34
WiMax MIMO Circuit and System Design Presenter: Eldon Staggs Authors:Jim DeLap, John Borelli, Tony Donisi, Eldon Staggs Ansoft Corporation

WiMax MIMO Circuit and System Design

Embed Size (px)

Citation preview

Page 1: WiMax MIMO Circuit and System Design

WiMax MIMO Circuit and System Design

Presenter: Eldon Staggs

Authors:Jim DeLap, John Borelli, Tony Donisi, Eldon StaggsAnsoft Corporation

Page 2: WiMax MIMO Circuit and System Design

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

BSRCRANDOM

IFFT

SP

CYCLIC_PREFIXSP Sx ( )fx

SP

I

Q

I

Q

RITOCR

I

CTORIR

I

IFFT

CYCLIC_PREFIX

SP

Null_Remover1

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

SP SP

SP

SP SPSP

Pilot_Null_Insertion2

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti EncoderPreamble

Preamble_Insertion1

T/R SwitchPowerAmp

T/R Switch

LNA

Baseband Transmitter

Baseband Receiver

RF Transmitter

RF Receiver

Channel

h11h21h12h22

Preamble_Removal1

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

SP

OFDM_Tx

OFDM_Rx

SP

SP

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

Sx ( )fx

Mobile WiMax System• WiMax System Modeling

– Behavioral, Circuit and Physical

Page 3: WiMax MIMO Circuit and System Design

Agenda

Introduction to Mobile WiMax

System Architecture

MIMO Antennas

Receiver Circuit

Integration

Conclusion

Page 4: WiMax MIMO Circuit and System Design

WiMAX - Mid Range IEEE Communication Standard

< 1 m Body Area Networks

< 10 m Personal Area Networks

< 100 m Local Area Networks

< 10 Km Metro Area Networks

> 10 Km Wide Area Networks

Range Standard

Our focus today is Mobile WiMAX, a standard designed to enable high data rate applications such as the wireless Internet.Our focus today is Mobile WiMAX, a standard designed to enable high data rate applications such as the wireless Internet.

802.16

•Last mile broadband wireless access

• 40Mbps capacity up to 10km

•OFDM with QPSK/QAM16/QAM64

• Fixed, Portable (walking) and MobileMobile (in car) options

802.16e• 63Mbps peak capacity up to 3km at 2.3,2.5 or 3.5GHz

• No line-of-sight required

today

Page 5: WiMax MIMO Circuit and System Design

WiMAX Architecture Based on 2 Core Features: MIMO & OFDM

1. MIMO (Multiple Inputs Multiple Output = Many Antennas)– Advantage: More antennas means more data or reliability. For example,

if 2 TX and RX antennas are present, then data rate should double. Data rates will scale linearly.

– Challenge: How to design system so that interactions between multiple TX and RX are minimized.

Solutions, thus far, have emphasized 4 diversity schemes:

#1: #2: #3: #4: Space Time Coding

⎥⎦

⎤⎢⎣

⎡−

= *1

*2

21

SSSS

C

…Our examples today will illustrate how MIMO and OFDM can be simulated.Our examples today will illustrate how MIMO and OFDM can be simulated.

Page 6: WiMax MIMO Circuit and System Design

WiMAX Architecture Based on 2 Core Features: MIMO & OFDM

Our examples today will illustrate how MIMO and OFDM can be simulated.Our examples today will illustrate how MIMO and OFDM can be simulated.

2. OFDM (Orthogonal Frequency Division Multiplexing)

– Advantages:→ Relative immunity to multi-path effects→ Multiplexing schemes, using IFFT & FFT, are easily implemented→ Low sensitivity to time synchronization errors→ Tuned sub-channel receiver filters are not required (unlike

conventional FDM)

– Challenges:→ Sensitive to Doppler shift→ Sensitive to frequency synchronization→ High peak-to-average-power ratio (PAPR), requiring more

expensive transmitter circuitry, and possibly lowering power efficiency

Page 7: WiMax MIMO Circuit and System Design

Mobile WiMax Details• Flexibility

– All aspects can change dynamically to suit the channel

• WiMax MIMO 2x2 Configuration– Beamforming– Spatial Multiplexing

• Complicated algorithms for data rate increase• Data rate scales with min(Ntx,Nrx) antennas

– Space Time Coding• Diversity gain with easy implementation

• OFDM Implementation– Sub-carrier and Symbol times fixed– BW usage dictated by IFFT length– Downlink Data Rate

Page 8: WiMax MIMO Circuit and System Design

System Architecture

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

BSRCRANDOM

IFFT

SPCYCLIC_PREFIX

SP Sx ( )fx

SP

I

Q

I

Q

RITOCR

I

CTORIR

I

IFFT

CYCLIC_PREFIX

SP

Null_Remover1

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

SP SP

SP

SP SPSP

Pilot_Null_Insertion2

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti EncoderPreamble

Preamble_Insertion1

T/R SwitchPowerAmp

T/R Switch

LNA

Baseband Transmitter

Baseband Receiver

RF Transmitter

RF Receiver

Channel

h11h21h12h22

Preamble_Removal1

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

SP

OFDM_Tx

OFDM_Rx

SP

SP

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

Sx ( )fx

BehavioralBehavioral

Page 9: WiMax MIMO Circuit and System Design

Baseband Modeling• OFDM Modeling

– Guard Band– Cyclic Prefix

• Delay Spread & Multipath Immunity

• QAM Modulation– 4/16/64 Supported BSRC

RANDOM

CMUX

CMUX

CCONSTIFFT

SP

CCONST

CMUX

CYCLIC_PREFIX

BSRCRANDOM

SP

Sx

( ) f

x

SP

Page 10: WiMax MIMO Circuit and System Design

BSRCRANDOM

IFFT

CYCLIC_PREFIX

I

Q

I

Q

RITOC

R

I

CTORI

R

I

h11

h22

h21

h12

Tx Rx

U2Channel3

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti Encoder

IFFT

CYCLIC_PREFIX

SP

Null_Remover2

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

Pilot_Null_Insertion1Preamble

Preamble_Insertion2

h11h21h12h22

Preamble_Removal2

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

Baseband Modeling• Channel Detection

– Excite Transmit Antennas separately• Initial frequency estimation

– Pilots• Dynamic estimation

Page 11: WiMax MIMO Circuit and System Design

BSRCRANDOM

I

Q

RITOC

R

I

SP

SP

SP

SP

h11

h22

h21

h12

Tx Rx

U2Channel

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti Encoderr1

r2

[~s2 ~s1]

Alamouti DecoderI

Q

CTORI

R

I

SP

SP

BERP

ber_stc

SP

SP

Baseband Modeling

• Space Time Coding– Orthogonal Alamouti Codes

• SISO vs MIMO– Diversity gain

⎥⎦

⎤⎢⎣

⎡−

= *1

*2

21

SSSS

C

)]1[]0[(~

)]1[]0[(~

*1

1

*22

*2

1

*11

jjj

Mr

j

j

jjj

Mr

j

j

rhrhS

rhrhS

⋅+⋅=

⋅+⋅=

=

=

Page 12: WiMax MIMO Circuit and System Design

MIMO Antenna Design

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

BSRCRANDOM

IFFT

SPCYCLIC_PREFIX

SP Sx ( )fx

SP

I

Q

I

Q

RITOCR

I

CTORIR

I

IFFT

CYCLIC_PREFIX

SP

Null_Remover1

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

SP SP

SP

SP SPSP

Pilot_Null_Insertion2

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti EncoderPreamble

Preamble_Insertion1

T/R SwitchPowerAmp

T/R Switch

LNA

Baseband Transmitter

Baseband Receiver

RF Transmitter

RF Receiver

Channel

h11h21h12h22

Preamble_Removal1

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

SP

OFDM_Tx

OFDM_Rx

SP

SP

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

Sx ( )fx

PhysicalPhysical

Page 13: WiMax MIMO Circuit and System Design

WiMax Physical Channel• Simplified Channel Model

– Path Loss with Friis Transmission equation – Non-Ideal effects often ignored

• Element coupling, Mismatch, Orientation– Single value for Antenna gains

• More Accurate Channel Model– Full-wave 3D EM modeling with HFSS– System Non-linearities

• Multi-path, Fading, etc.

2

4Pr

⎟⎠⎞

⎜⎝⎛=

RGtGr

Pt πλ

Rrtrtrtrrtt eaa

RGG

Ptα

πλφθφθ −

⋅Γ−Γ−⎟⎠⎞

⎜⎝⎛=

2*222

)1)(1(4

),(),(Pr

Page 14: WiMax MIMO Circuit and System Design

WiMax Physical Channel• Antenna Configurations

– SISO and full 2x2 MIMO– Designs centered at 2.5GHz

• Mobile Station– Laptop with WiMax Modem PC Card – Simple Radiating Mononpoles

• Base Station– Reflector backed Dipoles

Page 15: WiMax MIMO Circuit and System Design

Mobile Station Antenna• Tuned Monopole • Monopole Response

– Far Field– Return Loss

Page 16: WiMax MIMO Circuit and System Design

Base Station Antenna• Reflector Backed Dipole

– Optimized for Directivity• Dipole Response

– Far Field– Return Loss

Page 17: WiMax MIMO Circuit and System Design

Link Simulation

• Physical Channel– Antennas modeled– How to simulate link between?

• Utilize Ansoft HFSS Datalink– Fields from one drive another– Large separation without modeling air

Page 18: WiMax MIMO Circuit and System Design

HFSS Datalink

• Source Fields of Radiation Boundary– Imposed on target model with loss and phase

Source ModelSource Model Target ModelTarget Model

Page 19: WiMax MIMO Circuit and System Design

MIMO Datalink

Laptop Model with Dual Monopoles

BS Model with Dual Dipoles and reflector

Fields from Source model radiation BCMapped to target model using a Far FieldIncident Wave

Page 20: WiMax MIMO Circuit and System Design

MIMO Physical ChannelDatalink

Page 21: WiMax MIMO Circuit and System Design

MIMO Physical ChannelCircuit Model

• HFSS-HFSS Datalink maps fields from a source volume to the target volume

• Q: How does this translate to a working circuit model ?

• A: Utilize the [Z] matrix in Nexxim1. Excite each antenna in system with a 1 A current source2. Using Datalink, measure O.C. voltage at all the other antennas3. Construct [Z] matrix from Voltages

Page 22: WiMax MIMO Circuit and System Design

MIMO Physical ChannelCircuit Model

• Voltage values extracted as real/imaginary pairs

• Assembled into [Z] matrixjkIj

iij

kIVZ

≠=

=,0

Page 23: WiMax MIMO Circuit and System Design

WiMax Circuit Design

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

BSRCRANDOM

IFFT

SPCYCLIC_PREFIX

SP Sx ( )fx

SP

I

Q

I

Q

RITOCR

I

CTORIR

I

IFFT

CYCLIC_PREFIX

SP

Null_Remover1

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

SP SP

SP

SP SPSP

Pilot_Null_Insertion2

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti EncoderPreamble

Preamble_Insertion1

T/R SwitchPowerAmp

T/R Switch

LNA

Baseband Transmitter

Baseband Receiver

RF Transmitter

RF Receiver

Channel

h11h21h12h22

Preamble_Removal1

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

SP

OFDM_Tx

OFDM_Rx

SP

SP

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

Sx ( )fx

CircuitCircuit

Page 24: WiMax MIMO Circuit and System Design

Antenna/Circuit Test Bench

• 2x2 MIMO Channel• Dual Receiver

– 2.5GHz to Baseband

Page 25: WiMax MIMO Circuit and System Design

WiMax Single RX Block Diagram

• Receiver per Antenna– Variable Gain LNA– Active Balun– IQ Mixer– Baseband Filter– AGC

• UMC 0.13um CMOS

Page 26: WiMax MIMO Circuit and System Design

WiMax Receiver• Variable-Gain LNA

– 2-stage, inductively-loaded cascode topology– output follower stage gain control.

12mA 12mA

2mA

RFin

RFou

GC

AVD

D

AGN

D

AGND1

PD

Ibias

AGND1

IbiasPDAVDD

AGND1

U31Nexxim8

l=25uw=25u

mimcaps_rf

M=1

c_tot_m=0.669p

l_cr

20k_

rfdo=1

50u

w=5

.7u

s=2.

52u

nt=7

.5

p_ls

=3.8

2n

l=35uw=35u

mimcaps_rf

M=1

c_tot_m=1.286p

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l_cr20k_rf

do=150uw=2.5us=2.5u

nt=7.5

p_ls=7.42n

n_bpw_12_rf

nf=16

lf=0.12uwf=3u

M=4wt=48u

n_bpw_12_rf

nf=16

lf=0.12uwf=3u

M=4wt=48u

l_cr20k_rf

do=75uw

=6.3us=1.79unt=3

p_ls=0.43nl_cr20k_rf

do=149uw

=5.2us=1.8unt=5

p_ls=3.42n

l=26.6uw=26.6u

mimcaps_rf

M=1

c_tot_m=0.754p

l=100uw=100u

mimcaps_rf

M=1

c_tot_m=10.174p

n_bpw_12_rf

nf=16

lf=0.12uwf=3u

M=4wt=48u

n_bpw_12_rf

nf=16

lf=0.12uwf=3u

M=4wt=48u

l_cr20k_rf

do=75uw

=5.6us=2.5unt=2.5 p_ls=0.38n

l_cr20k_rf

do=150uw=2.7us=2.5u

nt=7.5

p_ls=7.13n

l_cr20k_rf

do=149uw

=5.2us=1.8unt=7

p_ls=4.57n

l=20uw

=2um

=1rnhr_rfr_zbt_m

=9.96k

l=26.6uw=26.6u

mimcaps_rf

M=1

c_tot_m=0.754p

n_bpw_12_rf

nf=16

lf=0.12uwf=1.8u

M=1wt=28.8u

n_bpw_12_rf

nf=16

lf=0.12uwf=1.8u

M=1wt=28.8u

n_bpw_12_rf

nf=16

lf=0.12uwf=1.8u

M=1wt=28.8u

l=20uw

=2um

=1rnhr_rfr_zbt_m

=9.96k

l=99.77uw=99.77u

mimcaps_rf

M=1

c_tot_m=10.128p

varmis_12_rf

w=10unf=8l=2u

m=1

cox_m=1710.5f

Page 27: WiMax MIMO Circuit and System Design

AVDDM

IFp

IFn

RFp

RFn

PD

Ibias

n_bpw_12_rf

nf=16

lf=0.12uwf=5u

M=1wt=80u

n_bpw_12_rf

nf=16

lf=0.12uwf=5u

M=1wt=80u

n_bpw_12_rf

nf=16

lf=0.12uwf=5u

M=1wt=80u

n_bpw_12_rf

nf=16

lf=0.12uwf=5u

M=1wt=80u

l=20uw

=2um

=8.5 rnhr_rfr_zbt_m

=1.172k

l=20uw

=2um

=8.5 rnhr_rfr_zbt_m

=1.172k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

n_bpw_12_rf

nf=16

lf=0.12uwf=5u

M=4wt=80u

n_bpw_12_rf

nf=16

lf=0.12uwf=5u

M=4wt=80u

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=20uw

=2um

=1

rnhr_rfr_zbt_m

=9.96k

l=35

.7u

w=5

0u

mim

caps

_rf

M=1

c_to

t_m

=1.8

51p

varmis_12_rf

w=10u

nf=8l=2u

m=1 cox_m

=1710.5f

varmis_12_rf

w=10u

nf=8l=2u

m=1 cox_m

=1710.5f

l=100uw=100u

mimcaps_rf

M=1

c_tot_m=10.174pl=100u

w=100u

mimcaps_rf

M=1

c_tot_m=10.174p

IbiasPDAVDD

AGND1

U98Nexxim15

WiMax Receiver• I-Q Mixer

– Dual, resistively-loaded Gilbert Cell cores– Folded RF feeds

Page 28: WiMax MIMO Circuit and System Design

0

LPF_Vtun

AVDD

BBIp

BBIn

IOutp

IOutn

VDDVtunOutp

Outn

Inp

InnGND

U155LPF10

VDD

Vctrl

p

Vctrl

n

Vin

Vinn Voutn

Vout

GN

Ddu

mp

GND

I350u

U156

Stg20

V1560 V1563 V1564 V1565 V1566 V1567

VDD

GND

Iinp

VoutnIinn

Voutp

I300uI500u_tia

PD

U163

OpStg14Inp

Inn

VDD

GND

Outp

Outn

I250u

PD

U154HPF18

VDD

Vctrl

pVc

trln

Vin

Vinn Ioutn

GN

Ddu

mp

GND

Ioutp

CM

ref

I350uI50u_cm

U161

Stg21

Bias

Inp

Inn

VDD

Outn

Outp

U158

HPF19

I50u_cm1I350u_stg2i

WiMax Receiver• Baseband Filter & AGC

– Buffered active (gm-C)/passive bandpass– Integrated Automatic Gain Control.

VDD

Vct

rlpVc

trln

Vin Vinn

Ioutn

GNDdump GNDdump

GND

Ioutp

CMref

I350u

I50u_cm

n_12_rf

nf=16

lf=0.2uwf=7.2u

M=2wt=115.2u

n_12_rf

nf=16

lf=0.2uwf=7.2u

M=2wt=115.2u

p_12_rf

nf=12

lf=0.15uwf=9.6u

M=1wt=115.2u

p_12_rf

nf=12

lf=0.15uwf=9.6u

M=1wt=115.2u

p_12_rf

nf=12

lf=0.15uwf=9.6u

M=7wt=115.2u

p_12_rf

nf=12

lf=0.15uwf=9.6u

M=7wt=115.2u

p_12_rf

nf=12

lf=0.3uwf=9.6u

M=14wt=115.2u

p_12_rf

nf=12

lf=0.3uwf=9.6u

M=14wt=115.2u

p_12_rf

nf=12

lf=0.2uwf=9.6u

M=10wt=115.2u

p_12_rf

nf=12

lf=0.2uwf=9.6u

M=10wt=115.2u

n_12_rf

nf=10

lf=0.2uwf=7.2u

M=2wt=72u

n_12_rf

nf=10

lf=0.2uwf=7.2u

M=2wt=72u

n_12_rf

nf=10

lf=0.2uwf=7.2u

M=1wt=72u

n_12_rf

nf=8

lf=0.2uwf=7.2u

M=2wt=57.6u

n_12_rf

nf=16

lf=0.3uwf=7.2u

M=4wt=115.2u

n_12_rf

nf=16

lf=0.3uwf=7.2u

M=4wt=115.2u

l=5.3uw=2um=20

rnhr_rfr_zbt_m=0.124k

Vsense

Vref

GND

Vout

VDD

I50u_s

U386

CMamp11

l=10uw=1um=1 rnhr_rf

r_zbt_m=10.089k

l=10uw=1um=1

rnhr_rfr_zbt_m=10.089k

l=10uw=1um=1

rnhr_rfr_zbt_m=10.089k

l=10uw=1um=1

rnhr_rfr_zbt_m=10.089k

Bias

BiasVfb Vfb

net_cmnet_cm

Page 29: WiMax MIMO Circuit and System Design

WiMax RX Linearity Metrics

• Compression– Single RF & LO to baseband

• Third Order Intercept– Two RF & Single LO– Swept & Spectral Response

Page 30: WiMax MIMO Circuit and System Design

Integration

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

BSRCRANDOM

IFFT

SPCYCLIC_PREFIX

SP Sx ( )fx

SP

I

Q

I

Q

RITOCR

I

CTORIR

I

IFFT

CYCLIC_PREFIX

SP

Null_Remover1

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

SP SP

SP

SP SPSP

Pilot_Null_Insertion2

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti EncoderPreamble

Preamble_Insertion1

T/R SwitchPowerAmp

T/R Switch

LNA

Baseband Transmitter

Baseband Receiver

RF Transmitter

RF Receiver

Channel

h11h21h12h22

Preamble_Removal1

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

SP

OFDM_Tx

OFDM_Rx

SP

SP

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

Sx ( )fx

CircuitCircuit

PhysicalPhysicalBehavioralBehavioral

Page 31: WiMax MIMO Circuit and System Design

Complete WiMax System• Baseband Tx/Rx

– QAM, STC Encoder/Decoder, OFDM

• RF Tx/Rx– Quadrature Mixing, Amplification, Filtering

• Channel– SISO & MIMO, Link, Noise

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

FL=2.3GHzFU=2.7GHz

0.5

BSRCRANDOM

IFFT

SP

CYCLIC_PREFIX

SP Sx ( )fx

SP

I

Q

I

Q

RITOCR

I

CTORIR

I

IFFT

CYCLIC_PREFIX

SP

Null_Remover1

CYCLIC_REMOVE

CYCLIC_REMOVE

FFT

FFT

SP SP

SP

SP SPSP

Pilot_Null_Insertion2

[s2 s1]

[-s2* s1]

[s1* s2]

Alamouti EncoderPreamble

Preamble_Insertion1

T/R SwitchPowerAmp

T/R Switch

LNA

Baseband Transmitter

Baseband Receiver

RF Transmitter

RF Receiver

Channel

h11h21h12h22

Preamble_Removal1

r1

r2

[~s2 ~s1]

Alamouti Decoder

h11h21h12h22

SP

OFDM_Tx

OFDM_Rx

SP

SP

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHz

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

45-45

Fcarrier=2.5GHz

Fcutoff=10MHzAGC_Gain=100

Sx ( )fx

BehavioralBehavioral

Circuit + BehavioralCircuit + Behavioral

PhysicalPhysical

Page 32: WiMax MIMO Circuit and System Design

Complete WiMax System• Behavioral and Physical

– SISO vs MIMO (Diversity gain)– EVM Distortion

• Circuit and Physical– Nonlinear interactions– Loading effects

• Behavioral, Physical and Circuit– BER distortion– Multipath degradation

Page 33: WiMax MIMO Circuit and System Design

Conclusion• WiMax System Modeling

– HFSS dynamic link for Channel– Nexxim for NL circuit impact– Unique Integration of Physical, Circuit & Behavioral

• HFSS, Nexxim & Designer together help you pave the way for:

First Pass System SuccessFirst Pass System Success

Page 34: WiMax MIMO Circuit and System Design

References• [1] IEEE Std 802.16-14 Air Interface for Fixed Broadband Wireless Access

Systems• [2] IEEE Std 802.16e-2005 Air Interface for Fixed Broadband Wireless

Access Systems• [3] Mobile WiMax – Part I: A Technical Overview and Performance

Evaluation– WiMax Forum

• [4]MIMO System Technology for Wireless Communications– By George Tsoulos

• [5] Digital Communications by Bernard Sklar• [6] OFDM for Wireless Multimedia Communications

– by Richard van Nee and Ramjee Prasad, Artech House Publishers• [7] The suitability of OFDM as a modulation technique for wireless

telecommunications, with a CDMA comparison– by Eric Lawrey, October 1997

• [8] Modeling an Advance Communication System based on OFDM– By Eldon Staggs, September 2000