Z-Latent Heat Storage for Process Heat Applications.pdf

Embed Size (px)

Citation preview

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    1/22

    Folie 1 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Latent Heat Storage for Process Heat Applications

    J ochen BuschleDLR German Aerospace CenterInstitute of Technical Thermodynamics Stuttgart

    Co-Authors: Wolf-Dieter Steinmann, Rainer Tamme

    The Tenth International Conference on Thermal Energy Storage,Atlantic City, 31. May 2. June 2006

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    2/22

    Folie 2 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Content

    Presentation is presenting first results obtained in the national projectPROSPER dealing with industrial process steam storage.Possible contribution of Germany to planed new Annex 19.

    Project partners are XELLA AG and SGL Technologies GmbHDuration 07/2004 06/2007

    The project is funded by the Federal Ministry of Economy (BMWi) under

    the contract FKZ 032736017

    Latent heat steamstorage in process heat applications

    Comparsion macro-encapsulation and external arrangement

    Simulation results

    Concepts to increase the power density of the storage

    Conclusion

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    3/22

    Folie 3 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Gas concrete manufacturing process

    Hardening of gas concrete (steamatmosphere; max 13 bar)

    Batch process, 2 cycles per day

    155 kg steamat 13 bar for 1 m gas concrete = 100 kWhth

    Xella Porenbeton GmbH (300.000 m/a corresponds to 30 GWhth/a)

    weighing and mixing

    hardeningcuttingbulking0

    4

    8

    12

    pressure[bar]

    0 1 2 3 4 5 6 7 8 9 10

    time [h]

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    4/22

    Folie 4 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    varying-pressure accumulator - Ruths storage

    Charging pipe

    Discharging pipe

    Water feed pipe

    Steam

    Water

    Pressure vessel

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    5/22

    Folie 5 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Process description - State of the art

    varying-pressure accumulators

    2 Ruths steamaccumulators

    70% of the required steamper cycle

    is produced in the boiler

    live steam;

    70%

    overflow;10%

    Ruths-lowpressure;

    15%

    Ruths-high pressure; 5%

    boiler autoclave 5-8 bar3-5 bar

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    6/22

    Folie 6 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Potential for introducing latent heat steam storage

    Isothermal steamaccumulators withPhase Change Material (PCM)

    2 PCM enhanced steamaccumulators

    (Tm = 152C and 171C)40% of the required steam per cycle isproduced in the boiler

    live steam; 40%

    overflow; 10%

    Latent-high pressure;

    25%

    Latent-lowpressure; 25%

    Latent heatstorage

    Latent heatstorage

    8 barboiler autoclave 5 bar

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    7/22

    Folie 7 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Macro encapsulation

    PCM Gas

    Stiff encapsulation required

    Definition of minimal gas volume inside capsules

    Compensationof volume variation PCM

    Avoidance of significantpressure variations

    Gas volume requires about 20% of theinternal volume of the capsules

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    8/22

    Folie 8 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    External arrangement of PCM

    PCM

    Additional required:

    Headers for the tube register

    Unpressurised containment forthe PCM

    Pump for circulation required

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    9/22

    Folie 9 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Comparison macro encapsulation and external

    arrangement

    PCM steam

    Boundary conditionstemperature step: 10 Kelvin

    pipe diameter: 40 mm

    heat transfer coefficient to the steam: neglected

    thermal conductivity PCM: 0.5 W/mK

    density PCM: 2000 kg/m

    same amountof PCM

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    10/22

    Folie 10 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Macro encapsulation vs. external arrangement

    40

    60

    80

    100

    solidifiedPC

    Mm

    ass[%]

    External arrangement

    Macro encapsulation20

    0

    0 500 1000 1500 2000 2500 3000 3500

    time [s]

    External arrangementshows higher power level assuming the sameamountof pipe material

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    11/22

    Folie 11 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Macro encapsulation vs. external arrangement

    Outside pressure load demands higher wall thickness than inside

    pressure load due to buckling

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    2 6 10 14 18 22 26 30

    pressure [bar]

    wallt

    hick

    ness[mm]

    externally arranged PCM

    encapsulated PCM

    External arrangement

    Macro encapsulation

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    12/22

    Folie 12 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Comparison steam accumulator concepts

    varying-pressure

    accumulator

    Macro-encapsulated

    PCM

    externally arranged

    PCM

    pressure vessel:

    diameter: 1m; height: 3m; volume: 2.36 m; water level: 80%

    PCM enhancement:

    diameter tube: 4 cm; mass PCM: 1250 kg; thermal conductivity: 0,5 W/(m K)

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    13/22

    Folie 13 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Simulation modell

    ramp

    I

    Pump 1

    true -1000Po...

    5050

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    14/22

    Folie 14 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Results simulation

    1000 2000 3000 4000 5000

    0

    20

    40

    60

    80

    100

    1000 2000 3000 4000 5000

    0

    1428

    42

    56

    kW

    time [s]

    time [s]

    Power

    Provided heat

    kWh

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    15/22

    Folie 15 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Required thermal conductivity

    0

    200

    400

    600

    800

    1000

    1200

    0 5 10 15 20 25 30

    k [W/mK]

    time[sec.]

    h = 100000 W/(mK)

    h = 10000 W/(mK)

    h = 1000 W/(mK)

    thermal conductivity above 5 W / (m K) is advantageous

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    16/22

    Folie 16 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Basic concepts to increase the power density of

    thermal energy storage tested at DLR

    Increase of the effectivethermal heat conductivity

    Increase of the heat transfer area

    PCM - Composite Integretion of fins

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    17/22

    Folie 17 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    PCM Composite

    Solution: Compression of Saltand expanded graphite

    Advantages expanded graphite:

    Hight thermal conductivity

    Corrosion resistance

    material canbe machined

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    18/22

    Folie 18 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Integration of Fins

    Solution: Foils made of expandedgraphite

    Advantages graphite foils:

    Hight thermal conductivity(approx. 150 W/mK)

    Corrosion resistance

    Arrangement of foils verticalto the axis of the heattransfer pipes is optimal

    with respectto theanisotropic heatconductivity of expandedgraphite

    PCMPCM PCM

    PCMPCM PCM

    Graphite-foil

    PCM

    Steam pipe

    10 mm

    0,5 mm

    Graphite-foil

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    19/22

    Folie 19 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Lab scale experiments at DLR

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    20/22

    Folie 20 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Conclusion

    Isothermal energy storage is importantespecially for steamprocesses

    External arrangementof PCM is advantageousThermal conductivity of 5 W / (m K) is required

    Future work:

    Lab scale experiment for validationof models

    System simulation of gas concret production process with latent heatsteamaccumulator

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    21/22

    Folie 21 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Thank You

    for Your Attention

  • 7/30/2019 Z-Latent Heat Storage for Process Heat Applications.pdf

    22/22

    Folie 22 >Latent Heat Storage for Process Heat Applications >J ochen Buschle

    Latent heat steam accumulator