33
ZTE Corporation 3GPP Specification Evolution

ZTE Corporation 3GPP Specification Evolution. 1 Standard organization TD-SCDMA Evolution 3GPP Long Term Evolution Contents

  • View
    247

  • Download
    0

Embed Size (px)

Citation preview

ZTE Corporation

3GPP Specification Evolution

2

Standard organization

TD-SCDMA Evolution

3GPP Long Term Evolution

Contents

3

3G Standard organizations

http:// www.ccsa.org.cn http:// www.3gpp.orgGeneral Assembly

Council

Network and Switching Technical Committee (TC3)

Transport and Access NetworkTechnical Committee (TC6)

IP and Multimedia Technical Committee (TC1)

Network ManagementTechnical Committee (TC7)

Communication Power SupplyTechnical Committee (TC4)

Network and Information SecurityTechnical Committee (TC8)

Sub Committee

Secretariat

General Office

Technology Department

Planning and Development Department

Standardization-Promoting Department

External Committee Department

Advisory Committee

Wireless CommunicationTechnical Committee (TC5)

Mobile Internet Protocol Special Group (TC2)

4

Standard organization

TD-SCDMA Evolution

3GPP Long Term Evolution

Contents

5

TD-SCDMA Evolution Path 3GPP

LCR TDD( R4)

LCR TDD( R5)

LCR TDD(R6)

CCSA

Multi-carrier

TD-SCDMA Stage I

( R4 2003/03)

N Frequency Bands Cell

TD-SCDMAStage II( R5) TD-SOFDMA

MC-CDMA TDD

TD-SCDMAStage III

( R6/R7)

Current status Short Term Evolution Long Term Evolution

OFDMA TDD

SC-FDMA /OFDMA TDD

LTE TDD

LCR TDD(R7)

2005 2007

6

Industry Standards issued by CCSA

一、《 2GHz TD-SCDMA 数字蜂窝移动通信网 无线接入网络设备技术要求 》 YD/T 1365-2006 二、《 2GHz TD-SCDMA 数字蜂窝移动通信网 无线接入网络设备测试方法 》 YD/T 1366-2006 三、《 2GHz TD-SCDMA 数字蜂窝移动通信网 终端设备技术要求 》 YD/T 1367-2006 四、《 2GHz TD-SCDMA 数字蜂窝移动通信网 终端设备测试方法 第一部分:基本功能、业务和性能测试》 YD/T 1368.1-2006 五、《 2GHz TD-SCDMA 数字蜂窝移动通信网 终端设备测试方法 第二部分:网络兼容性测试》 YD/T 1368.2-2006 六、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第一部分:总则 》 YD/T 1369.1-2006 七、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第二部分:层一 》 YD/T 1369.2-2006 八、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第三部分:信令传输 》 YD/T 1369.3-2006 九、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第四部分: NBAP 信令 》 YD/T 1369.4-2006 十、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第五部分:公共传输信道数据流的数据传输和传输信令》 YD/T 1369.5-2006 十一、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第六部分:公共传输信道数据流的用户平面协议 》 YD/T 1369.6-2006 十二、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第七部分:专用传输信道数据流的数据传输和传输信令》 YD/T 1369.7-2006

十三、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口技术要求 第八部分:专用传输信道数据流的用户平面协议 》 YD/T 1369.8-2006 十四、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Iub 接口测试方法 》 YD/T 1370-2006 十五、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口物理层技术要求 第一部分:总则 》 YD/T 1371.1-2006 十六、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口物理层技术要求 第二部分:物理信道和传输信道到物理信道的映射》 YD/T 1371.2-2006

十七、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口物理层技术要求 第三部分:复用和信道编码 》 YD/T 1371.3-2006 十八、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口物理层技术要求 第四部分:扩频和调制 》 YD/T 1371.4-2006 十九、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口物理层技术要求 第五部分:物理层过程 》 YD/T 1371.5-2006 二十、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口物理层技术要求 第六部分:物理层测量 》 YD/T 1371.6-2006 二十一、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口层 2 技术要求 第一部分: MAC 协议 》 YD/T 1372.1-2006 二十二、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口层 2 技术要求 第二部分: RLC 协议 》 YD/T 1372.2-2006 二十三、《 2GHz TD-SCDMA 数字蜂窝移动通信网 Uu 接口 RRC 层技术要求 》 YD/T 1373-2006

CCSA TD-SCDMA Standard’s present status

7

TD-SCDMA Short-term Evolution —— N-Frequency Cell Solution

Overcome the following problems in multiple-cell solution for improving capacity in TD-SCDMA: – The difficulties in cell search

– The complexity in UE measurements

– The problem in handover

– System inefficiency

Implementation of N-frequency cell– Multiple frequency bands are configured in one cell

– A master frequency band is configured

– DwPTS and P-CCPCH are only configured for master band

8

N-frequency cell + HSDPA Multi-carrier HSDPA

HSDPA

N-frequency cell– Multiple frequency bands are configured for one logical cell

– Facilitate to multiple frequency bands combining for HSDPA

Multi-carrier HSDPA is a combination of N-frequency cell and HSDPA– Higher peak data rate ( N*2.8Mb/s )– More suitable for packet services

TD-SCDMA Short Term Evolution —— MC-HSDPA

9

TD-SCDMA Short Term Evolution —— MC-HSDPA

10

HARQ Process(1~8)

.

.

.

Carrier #1 Physical

Layer

HARQ Process(1~8)

.

.

.

HARQ Process(1~8)

.

.

.

Carrier #2 Physical

Layer

Carrier #3 Physical

Layer

Channel Coding Channel Coding Channel Coding

3GPP HSDPA channel coding

3GPP HSDPA channel coding

3GPP HSDPA channel coding

Carrier #1 Carrier #2 Carrier #3

HS-DSCHHS-SCCH HS-SICH

Priority Queue Distribution Priority Queue Distribution

Priority Queue

Priority Queue

Priority Queue

Priority Queue

Scheduling/Priority Handling

MAC-hs

HARQ Entity

MAC-d flows

HS-DSCHHS-SCCH HS-SICH HS-DSCHHS-SCCH HS-SICH

Multi-Carrier HSDPA Architecture

TD-SCDMA Short Term Evolution —— MC-HSDPA

11

Principles on multi-carrier HSDPA Standardization

Air interface shall keep compatible with N-frequency cell solution in CCSA TD-SCDMA stage I;

– Physical layer: channel structure of HS-SCCH and HS-SICH is same to that for single-carrier HSDPA system ;

– MAC layer: segmentation/combining.

– UE Capability: adding UE multi-carrier HSDPA capability indicator in corresponding field.

The multi-carrier HSDPA is based on 3GPP R5 HSDPA, but the changes are limited to the minimum.

TD-SCDMA Short Term Evolution —— MC-HSDPA

12

TD-SCDMA Short Term Evolution —— MBMS

TDD MBMS Technology

MBMS( Multimedia Broadcast and Multicast Services) is an unidirectional point to multipoint bearer service in which data is transmitted from a single source entity to multiple recipients.

MBMS is basically a new broadcast and multicast radio bearer technology; it can provide high speed downlink, non-voice services for multiple users simultaneously and regardless of user location and radio conditions in full area coverage.

13

Traditional non–MBMS results in radio resource bottlenecks by point-to-point transmission method

MBMS removes radio resource bottlenecks by point-to-multipoint transmission method

MBMS can efficiently utilize radio resource at air interface

MBMS can perform lower prices due to the saving in network resources

TD-SCDMA Short Term Evolution —— MBMS

14

TDD MBMS architecture

MBMS architecture comprises four blocks: User Equipment (UE), UTRAN (UMTS Terrestrial Radio Access Network, Core Network (including GGSN and SGSN) and new blocks- Broadcast Multicast - Service Centre (BM-SC)

MBMS architecture enables the efficient usage of radio-network and core-network resources, with an emphasis on radio interface efficiency

TD-SCDMA Short Term Evolution —— MBMS

15

TDD MBMS channels

– MICH (MBMS notification Indicator Channel)– MCCH (MBMS point-to-multipoint Control Channel– MTCH (MBMS point-to-multipoint Traffic Channel)– MSCH (MBMS point-to-multipoint Scheduling Channel)

TD-SCDMA Short Term Evolution —— MBMS

16

MBMS Feature over TDD Technology

-Simulcast Combining with timeslot reused

TD-SCDMA can use selective combing and soft coming, and it can also use simulcast combining through timeslot reused technology on its special frame structure

The complexity of UE will be increased due to combining of multiple radio links simultaneously in UE. But, in TD-SCDMA, it can be avoided by combining macro-diversity with timeslot reused

Timeslot reused can increase further throughput gains on the basis of selective combining and soft combining

TD-SCDMA Short Term Evolution —— MBMS

17

Service requirement

HSUPA TDDFaster

retransmission

Efficient scheduling

Higher Modulation

Higher Date rate in uplink Higher network efficiency Higher spectra efficiencyLower latency

FTP upload,Multimedia, Video- clips,email, telematicsGaming,video streaming

TD-SCDMA Short-term Evolution —— HSUPA

System requirement

18

TD-SCDMA HSUPA key technology - Efficient Scheduling

TD-SCDMA Short-term Evolution —— HSUPA

19

TD-SCDMA HSUPA key technology - Efficient Scheduling

With Node B-based Packet Scheduling, two main improves:– Cell throughput is increased by means of faster adaption to

interference variation and finer control of the total received uplink power.

– User performance is improved by means of more frequently reallocation of radio resource to NRT users

TD-SCDMA Short-term Evolution —— HSUPA

20

TD-SCDMA HSUPA key technology - Faster retransmission

80ms

TD-SCDMA Short-term Evolution —— HSUPA

21

TD-SCDMA HSUPA key technology - Faster retransmission

Faster retransmission– Reaches maximum achievable cell throughput by means of

faster retransmission of erroneously received data frame to reduce the number of RLC retransmission, since physical channel can be operated with higher BLER for same overall performance under this condition, which results to an increase in spectra efficiency.

TD-SCDMA Short-term Evolution —— HSUPA

22

TD-SCDMA HSUPA key technology - Higher order modulation

• Higher order modulation improve spectrum efficiency in good propagation condition.

Qk

Ik

Qk

Ik

QPSK

8PSK

16QAM

TD-SCDMA Short-term Evolution —— HSUPA

23

TD-SCDMA HSUPA’s latest progress In March, 2006, at the TSG RAN meeting #31, a new work item proposal (“Proposed Work Item on 1.28 Mcps TDD Enhanced Uplink “) was approved. ZTE takes part in this WI with other companies.

The WI includes the following sub WIs: 1.28 Mcps TDD Enhanced Uplink: Physical Layer 1.28 Mcps TDD Enhanced Uplink: Layer 2 and 3 Protocol Aspects 1.28 Mcps TDD Enhanced Uplink: UTRAN Iub/Iur Protocol Aspects 1.28 Mcps TDD Enhanced Uplink: RF Radio Transmission/ Reception, System Performance Requirements and Conformance Testing

TD-SCDMA Short-term Evolution —— HSUPA

24

Standard organization

TD-SCDMA Evolution

3GPP Long Term Evolution

Contents

25

3GPP Long-term Evolution —— Target

Significantly increased peak data rate e.g. 100 Mbps (downlink) and 50 Mbps (uplink)

Increase “cell edge bitrate” whilst maintaining same site locations as deployed today

Significantly improved spectrum efficiency ( e.g. 2-4 x Rel6) Possibility for a Radio-access network latency (user-plane UE – RNC (or

corresponding node above Node B) - UE) below 10 ms Significantly reduced C-plane latency (e.g. including the possibility to

exchange user-plane data starting from camped-state with a transition time of less than 100 ms (excluding downlink paging delay))

Scaleable bandwidth 5, 10, 20 and possibly 15 MHz [1.25,] 2.5 MHz: to allow flexibility in narrow spectral allocations where

the system may be deployed Support for inter-working with existing 3G systems and non-3GPP specified

systems

26

3GPP Long-term Evolution —— Target

Further enhanced MBMS Reduced CAPEX and OPEX including backhaul Cost effective migration from Rel-6 UTRA radio interface and

architecture Reasonable system and terminal complexity, cost, and power

consumption. Support of further enhanced IMS and core network Backwards compatibility is highly desirable, but the trade off versus

performance and/or capability enhancements should be carefully considered.

Efficient support of the various types of services, especially from the PS domain (e.g. Voice over IP, Presence)

System should be optimized for low mobile speed but also support high mobile speed

Operation in paired and unpaired spectrum should not be precluded Possibility for simplified co-existence between operators in adjacent

bands as well as cross-border co-existence

27

Circuit

Circuit

Pa

cket

Pa

cket

Wirele

ss Access

Wirele

ss Access

Mo

bile

Netw

ork

Mo

bile

Netw

ork

Services Network

Transport, Switch and Access

SCPService management layer

App Server

Control layer

Switch layer

Access layer

Softswitch Softswitch

GERANGERANUMTSUMTS WLANWLAN

LTE

IP

EnterpriseASP

Horizontal Network

3GPP Long-term Evolution —— Network Architecture

28

3GPP Long-term Evolution —— Fundamental technology

OFDM ( Orthogonal Frequency Division Multiplexing ) 信道分成若干正交子信道,高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输,从而降低符号间干扰。

MIMO ( Multiple Input Multiple Output ) 利用多天线来抑制信道衰落,在不增加带宽和天线发送功率的情况下,提高信道容量及频谱利用率。

MC ( Multi-Carrier ) 通过多载波的捆绑,来提高信道的传输速率。

TS2

TS0

TS0

TS0

TS1

TS4

TS4

TS4

TS5

TS5

TS5

TS6

TS6

TS6

Carri er 1

Carri er 2

Carri er 3

Group 1

Carri er 10

Carri er 11

Carri er 12

Group 4

.

.

.

.

.

.

.

.

.

DwPTS GP UpPTS UpLi nkSl ot

DownLi nkSl ot

TS3

TS3

TS3

TS2

TS0

TS0

TS0

TS1

TS4

TS4

TS4

TS5

TS5

TS5

TS6

TS6

TS6

TS3

TS3

TS3

29

3GPP Long-term Evolution —— Development Status

The requirement of LTE (TR25.913) is approved at 3GPP TSG RAN #28 meeting in 2005.6

Now 3GPP TSG RAN is working on the TR25.912 (Feasibility Study for EUTRA and EUTRAN)

– WG1 : Physical layer aspects (TR25.814)

– WG2 : Radio interface protocol aspects (TR25.813)

– WG3 : Radio access architecture and interfaces (TR R3.018)

– WG4 : Radio performance and protocol aspects

30

3GPP Long-term Evolution —— Development Status

TR25.913 V7.2.0Requirements for EUTRA and UTRAN

TR25.912 V0.0.4 [RP-060168]Feasibility Study for EUTRA and EUTRAN

WG1 WG2

TR25.814 V1.2.0Physical layer aspects for EUTRA(RP-060201)Editor: NTT DoCoMo

TR25.813 V0.5.1EUTRA and EUTRAN Radio interface protocol aspects(RP-060176)Editor: Nokia, LG, NEC, Motorola, Samsung

WG3

TR R3.018 V0.2.0EUTRA and EUTRAN Radio Access Architecture and InterfacesEditor: Vodafone, Ericsson

WG4

SI TR: NTT DoCoMoBase Station: EricssonTerminal: MotorolaRRM: NokiaRF System Scenarios:

Siemens

WG specific TRs

Outcome

31

3GPP Long-term Evolution —— ZTE’s participation

ZTE begins to attend 3GPP LTE standard work from 2005.5

ZTE is covering WG1/WG2/WG3 now

ZTE had already submitted many contributions to 3GPP RAN WG1/WG2/WG3

ZTE is devoted to LTE key technology study

32

3GPP Long-term Evolution —— ZTE’s contribution

Frame structure and parameter adjustment– The proposal of CP length (R1-051358) is adopted in TR25.814

Power de-grating– The proposal of UL PAPR reduction (R1-051008) is adopted in TR25.814

Cell search Intra-Node B Synchronization and UL timing control Pilot design Scheduling Channel Multiplexing Link adaptation Random access Channel coding MIMO Macro diversity

Thank you !