41
Zheng-Yu Weng IAS, Tsinghua University Hefei, USTC ICTS --- 2013.11.29 Mott physics, sign structure, and high-temperature superconductivity

Zheng -Yu Weng IAS, Tsinghua University

  • Upload
    khalil

  • View
    115

  • Download
    0

Embed Size (px)

DESCRIPTION

Mott physics, sign structure, and high-temperature superconductivity. Zheng -Yu Weng IAS, Tsinghua University. Hefei, USTC ICTS --- 2013.11.29. Outline . Introduction to basic experimental phenomenology of high - T c cuprates - PowerPoint PPT Presentation

Citation preview

Page 1: Zheng -Yu Weng IAS, Tsinghua University

Zheng-Yu Weng

IAS, Tsinghua University

Hefei, USTC ICTS --- 2013.11.29

Mott physics, sign structure, and high-temperature superconductivity

Page 2: Zheng -Yu Weng IAS, Tsinghua University

Outline

• Introduction to basic experimental phenomenology of high-Tc cuprates

• High-Tc cuprates as doped Mott insulators /doped antiferromagnets

• Basic principles: Mott physics and sign structure

• Nontrivial examples: (1) one-hole case (2) finite doping and global phase diagram (3) ground state wavefunction

• Summary and conclusion

Page 3: Zheng -Yu Weng IAS, Tsinghua University

High-Tc superconductors

Page 4: Zheng -Yu Weng IAS, Tsinghua University

heavy fermion organic metal

cuprates iron pnictides

CDW

Are the cuprates any special besides high Tc?

Page 5: Zheng -Yu Weng IAS, Tsinghua University
Page 6: Zheng -Yu Weng IAS, Tsinghua University
Page 7: Zheng -Yu Weng IAS, Tsinghua University

charge localization

Page 8: Zheng -Yu Weng IAS, Tsinghua University

,kkZ

Pauli susceptibility

Korringa behavior

Landau paradigm

ARPES

Sommerfeld constantFermi degenerate temperature

/F F BT E k

Fermi sea

F

typical Fermi liquid behavior:FTT

TTconstTC

s

v

1/1.

KeVEF 000,101~

Fermi surface of copper

Page 9: Zheng -Yu Weng IAS, Tsinghua University

La2-xSrxCuO4 Spin susceptibility (T. Nakano, et al. (1994))

Specific heat (Loram et al. 2001)

NMR spin-lattice relaxation rate (T. Imai et al. (1993))

Pauli susceptibility

Korringa behavior

Sommerfeld constant

Fermi liquid behavior:

TTconstTC

s

v

1/1.

Page 10: Zheng -Yu Weng IAS, Tsinghua University

d-wave superconducting order

T

T0

0AFM

~ J/kB

strong SC fluctuations

strong AF correlations

Cuprate phase diagram

T*TN

Tv

Tc

QCP xFL?

Strange metal: maximal scattering

Page 11: Zheng -Yu Weng IAS, Tsinghua University

Mott insulator doped Mott insulator

Heisenberg model t-J model

FF

F

F

Anderson, Science 1987

Cuprates = doped Mott Insulator

one-band large-U Hubbard model

Page 12: Zheng -Yu Weng IAS, Tsinghua University

Anderson’s RVB theory

RVBˆ BCSGP

i

iiG nnP 1ˆGutzwiller projection

Half-filling:Mott-RVB insulator

doping:Superconductor

Science, 235, 1196 (1987)

d-wave and pseudogap:

Zhang, Gross, Rice, Shiba (1988)Kotliar, Liu (1988) ……

Anderson, et al., J. Phys.: Condens. Mater (2004)

Review:

Page 13: Zheng -Yu Weng IAS, Tsinghua University

Understanding of Mott physics

Page 14: Zheng -Yu Weng IAS, Tsinghua University

Statistical sign structure for Fermion systems

Fermion signs

Landau Fermi Liquid

Page 15: Zheng -Yu Weng IAS, Tsinghua University

( 1 ) Fermi liquid: Fermion signs

( 2 ) Bose condensation:

Off Diagonal Long Rang Order (ODLRO) compensating the Fermion signs Cooper pairing in SC state CDW (“exciton” condensation) SDW (weak coupling) normal state: Fermi liquid

Antiferromagnetic order (strong coupling)

Complete disappearance of Fermion signs!

Page 16: Zheng -Yu Weng IAS, Tsinghua University

hopping superexchange

A minimal model for doped Mott insulators: t-J model

1

iicc

Page 17: Zheng -Yu Weng IAS, Tsinghua University

Phase string effect

D.N. Sheng, Y.C. Chen, ZYW, PRL (1996) ; K. Wu, ZYW, J, Zaanen, PRB (2008)

Single-hole doped Heiserberg model:

+ -

Page 18: Zheng -Yu Weng IAS, Tsinghua University

C. N. Yang (1974) , Wu and Yang (1975)

A

BNonintegrable phase factor:

Emergent gauge force in doped Mott insulators!

“An intrinsic and complete description of electromagnetism”“Gauge symmetry dictates the form of the fundamental forces in nature”

Mutual Chern-Simons gauge theory ZYW et al (1997) (1998)

Kou, Qi, ZYW PRB (2005); Ye, Tian, Qi, ZYW, PRL (2011); Nucl. Phys. B (2012)

Page 19: Zheng -Yu Weng IAS, Tsinghua University

at arbitrary doping, dimensions, temperature

Wu, Weng, Zaanen, PRB (2008)

= total steps of hole hoppings

)(CM = total number of spin exchange processes

)(CMh

)(CMQ = total number of opposite spin encounters

Exact sign structure of the t-J model

Page 20: Zheng -Yu Weng IAS, Tsinghua University

+

-

+

+-

+

+ +

+

+

+

+

++-

- -

--

--

--

-+

For a given path c:

(-) (-)3

K. Wu, ZYW, J. Zaanen, PRB (2008)

Page 21: Zheng -Yu Weng IAS, Tsinghua University

σ

Removing the phase string: σt-J model

no phase string effect!

Page 22: Zheng -Yu Weng IAS, Tsinghua University

• Mott physics = phase string sign structure replacing the Fermion signs

• Strong correlations = charge and spin are long-range entangled

• Sign structure + restricted Hilbert space = unique fractionalization

New guiding principles:

“smooth” paths good for mean-field treatment

singular quantum phase interference

Page 23: Zheng -Yu Weng IAS, Tsinghua University

Consequences of the sign structure

Page 24: Zheng -Yu Weng IAS, Tsinghua University

T

T0

δAF SC FL ?

pseudogap

AF = long-range RVB

localization

“strange metal”

Global phase diagram

Page 25: Zheng -Yu Weng IAS, Tsinghua University

DMRG numerical study

t-J ladder systems

Z. Zhu, H-C Jiang, Y. Qi, C.S. Tian, ZYW, Scientific Report 3, 2586 (2013 );Z. Zhu, et al. (2013); ……

Page 26: Zheng -Yu Weng IAS, Tsinghua University

Effect of phase string effect

σ

no phase string effect

Self-localization of the hole!

Page 27: Zheng -Yu Weng IAS, Tsinghua University

Momentum distribution

without phase string effect

Quasiparticle picture restored!

Page 28: Zheng -Yu Weng IAS, Tsinghua University

t’

t

localization-delocalization transition

Page 29: Zheng -Yu Weng IAS, Tsinghua University

T

T0

δAF SC FL

pseudogap

AF = long-range RVB

localization

“strange metal”

Global phase diagram

AF spin liquiddoping

SC localization

Page 30: Zheng -Yu Weng IAS, Tsinghua University

Delocalization and superconductivity

-

-+

+

-

-

-

+ +

+

+

-

+

-

-

-

+

+

-

-

-

+ +

+

-

-

+

localization/AFLRO delocalization/spin liquid

AF spin liquiddoping

SC localization

Page 31: Zheng -Yu Weng IAS, Tsinghua University

-

-

+

+

-

-

-

+ +

+

-

-

+

Non-BCS elementary excitation in SC state

-

-

+

+

-

-

+

+-

-

+

-

-

+

+ -+-

-

+

+

-

Superconducting transition

spin-roton

spinon-vortex

spinon confinement-deconfinement transition

Tc formula Mei and ZYW (2010)

Page 32: Zheng -Yu Weng IAS, Tsinghua University

Spin-rotons

J.W. Mei & ZYW, PRB (2010)

neutron

Raman A1g

164 K

Page 33: Zheng -Yu Weng IAS, Tsinghua University

T

T0

δAF SC FL

pseudogap

AF = long-range RVB

localization

“strange metal”

Global phase diagram

charge-spin long-range entanglement by phase string effect

Page 34: Zheng -Yu Weng IAS, Tsinghua University
Page 35: Zheng -Yu Weng IAS, Tsinghua University

T

T0

xAF SC non-FL

pseudogap

strange metal

(Curie-Weiss metal) uniform susceptibility

resistivity

T0

bosonic RVB

0

Page 36: Zheng -Yu Weng IAS, Tsinghua University

Example III : “Parent” ground state

1 2( , ,..., )

| |h d

h

h d

l jh h N

hd l j

z zl l l

z z

jdlh iu

ZYW, New J. Phys. (2011)

1 2( , ,..., ) constanthh Nl l l

short-ranged

Page 37: Zheng -Yu Weng IAS, Tsinghua University

T

T0

δAF SC FL*

pseudogap

AF = long-range RVB

localization

“strange metal”

Global phase diagram

charge-spin long-range entanglement by phase string effect

1 2( , ,..., )

| |h d

h

h d

l jh h N

hd l j

z zl l l

z z

Page 38: Zheng -Yu Weng IAS, Tsinghua University

• Cuprates are doped Mott insulators with strong Coulomb interaction

• New organizing principles of Mott physics: An altered fermion sign structure due to large-U

• Consequences:

(1) Intrinsic charge localization in a lightly doped antiferromagnet (2) Charge delocalization (superconductivity) arises by destroying the AFLRO (3) Localization-delocalization is the underlying driving force for the T=0 phase diagram of the underdoped cuprates

(4) Non-BCS-like ground state wavefunction

Summary

Page 39: Zheng -Yu Weng IAS, Tsinghua University

Thank you For your attention!

Page 40: Zheng -Yu Weng IAS, Tsinghua University

Example III : “Parent” ground state

1 2( , ,..., )

| |h d

h

h d

l jh h N

hd l j

z zl l l

z z

jdlh iu

1 2( , ,..., ) constanthh Nl l l

Superconducting state:

emergent (ghost) spin liquid

AFM state:

ZYW, New J. Phys. (2011)

short-ranged

Page 41: Zheng -Yu Weng IAS, Tsinghua University

Electron fractionalization form