2)Optoelectronics (17/2)

Design Exercise 2-2Design rib waveguide type Directional Coupler. Use waveguide width from the result of Design Exercise 2-1.

-220nm thick & 100nm slab at 1550nm

Due: 27 Nov. in class