24
W.S. Graves DESY-Zeuthen 8/2003 1 Study for an xray Study for an xray laser at MIT Bates laser at MIT Bates Laboratory Laboratory William S. Graves MIT-Bates Presented at ICFA S2E workshop DESY-Zeuthen August, 2003 mitbates.mit.edu/xfel contains text of proposal to NSF

W.S. Graves DESY-Zeuthen 8/20031 Study for an xray laser at MIT Bates Laboratory William S. Graves MIT-Bates Presented at ICFA S2E workshop DESY-Zeuthen

Embed Size (px)

Citation preview

W.S. Graves DESY-Zeuthen 8/2003

1

Study for an xray Study for an xray

laser at MIT Bates laser at MIT Bates

LaboratoryLaboratoryWilliam S. Graves

MIT-Bates

Presented at ICFA S2E workshopDESY-Zeuthen

August, 2003

mitbates.mit.edu/xfel contains text of proposal to

NSF

W.S. Graves DESY-Zeuthen 8/2003

2

Design TeamDesign Team

Principal Investigator

David E. Moncton

Science Accelerator

James Fujimoto Franz X. Kaertner Manouchehr Farkhondeh

Hermann Haus Richard Milner William M. Fawley

Erich Ippen Simon Mochrie William S. Graves

Ian McNulty Keith A. Nelson Christoph Tschalaer

Denis B. McWhan Gregory Petsko Jan Van der Laan

Jianwei Miao Dagmar Ringe Fuhua Wang

Michael Pellin Andrei Tokmakoff Abbi Zolfaghari

Marc Schattenburg

Townsend Zwart

W.S. Graves DESY-Zeuthen 8/2003

3

IntroductionIntroductionMIT is proposing a study to NSF to design an x-ray laser user

facility. Proposal submitted in April, 2003.

It is based on a free electron laser driven by a high repetition rate

superconducting RF linac of about 4 GeV energy reaching

wavelengths of 3 angstroms.

FELs have recently demonstrated most of the important

technologies.

•Superconducting linac at the DESY Tesla Test Facility FEL has

saturated output at 90 nm with high repetition rate.

•BNL has demonstrated fully coherent seeded FEL and

harmonic generation in the IR and UV.

•LEUTL FEL at ANL first to demonstrate good agreement with

physics models, saturating in the visible and UV, and

successful use of long segmented undulators.

W.S. Graves DESY-Zeuthen 8/2003

4

Study ProposalStudy Proposal

•3 year study leading into to construction of a multi-beamline user

facility

•5 beamlines already proposed + 4 additional concepts

•Study will fund groups to design 10 beamlines. User program

committee (A. Bienenstock, chair) met in July to discuss user program

and beamline solicitation process.

•Scientific workshop planning underway.

•Accelerator advisory committee to meet in September to review

initial concept.

•Develop laser, accelerator, and beamline designs to level of

Conceptual Design Report in first half of study, detailed design and

prototype R&D in second half.

•Significant education and project management initiatives in

proposal.

W.S. Graves DESY-Zeuthen 8/2003

5

• Plan 10 (of a possible 30) beamlines in construction project

• “Principal users” will lead beamline development

• Peer Review process will select Principal Users

• Plan to integrate Principal Users in project team

• Include initial (10) beamline costs in project budget

• Include beamline operations in facility operating budget

• Question #1: What is “the deal” for Principal Users?

• Question #2: What is the selection process?

User programUser program

W.S. Graves DESY-Zeuthen 8/2003

6

• MIT has embraced the x-ray laser concept for the future of Bates Laboratory

• The existing 80-acre parcel of land and its existing infrastructure will be made available

• MIT will fund a series of early scientific workshops across the relevant fields

• MIT will empanel and support distinguished advisory committees to guide the science, and technology, as well as user program development and project management

• MIT is committing funds to hire additional project staff in the immediate future in technology areas such as x-ray optics/beamline design

• MIT Center for Materials Science and Engineering (Physics Dept) provides administration

MIT CommitmentMIT Commitment

W.S. Graves DESY-Zeuthen 8/2003

7

Facility conceptFacility concept

•Laser output from FEL is closely coupled with seed and

pump/probe lasers.

•Use mature technologies: TESLA SRF linac, long segmented

undulators, seeded and SASE operation.

•Three undulator halls: UV, nanometer, and x-ray.

•Three ebeam energies: 1, 2, and 4 GeV to drive the respective

halls.

•3-7 undulator beamlines per hall: total beamlines 10-20.

•Accelerator repetition rate 10 – 20 kHz: ~1 kHz per beamline to

match conventional lasers.

•Low average current (~1 A) with high average flux.

•Preserve future upgrade to 1 angstrom with improvements in

accelerator and undulator technology.

W.S. Graves DESY-Zeuthen 8/2003

8

MIT-Bates LaboratoryMIT-Bates Laboratory

W.S. Graves DESY-Zeuthen 8/2003

9

Facility conceptFacility concept

0.3 nm 0.1 nm

UV Hall X-ray Hall

Nanometer Hall

SC Linac4 GeV2 GeV1 GeV

1 nm

0.3 nm

100 nm

30 nm

10 nm

10 nm

3 nm

1 nm

Master oscillator

Pump laser

Pump laser

Seed laser

Seed laser

Seed laser

Pump laser

Fiber link synchronization

Injector laser

Undulators

Undulators

Undulators

Future upgrade to 0.1 nm at 8 GeV

SC Linac

Use of multiple injectors

and/or low energy linacs

is under consideration

500 m

W.S. Graves DESY-Zeuthen 8/2003

10

1

10

100

1000

0 5 10 15 20

Electron Energy (GeV)

Sa

tura

tio

n L

en

gth

(m

)

2X M

$

3X M

$

4X M

$

5X M

$100 nm

Electron Bunch ParametersQ = 0.5 nC ΔE/E = 0.02% T = 250 fsε = 1.5 μm

Hybrid Undulator ParametersVISA: λ = 18 mm, K=1.4, B=0.8 T23mm: λ = 23 mm, K=2.4, B=1.1 TLCLS: λ = 30 mm, K=3.9, B=1.4 T

10 nm

1 nm

0.3 nm

0.1 nm

Better Gunε = 0.75 μmSuperconducting Undulator

λ = 14 mm K = 1.3

Superconducting Undulator “Miracle Gun”ε = 0.1 μm

W.S. Graves DESY-Zeuthen 8/2003

11

Electron beam performanceElectron beam performance

0.2 0.4 0.6 0.8 1 1.2 1.41

1.5

2

2.5

3

Pea

k cu

rren

t (kA

)

40 50

60 70 80 90 100

110

120

0.2 0.4 0.6 0.8 1 1.2 1.41

1.5

2

2.5

3

Norm. emittance (um)

Pea

k cu

rren

t (kA

)

40 50

60 70 80 90 100

110

120

0.2 0.4 0.6 0.8 1 1.2 1.4

1

1.5

2

2.5

3

3.5

4

4.5

5

dE/E

(x1

.0e -4

)

40 50 60 70 80 90 100110

120

0.2 0.4 0.6 0.8 1 1.2 1.4

1

1.5

2

2.5

3

3.5

4

4.5

5

0.2 0.4 0.6 0.8 1 1.2 1.4

1

1.5

2

2.5

3

3.5

4

4.5

5

Norm. emittance (m)dE

/E (

.01%

)

40 50 60 70 80 90

100110

120

FEL performance estimates using M. Xie’s parameterization.

Note sensitivity to emittance regardless of peak current and energy

spread.

Contour lines are SASE saturation lengths at 0.3 nm

wavelength.

W.S. Graves DESY-Zeuthen 8/2003

12

InjectorInjector•RF multicell photoinjector with independent phase control for velocity

bunching.

•Probably copper…alternatives will be studied. Work with J. Corlett group at

LBL.Cathode Cs2Te

Rep rate ~10 kHz

Pulse length 20 ps with pulse shaping

Charge 0.2 – 1.0 nC

-10 -5 0 5 100

0.2

0.4

0.6

0.8

1

Time (ps)

Inte

nsity

(A.U

.)

-10 -5 0 5 100

0.2

0.4

0.6

0.8

1

Time (ps)

Inte

nsity

(A.U

.)

Desire performance that

is insensitive to vagaries

of space charge effects.

Input profile for

parmela

simulations

W.S. Graves DESY-Zeuthen 8/2003

13

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 100

2

4

6

8

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 100.5

1

1.5

2

Time (ps)

dE(k

eV)

7.5

7.6

7.7

7.8

7.9

8

0 500 1000 1500

Ene

rgy

(MeV

)

Counts

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

Time (ps)

dE(k

eV)

-10 -5 0 5 100

10

20

30

40

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000 4000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

8

10

Time (ps)

dE(k

eV)

-10 -5 0 5 100

20

40

60

80

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

0.1 nC 0.5 nC 1 nC

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 100

2

4

6

8

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 100.5

1

1.5

2

Time (ps)

dE(k

eV)

7.5

7.6

7.7

7.8

7.9

8

0 500 1000 1500

Ene

rgy

(MeV

)

Counts

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

Time (ps)

dE(k

eV)

-10 -5 0 5 100

10

20

30

40

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000 4000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

8

10

Time (ps)

dE(k

eV)

-10 -5 0 5 100

20

40

60

80

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 100

2

4

6

8

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 100.5

1

1.5

2

Time (ps)

dE(k

eV)

7.5

7.6

7.7

7.8

7.9

8

0 500 1000 1500

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 100

2

4

6

8

Time (ps)

Cur

rent

(A

)-10 -5 0 5 10

0

2

4

6

8

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 100.5

1

1.5

2

Time (ps)

dE(k

eV)

-10 -5 0 5 100.5

1

1.5

2

Time (ps)

dE(k

eV)

7.5

7.6

7.7

7.8

7.9

8

0 500 1000 1500

Ene

rgy

(MeV

)

Counts

7.5

7.6

7.7

7.8

7.9

8

0 500 1000 1500

Ene

rgy

(MeV

)

Counts

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

Time (ps)

dE(k

eV)

-10 -5 0 5 100

10

20

30

40

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000

Ene

rgy

(MeV

)

Counts

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

Time (ps)

dE(k

eV)

-10 -5 0 5 100

2

4

6

Time (ps)

dE(k

eV)

-10 -5 0 5 100

10

20

30

40

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 100

10

20

30

40

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000 4000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

8

10

Time (ps)

dE(k

eV)

-10 -5 0 5 100

20

40

60

80

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000 4000

Ene

rgy

(MeV

)

Counts

7.5

7.6

7.7

7.8

7.9

8

0 1000 2000 3000 4000

Ene

rgy

(MeV

)

Counts

-10 -5 0 5 100

2

4

6

8

10

Time (ps)

dE(k

eV)

-10 -5 0 5 100

2

4

6

8

10

Time (ps)

dE(k

eV)

-10 -5 0 5 100

20

40

60

80

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 100

20

40

60

80

Time (ps)

Cur

rent

(A

)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

-10 -5 0 5 107.5

7.6

7.7

7.8

7.9

8

Time (ps)

K.E

. (M

eV)

0.1 nC 0.5 nC 1 nC

Mean energy

Current profile

RMS energy spread

Energy projection

Parmela longitudinal

W.S. Graves DESY-Zeuthen 8/2003

14

-10 -5 0 5 100

10

20

30

40

50

Time (ps)

beta

X(m

)

-10 -5 0 5 100

10

20

30

40

50

Time (ps)

beta

X(m

)

-10 -5 0 5 10-15

-10

-5

0

Time (ps)

alph

aX

-10 -5 0 5 10-15

-10

-5

0

Time (ps)

alph

aX

-10 -5 0 5 100.2

0.3

0.4

0.5

Time (ps)

Em

itnx

(um

)

-10 -5 0 5 100.2

0.3

0.4

0.5

Time (ps)

Em

itnx

(um

)

-10 -5 0 5 100

20

40

60

80

100

Time (ps)

beta

X(m

)

-10 -5 0 5 100

20

40

60

80

100

Time (ps)

beta

X(m

)

-10 -5 0 5 10-40

-30

-20

-10

0

Time (ps)al

phaX

-10 -5 0 5 10-40

-30

-20

-10

0

Time (ps)al

phaX

-10 -5 0 5 100.2

0.3

0.4

0.5

Time (ps)

Em

itnx

(um

)

-10 -5 0 5 100.2

0.3

0.4

0.5

Time (ps)

Em

itnx

(um

)

-10 -5 0 5 100

50

100

150

Time (ps)

beta

X(m

)

-10 -5 0 5 100

50

100

150

Time (ps)

beta

X(m

)

-10 -5 0 5 10-50

-40

-30

-20

-10

0

Time (ps)

alph

aX

-10 -5 0 5 10-50

-40

-30

-20

-10

0

Time (ps)

alph

aX

-10 -5 0 5 100.2

0.3

0.4

0.5

Time (ps)

Em

itnx

(um

)

-10 -5 0 5 100.2

0.3

0.4

0.5

Time (ps)

Em

itnx

(um

)

0.1 nC 0.5 nC 1 nC

Time (ps) Time (ps)Time (ps)

0.48 μmxn 1.69 μmxn 1.93 μmxn

Note change

in slice

emittance

0.3 m

thermal

emittanceSee P. Emma

method to

correct twist

in phase

space.

Parmela

transverse

W.S. Graves DESY-Zeuthen 8/2003

15

LinacLinac

•TESLA-type SRF linac.

•Prefer CW for stability and timing flexibility, but cost is issue.

•Two chicanes for bunch compression, limit total R56 and other

bends for precise timing control and small CSR effects.

•Fast ebeam switches to select beamlines at kHz rate, could

be ferrite or RF deflectors.

W.S. Graves DESY-Zeuthen 8/2003

16

Cascaded HGHGCascaded HGHG

Input

seed 0

1st stage 2nd stage 3rd stage

Output at 50

seeds 2nd stage

Output at

250 seeds 3rd

stage

Final

output at

1250

•Number of stages and harmonics to be optimized during study.

•Simulations of cascade with GINGER now underway. See FEL

2003.

•Seed longer wavelength (100 – 10 nm) beamlines with ~200 nm

harmonic from synchronized Ti:Sapp laser.

•Seed shorter wavelength (10 – 0.3 nm) beamlines with ~10 nm

HHG pulses as well as 200 nm.

W.S. Graves DESY-Zeuthen 8/2003

17

• 3 x 1011 photons/pulse at 1 kHz = 3 x 1014 ph/sec• Bandwidth seeding: 100 fs = 36meV (l = 0.1nm) 1013 ph/sec at 1 meV resolution• Bandwidth seeding: 1 ps = 3.6 meV 1014 ph/sec at 1 meV

Note: in Phase 1, with 0.1nm radiation provided in 3rd harmonic, intensities would be down by a factor of 100.

Bandwidth seedingBandwidth seeding

W.S. Graves DESY-Zeuthen 8/2003

18

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

0.5

1

1.5

2

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

1

2

3

4

5

6

7

8

Time (fs)

Pow

er (

GW

)

0 10 20 30 40 500

1

2

3

4

5

6

7

8

Time (fs)

Pow

er (

GW

)

0.2995 0.3 0.3005 0.3010

200

400

600

800

1000

Wavelength (nm)

Pow

er (

kW/b

in)

0.2995 0.3 0.3005 0.3010

200

400

600

800

1000

Wavelength (nm)

Pow

er (

kW/b

in)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

MW

/bin

)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

MW

/bin

)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

kW/b

in)

0.2995 0.3 0.3005 0.3010

100

200

300

400

500

Wavelength (nm)

Pow

er (

kW/b

in)

Seeded and SASE comparisonSeeded and SASE comparison

Seeded and SASE time profiles and spectra.

Different schemes require different undulator

length.

W.S. Graves DESY-Zeuthen 8/2003

19

High Harmonic Generation for seedingHigh Harmonic Generation for seeding

Courtesy of M. Murnane and H. Kapteyn, JILA

HHG is method of generating short EUV pulses by focusing

ultrashort conventional laser pulse in gas jet.

Output pulse energy of few nJ in ~1 fs at 30 nm.

F. Kaertner (MIT) leads our effort.

W.S. Graves DESY-Zeuthen 8/2003

20

HHG spectra for 3 different

periodicities of modulated

waveguides.Courtesy of M. Murnane and H. Kapteyn, JILA

•HHG has produced wavelengths

from 50 nm to few angstroms,

but power is very low for

wavelengths shorter than ~10

nm.

•Best power at 30 nm.

•Improvements likely to yield 10

nJ at 5 nm.

•Rapidly developing technology.

W.S. Graves DESY-Zeuthen 8/2003

21

Femtosecond synchronizationFemtosecond synchronization

•Goal is to synchronize multiple lasers and electron beam to level of 10 fs.

•MIT has locked multiple independent lasers together with sub-fs accuracy

using optical heterodyne detector (balanced cross correlator).

•Optical clock signals delivered over several hundred meter fiberoptic have

been stabilized at ~10 fs level using active monitoring and control of fiber

length.

W.S. Graves DESY-Zeuthen 8/2003

22

W.S. Graves DESY-Zeuthen 8/2003

23

Experimental result: Residual timing-jitter

The residual out-of-loop timing-jitter measured from 10mHz to 2.3 MHz is 300 as (a tenth of an optical cycle)

Long Term Drift Free

1.0

0.8

0.6

0.4

0.2

0.0Cro

ss-C

orre

lati

on A

mpl

itud

e

-100 0 100

Time [fs]

100806040200Time [s]

Timing jitter 0.30 fs (2.3MHz BW)

W.S. Graves DESY-Zeuthen 8/2003

24

•Several technologies have reached sufficient maturity to enable design

of an x-ray laser user facility.

•Superconducting linac with photocathode gun allows high repetition

rate beamlines.

•Users expected to be integral part of design team. The performance of

all the facility’s lasers is critical.

•Much of the study activity will be addressed to endstation/beamline

design. Experiments will be part of integral to the construction proposal.

•Stability in energy and timing is critical to success.