Download pdf - 0502 flour moringa

Transcript
Page 1: 0502 flour moringa

Plantextractsaspotentialmosquitolarvicides

AnupamGhosh,NanditaChowdhury*&GoutamChandra*

Department of Zoology, Bankura Christian College, Bankura & *Mosquito & Microbiology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India

ReceivedApril13,2011

Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

Key wordsInsecticides-integratedmosquitomanagement-larvicides-LC50-plantextracts

581

Review Article

IndianJMedRes135,May2012,pp581-598

Introduction

Mosquitoes can transmit more diseases thanany other group of arthropods and affect million ofpeople throughout theworld.WHOhas declared themosquitoesas“publicenemynumberone”1.Mosquitobornediseasesareprevalentinmorethan100countriesacross the world, infecting over 700,000,000 peopleevery year globally and 40,000,000 of the Indianpopulation.They act as a vector formost of the lifethreateningdiseaseslikemalaria,yellowfever,denguefever, chikungunya ferver, filariasis, encephalitis,WestNile virus infection, etc., in almost all tropicalandsubtropicalcountriesandmanyotherpartsoftheworld.

To prevent proliferation of mosquito bornediseases and to improve quality of environment andpublichealth,mosquitocontrolisessential.Themajortool inmosquito control operation is the applicationof synthetic insecticides such as organochlorine andorganophosphate compounds. But this has not beenverysuccessfuldue tohuman, technical,operational,ecological, and economic factors. In recent years,use of many of the former synthetic insecticides inmosquito control programme has been limited. It isduetolackofnovelinsecticides,highcostofsyntheticinsecticides,concernforenvironmentalsustainability,harmfuleffectonhumanhealth,andothernon-targetpopulations,theirnonbiodegradablenature,higherrateof biological magnification through ecosystem, and

Page 2: 0502 flour moringa

increasing insecticide resistance on a global scale2,3.Thus, the Environmental ProtectionAct in 1969 hasframedanumberofrulesandregulationstochecktheapplicationofchemicalcontrolagentsinnature4.Ithaspromptedresearcherstolookforalternativeapproachesranging fromprovisionoforpromoting theadoptionof effective and transparent mosquito managementstrategies that focus on public education,monitoringand surveillance, source reduction and environmentfriendly least-toxic larvalcontrol.These factorshaveresulted in an urge to look for environment friendly,cost-effective, biodegradable and target specificinsecticides against mosquito species. Consideringthese, theapplicationof eco-friedlyalternatives suchasbiologicalcontrolofvectorshasbecomethecentralfocusofthecontrolprogrammmeinlieuofthechemicalinsecticides.

One of themost effective alternative approachesunder thebiologicalcontrolprogrammeis toexplorethe floral biodiversity and enter the field of usingsafer insecticidesofbotanicaloriginas a simpleandsustainablemethodofmosquitocontrol.Further,unlikeconventionalinsecticideswhicharebasedonasingleactive ingredient,plantderived insecticidescomprisebotanical blends of chemical compounds which actconcertedly on both behavourial and physiologicalprocesses. Thus there is very little chance of pestsdeveloping resistance to such substances. Identifyingbio-insecticides that are efficient, as well as beingsuitable and adaptive to ecological conditions, isimperative for continued effective vector controlmanagement.Botanicalshavewidespreadinsecticidalpropertiesandwillobviouslyworkasanewweaponin the arsenal of synthetic insecticides and in futuremayactassuitablealternativeproducttofightagainstmosquitobornediseases.

Roark5 described approximately 1,200 plantspecies having potential insecticidal value, whileSukumaret al6listedanddiscussed344plantspeciesthat only exhibitedmosquitocidal activity.Shallanet alin20057reviewedthecurrentstateofknowledgeonlarvicidal plant species, extraction processes, growthandreproductioninhibitingphytochemicals,botanicalovicides, synergistic, additive and antagonistic jointaction effects of mixtures, residual capacity, effectson non-target organisms, resistance and screeningmethodologies, and discussed some promisingadvances made in phytochemical research. Table Isummarized the mosquitocidal activities of variousherbalproductsfromediblecrops,ornamentalplants,

trees,shrubs,herbs,grassesandmarineplantsaccordingtotheexactionproceduredevelopedinelevendifferentsolvent systems and the nature of mosquitocidalactivitiesagainstdifferentlifestagesofdifferentvectorspeciesasareadyreferenceforfurtherstudies.

Phytochemicals

Phytochemicalsarebotanicalswhicharenaturallyoccurring insecticidesobtained fromfloral resources.Applications of phytochemicals in mosquito controlwere in use since the 1920s8, but the discovery ofsynthetic insecticides such as DDT in 1939 sidetrackedtheapplicationofphytochemicalsinmosquitocontrol programme. After facing several problemsdue to injudicious and over application of syntheticinsecticides in nature, re-focus on phytochemicalsthat are easily biodegradable and have no ill-effectsonnon-targetorganismswasappreciated.Sincethen,thesearchfornewbioactivecompoundsfromtheplantkingdomand an effort to determine its structure andcommercialproductionhasbeen initiated.Atpresentphytochemicals make upto 1 per cent of world’spesticidemarket9.

Botanicalsarebasicallysecondarymetabolitesthatserveasameansofdefencemechanismoftheplantsto withstand the continuous selection pressure fromherbivore predators and other environmental factors.Several groups of phytochemicals such as alkaloids,steroids,terpenoids,essentialoilsandphenolicsfromdifferent plants have been reported previously fortheir insecticidal activities7. Insecticidal effects ofplantextractsvarynotonlyaccordingtoplantspecies,mosquitospecies,geographicalvaritiesandpartsused,but also due to extractionmethodology adopted andthepolarityof thesolventsusedduringextraction.Awideselectionofplantsfromherbs,shrubsandlargetrees was used for extraction of mosquito toxins.Phytochemicalswereextractedeitherfromthewholebody of little herbs or fromvarious parts like fruits,leaves, stems, barks, roots, etc., of larger plants ortrees.Inallcaseswherethemosttoxicsubstanceswereconcentratedupon, foundandextracted formosquitocontrol.

Plants produce numerous chemicals, many ofwhichhavemedicinalandpesticidalproperties.Morethan2000plantspecieshavebeenknowntoproducechemical factors and metabolites of value in pestcontrol programmes.Members of the plant families-Solanaceae, Asteraceae, Cladophoraceae, Labiatae,Miliaceae, Oocystaceae and Rutaceae have various

582 INDIANJMEDRES,May 2012

Page 3: 0502 flour moringa

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 583

Table I (A).Efficacyofbotanicalextractsincontrolling/reducingthepopulationofvectormosquitoesPlantspecies Family Plant

partsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Petroleum ether solvent extractArtemisia annua

Asteraceae Leaf Anopheles stephensi

LC50valuewas16.85ppmafter24hand11.45ppmafter48hofexposure

Sharma et al (2006)12

Acacia nilotica

Fabaceae Leaf LC50valuewas55.72ppmandLC90valuewas194.58ppm

Saktivadivel&Daniel(2008)13Argemone mexicana Papaveraceae Leaf,

seedLC50valuewas30.47and24.17;LC90 valueswere246.33and184.99ppmforleavesandseedsrespectively

Jatrophacurcas

Euphorbiaceae Leaf LC50valuewas62.29andLC90valuewas454.18ppm

Withania somnifera Solanaceae Leaf LC50valuewas65.08andLC90valuewas266.39ppm

Citrullus colocynthis Cucurbitaceae Leaf LC50valueswere37.70andLC90valuewas52.62ppm

Aloe barbadensi

Liliaceae Leaf LC50valueswere29.06and22.59ppmfor24and48h

Mauryaet al (2007)14

Cannabissativa

Moraceae Leaf LC50valueswere376.58and1316.09ppmfor24and48h

Eucalyptus globulus Myrtaceae Seed,leaf

Culex pipiens Boththeextractsatadoseof1000ppmcaused100and80%mortalitytothetestedlarvae

Sheerenet al (2006)15

Solanum xanthocarpum

Solanaceae Root Cx. pipiens pallens

LC50andLC90valueswere41.28and111.16ppmafter24hand38.48and80.83ppmafter48h,respectively

Mohan et al (2006)16

Thymus capitatus Lamiaceae Leaf Cx. pipiens Thevolatileoil,Thymol,andtheunsaponifiableportionprovedhighlarvicidalpotency(LC50valuewas49.0ppm)

Mansouret al (2000)17

Citrus aurantium17 Rutaceae Fruitpeel Cx. quinquefasciatus

LC90valueswere53.80and32.52ppmafter24and48hoftreatment

Kassir(1989)18

Myrtus communis Myrtaceae FlowerandLeaf

Cx. pipiens molestus

LC50valuewas16mg/l.Thymol,carvacrol,(1R)-(+)--pineneand(1S)-(-)--pinenewerethemosteffectivetoxiccompoundswithLC50valuesof36-49mg/l

Traboulsiet al (2002)19

Origanum syriacum Lamiaceae Leaf LC50valuewas36mg/lat24hofexposure

Mentha microcorphylla

Anacardiaceae Leaf LC50valuewas39mg/l at24hofexposure

Pistacia lentiscus Anacardiaceae Leaf LC50valuewas70mg/lat24hofexposure

Lavandula stoechas Lamiaceae Leaf LC50valuewas89mg/lat24hofexposure

Jatrophacurcas

Euphorbiaceae Leaf Cx. quinquefasciatus

LC50valuewas11.34andLC90valuewas46.52ppm

Rahumanet al (2007)20

Contd....

Pedilanthus tithymaloides

LC50valuewas76.61andLC90valuewas307.07ppm

Phyllanthus amarus LC50valuewas113.40andLC90valuewas465.28ppm

Page 4: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Argemone mexicana Papaveraceae Leaf Cx. quinquefasciatus

Causes100%mortalityat250ppmofeachextracts

Karmeganet al(1996)21

Jatropha curcus Euphorbiaceae Leaf

Pergularia extensa Asclepiadaceae Leaf

Withaniasomnifera

Solanaceae Leaf

Piper nigrum Piperaceae Seed Cx. pipiens LC50valuewas2.6mg/l Shaalan et al (2005)7

Euphorbia hirta Euphorbiaceae Stembark

Cx. quinquefasciatus

LC50valuewas424.94andLC90valuewas1314.01ppm

Rahuman et al(2007)22

E. tirucalli Euphorbiaceae Stembark

LC50valuewas5.52andLC90valuewas25.67ppm

Ocimum basilicum Lamiaceae Leaf An. stephensi and Cx. quinquefasciatus

LC50valueof8.29and87.68ppmrespectively

Mauryaet al (2009)23

Hexane solvent extractMomordica charantia Cucurbitaceae Fruit An. stephensi LC50valuewas0.50andLC90valuewas

1.54%concentrationoftheextractSinghet al (2006)24

Cx.quinquefasciatus

LC50valuewas1.29andLC90valuewas4.11%concentrationoftheextract

Ae. aegypti LC50valuewas1.45andLC90valuewas4.46%concentrationoftheextract

Kaempferia galanga Zingiberaceae Rhizome Cx.quinquefasciatus

LC50valuewas42.33ppm Choochote et al(1999)25

Khaya senegalensis Meliaceae Leaf Cx.annulirostris

LC50valuewas5.86mg/l Shaalan et al (2005)7

Daucus carota

Apiaceae Leaves LC50valuewas77.19mg/l

Curcuma aromatica Zingiberaceae Rhizome Ae.aegypti

LC50valuewas36.30ppm Choochate et al(2005)26

Cybistax antisyphilitica

Bignoniaceae Stemwood

Ae. aegypti

Anaturalquinoneidentifiedas2-hydroxy-3-(3-methyl-2-butenyl)-1.4-naphthoquinone(lapachol)wasquitepotentwithLC50value26.3μg/ml

Rodrigues et al(2005)27

Eucalyptus citriodora Myrtaceae Leaf An. stephensi, Cx.quinquefasciatus, Ae. aegypti

TheLC50valuesagainstIVthinstarlarvaeofthreespecieswere69.86,81.12&91.76ppm,respectivelyafter24hand26.7,29.9&38.8ppm,respectivelyafter72h

Singhet al (2007)28

Solanum nigrum Solanaceae Driedfruit An. Culicifacies, An. stephensi, Cx.quinquefasciatus, Ae. aegypti

TheLC50valuesagainstIVthinstarlarvaeoffourspecieswere9.04,6.25,12.25and17.63ppmrespectively

Raghavendraet al(2009)29

Contd....

584 INDIANJMEDRES,May 2012

Page 5: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Acetone solvent extract

Tridax procumbens Compositae Leaf An. subpictus LC50valueof39.98mg/l Kamarajet al (2011)30

Ageratum conyzoides Asteraceae Leaf Cx. quinquefasciatus

Potentlarvicidalactivitywasnoticed Saxenaet al (1992)31Cleome icosandra Capparaceae Leaf

Tridax procumbens Compositae LeafAgeratina adenophora Asteraceae Twigs Ae. aegypti and

Cx. quinquefasciatus

At24h,LC50valueoftheextractwasfoundtobe356.70ppmforAe. aegyptiand227.20ppmforCx. quinquefasciatus

RajMohan&Ramaswamy(2007)32

Feronialimonia

Rutaceae Leaf Cx. quinquefasciatus, An. stephensi,Ae. aegypti

LC50valuesof129.24,79.58and57.23ppmforthreemosquitospeciesrespectively

Rahumanet al (2000)33

Millingtonia hortensis Bignoniaceae Leaf An. stephensi, Ae. aegypti and Cx. quinquefasciatus

LC50valuesof104.70,138and83.18ppmfor2ndinstarlarvaeofthreespecies at24hofbioassay

Kaushik&Saini(2008)34

O. sanctum labiate Leaf Ae. aegypti, Cx. quinquefasciatus

TheLC50valuesofO. sanctumagainstthelarvaeofAe. aegyptiwas425.94,andagainstthelarvaeofCx. quinquefasciatus was592.60ppm

Anees(2008)35

Carbon tetra chloride solvent extract

Aloe barbadensis Liliaceae Leaf An.stephensi

LC50valuesof15.58and8.04ppmafter 24and48hofexposure,respectively

Mauryaet al (2007)14

S. xanthocarpum Solanaceae Root Cx. pipienspallens

LC50andLC90valueswere64.99and252.43ppmand59.20and186.15ppmafter24and48hofexposure,respectively

Mohan et al (2006)16

E. globulus Myrtaceae Seedandleaf

Cx. pipiens Boththeextractsatadoseof1000ppmcaused100and80%mortalitytothetestedlarvae

Sheeren(2006)15

Chloroform extract

Plumbago zeylanica, P. dawei andP. stenophylla

Plumbaginaceae Root An. gambiae LC50valueswere4.1,6.4and6.7mg/mlrespectively.LC90valueswere10.6,26.2and15.6mg/ml,respectively

Maniafuet al (2009)36

Euphorbia tirucalli Euphorbiaceae Latexandstembark

Cx. pipiens pallens

LC50valuewas200.76andLC90valuewas343.515mg/l

Yadavet al (2002)37

Nyctanthes arbortristis

Nyctantheceae Flower Cx. quinquefasciatus

LC50valueswere25.67,22.19;38.60,28.95;53.14,42.14and72.60,61.82ppmandfortheisolatedcompoundNCS-2were73.31,65.48;83.02,67.02;97.26,81.84and14.68,99.02ppmfor1st,2nd,3rdand4th instarlarvae,respectivelyat24and48hpost-exposure

Khatuneet al (2001)38

Contd....

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 585

Page 6: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Citrus sinensis Rutaceae Fruitpeel An. subpictus LC50valuewas58.25andLC90valuewas298.31ppm

Bagavanet al (2009)39

Aloe ngongensis Asphodelaceae Leaf An. gambie LC50valuewas58.25mg/ml Matasyohet al (2008)40

Millettia dura Leguminosae Seed Ae. aegypti Rotenoids,deguelinandtephrosin,isolatedfromtheseedsofthisplantshowedpotentactivities,withLC50valuesof1.6and1.4µg/mlat24h,respectively

Yenesewet al (2003)41

Cassia obtusifolia Leguminosae Seed Ae.aegypti,Ae. togoi,andCx. pipiens pallens

Showedastronglarvicidalactivityof100%mortalityat25mg/l.Thebiologicallyactivecomponentwasemodin.TheLC50valuesofemodinwere1.4,1.9,and2.2ppmrespectively

Yanget al (2003)42

Methanol extract

Atlantia monophylla Rutaceae Leaf An. stephensi LC50valueof0.05mg/l.InsectgrowthregulatingactivitywithEI50value0.065mg/l

Sivagnaname&Kalyanasundaram(2004)43

Dysoxylum malabaricum

Meliaceae Leaf An.stephensi

4%concentrationofleafextractkilledmorethan97%offirstinstars,92%offifthinstars,93%ofpupaeand91%ofadults

SenthilNathanet al(2006)44

Melia azedarach

Meliaceae Leafandseeds

An.stephensi

Theextractshowedstronglarvicidalactivity

SenthilNathanet al(2006)45

Moringa oleifera Moringaceae Bark Cx. gelidus LC50valuewas38.47µg/ml Kamaraj&Rahuman(2010)46

Ocimum gratissimum Lamiaceae Leaf Cx. gelidus LC50valuewas21.83µg/ml Kamaraj&Rahuman(2010)62

Solenostemma argel Apocynaceae Aerialparts

Cx. pipens LC50values of0.037,0.031,0.009and0.007ppmandtheLC95valueswerefoundas0.394,0.293,0.065and0.030ppm,after1,2,4and7daysagainstthelarvaofCx. pipiensunderlaboratoryconditions

Al-Doghairi et al(2004)47

S. xanthocarpum Solanaceae Root Cx.pipiens pallens

LC50andLC90were248.55and578.25ppmand215.52and562.72ppmafter24and 48hofexposure,respectively

Mohan et al (2006)16

Chrysanthemum indicum

Asteraceae Leaf Cx. tritaeniorhynchus

LC50valuewas42.29mg/mlafter24h Kamarajet al (2010)48

Contd....

586 INDIANJMEDRES,May 2012

Page 7: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Azadirachta indica Meliaceae Leaf Cx. pipens ShowedanacuteandchronicLC50and95%CLat824and265ppm

ElHaget al (1999)65

Rhazyastricta

Apocynaceae Leaf Acute(2d)andchronic(10d)toxiceffects,havinganLC50and95%CLat251and140ppm

Momordica charantia Cucurbitaceae Leaf Cx. quinquefasciatus

LC50valuewas465.85;LC90valuewas2421.46ppm

Prabakar&Jebanesan(2004)49

Trichosanthes anguina LC50valuewas567.81;LC90valuewas2915.48ppm

Luffa acutangula LC50valuewas839.81;LC90valuewas3286.25ppm

Benincasa cerifera LC50valuewas1189.30;LC90valuewas6528.5ppm

Citrullus vulgaris LC50valuewas1636.04;LC90valuewas11473.92ppm

Vitex negundo Verbenaceae Leaf Cx.quinquefasciatus

LC50valuewas212.57ppm Krishnanet al (2007)50

V. trifolia LC50valuewas41.41ppm

V. peduncularis LC50valuewas76.28ppm

V. altissima LC50valuewas128.04ppm

Centella asiatica Umbelliferae Leaf Cx.quinquefasciatus

LC50rangedbetween6.84ppmat19°Cand1.12ppmat31°C.LC90variedfrom9.12to3.63ppmatthetwotemperatures,respectively

Rajkumar&Jebanesan(2005)51

Euphorbia tirucalli Euphorbiaceae Latexandstembark

Cx.pipiens pallens

LC50valuewas177.14;LC90valuewas513.387mg/l

Yadavet al (2002)37

Eucalyptus globulus Myrtaceae Seedandleaf

Cx.pipiens

Atadoseof1000ppmcaused100%mortalityofthetestedlarvae

Sheeren(2006)15

Atlantia monophylla Rutaceae Leaf Cx. quinquefasciatus

LarvaewerefoundsusceptiblewithLC50 valueof0.14mg/l

Sivagnaname&Kalyanasundaram(2004)43

Pavonia zeylanica Malvaceae Leaf Cx. quinquefasciatus

After24hoftreatmenttheLC50valueswas2214.7ppm

Vahithaet al (2002)52

Acacia ferruginea Leguminosae Leaf Cx.quinquefasciatus

After24hoftreatmenttheLC50valuewas5362.6ppm

Coccinia indica, Cucumus sativus, Momordica charantia

Cucurbitaceae Leaf Cx. quinquefasciatus and Ae. aegypti

LC50valuesoftherespectiveplantswere,377.69,623.80,207.61and309.46,492.73and199.14ppmagainstthetwovectorspecies

Rahuman&Venkatesan(2008)22

Cassia tora Caesulpinaceae Seed Ae. aegypti and Cx. pipiens pallens

LC50valuewas20mg/lforboththelarvalspecies

Janget al (2002)73

Contd....

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 587

Page 8: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Atlantia monophylla Rutaceae Leaf Ae.aegypti

LarvalgrowthregulatingactivityofthisextractwasfoundtobepronouncedwithEI50value0.002mg/l

Sivagnaname&Kalyanasundaram(2004)43

Coccinia indica, Cucumis sativus, Momordica charantia

Cucurbitaceae Leaf Ae.albopictus

LC50valuewas309.46,492.73and199.14ppmrespectively

Rahuman&Venkatesan(2008)22

Aristolochia saccata Aristolochiaceae Root LC50valuewas14.52;LC90valuewas42.68ppm

Daset al (2007)54

Annona squamosa Annonaceae Leaf LC50valuewas20.26;LC90valuewas86.59ppm

Gymnopetelum cochinchinensis

Cucurbitaceae Fruit/pericarp

LC50valuewas50.67;LC90valuewas155.12ppm

Caesalpineasp. Leguminosae Bark LC50valuewas53.66;LC90valuewas169.41ppm

Pipersp. Piperaceae Stem LC50valuewas144.22;LC90valuewas357.32ppm

Chamaecyparis obtusa

Cupressaceae Leaf An. stephensi Thebioactivecomponentintheleafextractwascharacterizedasbeta-thujaplicinbyspectroscopicanalyses.TheLC50valueofbeta-thujaplicinwas2.91ppm

Janget al (2005)55

Acalypha alnifolia Euphorbiaceae Leaf An. stephensi, Ae. aegypti and Cx. quinquefasciatus

LC50valueswere125.73,127.98and128.55ppmagainst4thinstarlarvaeofthreemosquitospeciesat24h

Kovendan et al(2012)56

Chloroform: methanol extract(1:1)

Solanum villosum Solanaceae Leaf An. subpictus LC5Ovaluesforallinstarswerebetween24.20and33.73ppmafter24handbetween23.47and30.63ppmafter48hofexposureperiod

Chowdhuryet al(2009)57

Cestrum diurnum SolanaceaeLeaf An. stephensi TheLC50valueoftheactiveingredientwasdeterminedas0.70,0.89,0.90and1.03mg/100mL,for1st,2nd,3rdand4thinstarlarvarespectivelyin24hstudyperiod

Ghosh&Chandra(2006)58

Cx. quinquefasciatus

LC50valueof0.29,0.35,0.57and0.65%for1st,2nd,3rdand4thinstarlarvaeat24h

Ghoshet al (2008)59

Solanum villosum Solanaceae Berry Ae. aegypti LC50valueof5.97ppmat72hofbioassay Chowdhury et al(2008)60

Ethanol Extract

Cassia obtusifolia Leguminosae Leaf An. stephensi LC50andLC90valueswere52.2and108.7mg/l

Rajkumar&Jebanesan(2009)61

Azadirachta indica Meliaceae Leaf Cx. fatigans Incomparisonwithmalathion(LC50valuewas0.45ppm)theLC50valueofneemfraction(NLX)wasfoundtobehighertothethirdinstarlarvaeat390ppm

Azmiet al (1998)62

Contd....

588 INDIANJMEDRES,May 2012

Page 9: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Piper retrofractum Piperaceae Unripeandripefruit

Cx. quinquefasciatus

Theripefruitextract(002/3)wassomewhatlessactivethanripefruitextract(001/4)withlesserlarvicidalactivity

Chansanget al (2005)63

Citrus reticulata Rutaceae Seed Cx. quinquefasciatus andAe. aegypti

LC50valueagainstAe. aegyptiandCx. quinquefasciatus larvaewas2,267.71,and2,639.27ppmrespectively

Sumroiphon et al(2006)64

Azadirechta indica Meliaceae Leaf Ae. aegypti LC50valueis8.32mg/ml Mgbemena(2010)65

Azadirechta indica, Ocimum gratissimium andCitrus citratus

Meliaceae,LamiaceaeandRutaceaerespectively

Leaf Ae. aegypti A. indica showingthegreatesttoxicityhavingLC50at8.32mg/ml,whileontheotherhandO. gratissimum andC. citratus hadLC5019.50mg/mland34.67mg/mlrespectively

Mgbemena(2010)65

Apium graveolens Umbelliferae Seed Ae. aegypti LD50andLD95valuesof81.0and176.8mg/l,respectivelyforfourthinstarlarvae

Choochate et al(2004)66

Rhizophora mucronata

Rhizophoraceae Bark,pith,stemwood

Ae. aegypti LC50valuesof157.4,168.3and1003.4ppmforbark,pithandstemwoodat48hrespectively

Kabaru&Gichia(2001)67

Piper longum

Piperaceae Fruitexocarp

Ae. aegypti LC50valueof2.23ppm Chaithong et al(2006)68

P. ribesoides Piperaceae Fruitexocarp

Ae. aegypti LC50value of8.13ppm

P. sarmentosum Piperaceae Fruitexocarp

Ae. aegypti LC50valueof4.06ppm

Annona crassiflora Annonaceae Rootwood Ae. aegypti LC50valuewas0.71;LC90

valuewas5.12µg/mlOmenaet al (2007)69

Rootbark LC50valuewas8.94;LC90

valuewas39.00µg/mlStem LC50valuewas16.1;LC90

valuewas54.8µg/mlA. glabra Annonaceae Seed LC50valuewas0.06;LC90valuewas2.75

µg/mlA. muricata Annonaceae Root LC50valuewas42.3;LC90valuewas200

µg/mlA. squamosa Annonaceae Root LC50valuewas31.9;LC90valuewas66.2

µg/mlLeaf LC50valuewas169;LC90valuewas748

µg/ml

Denis sp. Leguminoseae Root LC50valuewas8.54;LC90valuewas15.2µg/ml

Erythrina mulungu Leguminoseae Stembark LC50valuewas67.9;LC90valuewas15.2µg/ml

Pterodon polygalaeflorus

Leguminoseae Seed LC50valuewas35.7;LC90valuewas63.6µg/ml

Tagetes minuta Asteraceae Aerialparts

Ae.fluviatilis

LC90of1.5mg/landLC50of1.0mg/l. Macedoet al (1997)70

Contd....

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 589

Page 10: 0502 flour moringa

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Eclipta paniculata

Asteraceae Aerialparts

Ae.fluviatilis

LC90of17.2mg/landLC50of3.3mg/l

Benzene extract

Citrullus vulgaris Cucurbitaceae Leaf Ae.stephensi

100%mortalitywasexertedat250ppm andthecorrespondingLC50valuewas 18.56ppm

Mullaiet al (2008)71

Acalypha indica Euphorbiaceae Leaf An.stephensi

LC50valuewas19.25ppmat24h Govindarajanet al(2008)72

C. vulgaris Cucurbitaceae Leaf Ae. aegypti LC50valuewas42.76ppm Mullaiet al (2008)73

Ethyl acetate extract

Dysoxylum malabaricum

Meliaceae Leaf An.stephensi

Fourthinstarsweremoresusceptibletotheextractwhencomparedwithpupaeandadults

SenthilNathan et al(2008)74

D. beddomei

Aloe turkanensis Asphodelaceae Leaf An. gambiae 100%mortalitywasachievedataconcentrationof0.2mg/mlandithadaLC50valueof0.11mg/ml

Matasyohet al (2008)40

Solanum nigrum Solanaceae Leaf Cx. quinquefasciatus

LC50valuewas17.04ppmagainst4th instar larvaeafter24h

Rawaniet al (2010)75

Ocimum gratissimum Lamiaceae Leaf Cx. gelidus and Cx. quinquefasciatus

LC50valueswere39.31and66.28µg/mlagainst4thinstarlarvaeafter24h

Kamaraj&Rahuman(2010)48

Annona squamosa Annonaceae Bark Cx. quinquefasciatus andAn. stephensi

LC50valuesof28.18and43.07ppmagainstAn.stephensi andCx.quinquefasciatus respectively

Kamarajet al (2010)48

O. sanctum Labiates Leaf Ae. aegypti, Cx. quinquefasciatus

TheLC50valuesofO. sanctumagainstthelarvaeofAe. aegyptiwas425.94,andagainstthelarvaeofCx. quinquefasciatus was592.60ppm

Anees(2008)35

Aqueous extract

Carica papaya Caricaceae Seed Cx. quinquefasciatus

LC50value of0.15,0.11.0.07and0.20%against1st,2nd,3rdand4thinstarlarvae

Rawaniet al (2009)76

Murraya paniculata

Rutaceae Fruit LC50value of0.05,0.06,0.08and0.31%against1st,2nd,3rdand4thinstarlarvae

Cleistanthuscollinus

Euphorbiaceae Leaf LC50value of0.21,0.27,0.29and0.40%against1st,2nd,3rdand4thinstarlarvae

An. gambiae LC50valuewas409.77andLC90valuewas831.08ppm

Hemidesmus indicus

Asclepiadaceae Root Cx.quinquefasciatus

80%mortalitywas observedin5%concentrationafter1dayofexposure

Khanna&Kannabiran(2007)77

Gymnema sylvestre

Asclepiadaceae Leaf Cx. quinquefasciatus

6.6%mortalitywas observedin5%concentrationafter1dayofexposure

Eclipta prostrata

Asteraceae Leaf,root Cx.quinquefasciatus

78.3%mortalitywas observedin5%concentrationafter1dayofexposure Contd....

590 INDIANJMEDRES,May 2012

Page 11: 0502 flour moringa

typesoflarval,adulticidalorrepellentactivitiesagainstdifferentspeciesofmosquitoes7.

Application of phytochemicals as mosquito larvicide: An essential component of IMM

Humanbeingshaveusedplantparts,productsandsecondarymetabolites of plant origin in pest controlsince early historical times. Vector control has beenpracticed since the early 20th century. During thepre-DDTera, reductionof vectormosquitoesmainlydependedonenvironmentalmanagementofbreedinghabitats, i.e., source reduction. During that period,somebotanicalinsecticidesusedindifferentcountrieswere Chrysanthemum, Pyrethrum, Derris, Quassia,Nicotine, Hellebore, Anabasine, Azadirachtin,d-limonenecamphor,Turpentine,etc7.

From the early 1950s, DDT and other syntheticorganochlorideandorganophosphateinsecticideswereextensively used to interrupt transmission of vectorborne diseases by reducing densities, human-vector

Plantspecies Family Plantpartsused

Targetmosquitospecies

Lethalconcentrations/ biologicalactivity

References

Artimisia cina Compositeae Leaf Cx.pipens

TheEC50forthemosquitoat24haftertreatingwithextractwas4.0g/l

Aly& Bardan(1986)78

Cleome droserifolia

Capparidaceae Leaf Cx.pipens

TheEC50forthemosquitoat24haftertreatingwithextractwas4.7g/l

Piper retrofractum

Piperaceae Unripeandripefruit

Cx. quinquefasciatus andAe. aegypti

LC50valueof135against Cx. quinquefasciatus and79ppmagainstAe. aegypti

Chansanget al (2005)63

Solanum villosum

Solanaceae Leaf An. stephensi, Cx. quinquefasciatus andAe. aegypti

TheproteincompoundresponsibleformosquitocidalpropertywasisolatedwithaLC50valueof644.75,645.75and747.22ppm

Chowdhuryet al(2008)79

Solanum nigrum

Solanaceae Driedfruit An.culicifacies speciesA,An. culicifacies speciesC,An. stephensi,Cx. quinquefasciatus andAe.aegypti

TheLC50ofAn. culicifacies speciesAwasthelowestwhilethatofAe. aegypti washighestintheorder,An. culicifacies speciesA(208.5ppm)>An. stephensi (242.5ppm)>An. culicifacies speciesC(251.7ppm)>Cx. quinquefasciatus (337.2ppm)>Ae. aegypti (359ppm)

Raghavendraet al(2009)29

Steam distillation

Paullinia clavigera

Sapindaceae Leaf An.benarrochi

LC50(24h)valuewas0.81;LC50(12h)valuewas1.19%

Iannacone&Pérez(2004)80

Tradescintia zebrina

Commelinaceae An.benarrochi

LC50(24h)valuewas0.81;LC50(12h)valuewas7.83%

contact and, in particular, the longevity of vectormosquitoes.Inthemid-1970s,theresurgenceofvectorbornediseases,alongwithdevelopmentofinsecticideresistanceinvectorpopulation,poorhumanacceptanceofindoorhousesprayingandenvironmentalconcernsagainsttheuseofinsecticidesledtoarethinkinginvectorcontrol strategies10.As a result, emphasis was givenontheapplicationofalternativemethodsinmosquitocontrolaspartoftheIntegratedMosquitoManagement(IMM)11. Integrated Mosquito Management (IMM)is a decision-making process for themanagement ofmosquito populations, involving a combination ofmethods and strategies for long-term maintenanceof low levels of vectors. The purpose of IMM is toprotect public health from diseases transmitted bymosquitoes, maintain healthy environment throughproperuseanddisposalofpesticidesandimprovetheoverall quality of life throughpractical and effectivepestcontrolstrategies.ThemainapproachesofIMMinclude:(i)Sourcereductionandhabitatmanagement

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 591

Page 12: 0502 flour moringa

sp20,Curcumasp36,Solanumsp16,29,57,60,75,79,96,Ocimum sp23,35,65,82, Eucalyptus sp22,28,37,51, Plumbago sp20,Vitex sp50,93, Piper sp54,63,89,95, Annona sp48,54,69, andCleomesp31,78)andbetweenplantpartsusedtostudythe larvicidal efficacy (in Euphorbia tirucalli28,51,Solanum xanthocarpum16, Azadirechta indica65,Solanum villosum57,60,79,96, Annona squamosa48,54,69,Withania somnifera13, Melia azedarach45, Moringa oleifera46 and Ocimum sanctum35,82). However, theprincipal objective of the present documentation isto report the changes in larvicidal potentiality of theplantextractsdue tochangeof theparticular solventused during extraction. Variation of the larvicidalpotentialofthesameplantchangedwiththesolventsusedasevidencedincaseofSolanum xanthocarpum16,Euphorbia tirucalli28,51, Momordica charantia22,24,49,Eucalyptus globules14,15,28,83, Citrullus colocynthis13,Azadirechta indica65, Annona squamosa48,54,69 andSolanum nigrum29,75

.

It has been shown that the extraction of activebiochemical from plants depends upon the polarityof the solvents used. Polar solventwill extract polarmolecules and non-polar solvents extract non-polarmolecules.Thiswasachievedbyusingmainlyelevensolventsystemsrangingfromhexane/petroleumether,themostnonpolar(polarity indexof0.1thatmainlyextractsessentialoil) to thatofwater, themostpolar(polarityindexof10.2)thatextractsbiochemicalwithhigher molecular weights such as proteins, glycans,etc.Chloroformorethylacetatearemoderatelypolar(polarity index of 4.1) that mainly extracts steroids,alkaloids, etc. It has been found that inmost of thestudies solvent with minimum polarity have beenused such as hexane or petroleum ether or thatwithmaximumpolaritysuchasaqueous/steamdistillation.However,thosebiochemicalthatwereextractedusingmoderatelypolarsolventswerealsoseentogivegoodresultsas reportedbya fewbioassay.Thus,differentsolvent types can significantly affect the potency ofextracted plant compounds and there is differencein the chemo-profile of the plant species. InTable I,the lowestLC50valuewas reported inSolenostemma argel againstCx. pipiens47.Severalotherplants suchas Nyctanthes arbotristis38, Atlantia monophylla57,Centella asiatica40, Cryptotaenia paniculata76 werealso reported with promising LC50 values. Theseextracts may be fractioned in order to locate theparticularbioactive toxicagent responsible for larvaltoxicity.TableIalsoreportedthatmostofthestudieswerecarriedoutonCulexmosquitoesandAedeswasthe least frequently chosen mosquitoes for all theexperiments.Inseveralstudies,insteadofaparticular

bypropersanitation,watermanagementintemporaryand permanent water bodies, and channel irrigation.Vegetationmanagementisalsonecessarytoeliminateprotectionandfoodformosquitolarvae;(ii) Larvicidingby application of dipteran specific bacteria, insectgrowth regulators, surface films and oils, expandedpolystyrenebeads,phytochemicals,organophosphatesandorganochlorides, (iii)Adulticidingbyapplicationof synthetic pyrethroids, organophosphates andsynthetic or plant derived repellents, insecticideimpregnatedbednets,geneticmanipulationsofvectorspecies,etc.,(iv) Useofmosquitodensityassessmentinadultandlarvalconditionanddiseasesurveillance;and (v)Applicationofbiological controlmethodsbyusingentomophagousbacteria,fungi,microsporidians,predatorsandparasites.

OftheaboveavenuesofIMM,larvicidingapproachisthemoreproactive,proenvironment,targetspecificandsaferapproachthancontrollingadultmosquitoes.Application of larvicide from botanical origin wasextensively studied as an essential part of IMM,andvariousmosquito control agents such as ocimenone,rotenone,capllin,quassin,thymol,eugenol,neolignans,arborineandgoniothalaminweredeveloped7.

Variation of larvicidal potentiality according to mosquito species, plant parts and polarity of solvents used

Theefficacyofphytochemicalsagainstmosquitolarvae can vary significantly depending on plantspecies, plant parts used, age of plant parts (young,mature or senescent), solvent used during extractionaswellasupontheavailablevectorspecies.Sukumaret al6havedescribedtheexistenceofvariationsinthelevel of effectiveness of phytochemical compoundson targetmosquito speciesvis-à-vis plant parts fromwhich thesewereextracted, responses inspeciesandtheirdevelopmentalstagesagainstthespecifiedextract,solventofextraction,geographicaloriginoftheplant,photosensitivity of some of the compounds in theextract, effect on growth and reproduction. Changesinthelarvicidalefficacyoftheplantextractsoccurreddue to geographical origin of the plant (in Citrus sp18,39,64,65,Jatropha sp13,20,21,Ocimum sanctum22,35,65,82,Momordica charantia22,24,49, Piper sp54,63,89,95 andAzadirechta indica65); response in the differentmosquito species (inCurcuma domestica26,Withania somnifera13,Jatropha curcas13,20,Piper retrofractum63,Cestrum diurnum58,Citrullus vulgaris50,71,andTridax procumbens30,31); due to variation in the species ofplant examined (inEuphorbia sp22,28,37,51,Phyllanthus

592 INDIANJMEDRES,May 2012

Page 13: 0502 flour moringa

Table II. Identificationofvariousbioactivetoxicprinciplesfromplantextractandtheirrelativemosquitocidalefficacy

Activeingredient Mosquito Plants LC/LDvalues References

Octacosane Cx. quinquefasciatus Moschosma polystachyum

LC50valueof7.2±1.7mg/l Rajkumar&Jebanesan(2004)81

(E)-6-hydroxy-4,6-dimethyl-3-heptene-2-one

Ae. aegyptii Ocimum sacnctum LD100valueof6.25μg/ml Kelm&Nair(1998)82

α-terpinene Ae. aegypti Eucalyptus camaldulensis

LC50valueof14.7μg/mL

Jantanet al(2005)83

Geranial Ae. aegypti Magnoliasalicifolia

LD100valueof100ppm Kelmet al(1997)84

GermacreneD An.gambiae, Cx. quinquefasciatus andAe. aegypti

Chloroxylon swietenia

LD50valuesof1.8,2.1and2.8×10-3

KiranandDevi(2007)85

Hugorosenone An. gambiae Hugonia castaneifolia

LC50valuesof0.3028mg/ml

Barazaet al(2008)86

Azadirachtin An. stephensi Azadirachta indica EC50valuesof0.014,0.021,0.028and0.034ppmagainstfirst,second,thirdandfourthinstarlarvaerespectively

SenthilNathanet al (2005)87

Dioncophylline-A An.stephensi

Triphyophyllumpeltatum

LD50valuesof0.5,1.0and2.0mg/Lconcentrationsat3.33,2.66and1.92h

Francois et al(1996)88

N-methyl-6β-(decal',3',5'-trienyl)-3-β-methoxy-2-β-methylpiperidine

Ae. aegypti Microcos paniculata LC50valueof2.1ppm Bandaraet al(2000)89

Stemocurtisine,stemocurtisinolandoxyprotostemonine

An. minimus Stemona curtisii LC50valuesof18,39and4ppm,respectively

Mungkornasawakulet al (2009)90

Plumbagin An. gambiae Plumbago zeylanica LC50valueof1.9μg/ml Maniafuet al(2009)36

Pachyrrhizine An. gambiae Neorautanenia mitis LC50value0.007mg/ml Josephet al(2004)91

Marmesin An. gambiae Aegle marmelos LC50andLC90valuesof0.082and0.152mg/l

Josephetal(2004)91

Neoduline,4-methoxyneoduline,andnepseudin

An. gambiae Neorautanenia mitis LD50values0.005,0.011and0.003mg/ml

Breytenbach&Rall(1980)92

Methyl-p-hydroxybenzoate Cx. quinqaefasciatus andAe. aegypti

Vitex trifolia LC50valuesof5.77and4.74ppm,respectively

Kannathasanet al (2011)93

β-sitosterol Ae. aegypti,An. stephensiandCx. quinquefasciatus

Abutilon indicum LC50valueof11.49,3.58and26.67ppm,respectively

Rahumanet al (2008)94

Pipernonaline Ae. aegyptiandCx.pipiens

Piper longum LC50valuesof0.25and0.21mg/l,respectively

Lee(2000)95

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 593

Page 14: 0502 flour moringa

solvent,combinationofsolventsorserialextractionbydifferent solventsaccording to theirpolarityhasalsobeentriedandgoodlarvicidalpotentialityfoundasaresult96.

Nature of active ingredients responsible for larval toxicity

The plantworld comprises a rich untapped poolofphytochemicalsthatmaybewidelyusedinplaceofsyntheticinsecticidesinmosquitocontrolprogramme.Kishoreet al97reviewedtheefficacyofphytochemicalsagainst mosquito larvae according to their chemicalnatureanddescribedthemosquitolarvicidalpotentialityof several plant derived secondary materials, suchas, alkanes, alkenes, alkynes and simple aromatics,lactones, essential oils and fatty acids, terpenes,alkaloids, steroids, isoflavonoids, pterocarpans andlignans.Theyalsodocumentedtheisolationofseveralbioactive toxic principles from various plants andreported their toxicity against different mosquitospecies(TableII).

Mode of action of phytochemicals in target insect body

Generally the active toxic ingredients of plantextracts are secondary metabolites that are evolvedtoprotect themfromherbivores.The insects feedonthese secondarymetabolites potentially encounteringtoxic substances with relatively non-specific effectson a wide range of molecular targets. These targetsrange from proteins (enzymes, receptors, signalingmolecules, ion-channels and structural proteins),nucleic acids, biomembranes, and other cellularcomponents98.This in turn, affects insect physiologyinmanydifferentwaysandatvarious receptor sites,the principal ofwhich is abnormality in the nervoussystem(suchas,inneurotransmittersynthesis,storage,release, binding, and re-uptake, receptor activationandfunction,enzymesinvolvedinsignaltransductionpathway)98.Rattan98reviewedthemechanismofactionof plant secondary metabolites on insect body anddocumentedseveralphysiologicaldisruptions,suchasinhibition of acetylecholinestrase (by essential oils),GABA-gated chloride channel (by thymol), sodiumandpotassiumionexchangedisruption(bypyrethrin)and inhibition of cellular respiration (by rotenone).Suchdisruptionalsoincludestheblockageofcalciumchannels(byryanodine),ofnervecellmembraneaction(by sabadilla), of octopamine receptors (thymol),hormonal balance disruption, mitotic poisioning (byazadirachtin), disruption of the molecular events of

morphogenesis and alteration in the behaviour andmemoryof cholinergic system (byessentialoil),etc.Ofthese,themostimportantactivityistheinhibitionof acetylcholinerase activity (AChE) as it is a keyenzymeresponsibleforterminatingthenerveimpulsetransmission through synaptic pathway; AChE hasbeenobservedtobeorganophosphorusandcarbamateresistant, and it is well-known that the alteration inAChE is one of the main resistance mechanisms ininsectpests99.

Scope for future research: isolation of toxic larvicidal active ingredients

Several studies have documented the efficacy ofplantextractsasthereservoierpoolofbioactivetoxicagents againstmosquito larvae.Butonly a fewhavebeencommerciallyproducedandextensivelyused invectorcontrolprogrammes.Themainreasonsbehindthefailureinlaboratorytolandmovementsofbioactivetoxic phytochemicals are poor characterization andinefficiency in determining the structure of activetoxicingredientsresponsibleforlarvicidalactivity.Fortheproductionof agreenbiopesticide, the followingsteps can be recommended during any researchdesign with phytochemicals: (i) Screening of floralbiodiversity in search of crude plant extracts havingmosquito larvicidal potentiality; (ii) Preparation ofplantsolventextractsstartingfromnon-polartopolarchemicals and determination of the most effectivesolventextract;(iii) Evaporationoftheliquidsolventtoobtainsolidresidueanddeterminationofthelethalconcentration(LC50/LC100values);(iv) Phytochemicalanalysisofthesolidresidueandapplicationofcolumnchromatography and thin layer chromatography topurifyandisolatetoxicphytochemicalwithlarvicidalpotentiality; (v) Determination of the structure ofactiveprinciplebyinfrared(IR)spectroscopic,nuclearmagnetic resonance (NMR) andgas chromatographyandmassspectroscopy(GCMS)analysis;(vi) Studyoftheeffectofactiveingredientonnontargetorganisms;and(vii) Fieldevaluationoftheactiveprinciplebeforeitsrecommendationinvectorcontrolprogrammeandcommercialproduction.

Conclusion

Today,environmentalsafety isconsideredtobeof paramount importance. An insecticide does notneed to cause high mortality on target organismsin order to be acceptable but should be eco-friedlyin nature. Phytochemicals may serve as these arerelatively safe, inexpensive and readily available

594 INDIANJMEDRES,May 2012

Page 15: 0502 flour moringa

inmanypartsof theworld.Severalplantsareusedin traditionalmedicines for themosquito larvicidalactivities inmany parts of theworld.According toBowers et al100, the screening of locally availablemedicinal plants for mosquito control wouldgenerate local employment, reduce dependence onexpensive and imported products, and stimulatelocal efforts to enhance the public health system.The ethno-pharmacological approaches used in thesearch of new bioactive toxins from plants appearto be predictive compared to the random screeningapproach. The recently developed new isolationtechniques and chemical characterization throughdifferenttypesofspectroscopyandchromatographytogether with new pharmacological testing haveled to an interest in plants as the source of newlarvicidal compounds. Synergestic approaches suchas applicationofmosquitopredatorswithbotanicalblendsandmicrobialpesticideswillprovideabettereffect in reducing the vector population and themagnitudeofepidemiology.

Acknowledgment Authors thank Shri Anindya Sen (Department of English,BankuraChristianCollege)forcriticallyexaminethemanuscript.ThefinancialsupportprovidedbyUniversityGrantsCommissiontoDrAnupamGhoshisalsoacknowledged.

ReferencesWorl1. d Health Organization. Report of the WHO informal consultation on the evaluation on the testing of insecticides,CTD/WHOPES/IC/96.1.Geneva:WHO;1996.p.69.BrownA2. W.Insecticideresistanceinmosquitoes:apragmaticreview. J Am Mosq Control Assoc1986;2:123-40.RussellTL,KayBH,SkilleterGA.Environmentaleffectsof3.mosquitoinsecticidesonsaltmarshinvertebratefauna.Aquat Biol2009;6:77-90.Bhatt RP, Khanal SN. Environmental impact assessment4.system inNepal - an overview of policy, legal instrumentsandprocess.Kathmandu Univ J Sci Enginnering Tech2009;5:160-70.Roark RC. Some promising insecticidal plants.5. Econ Bot 1947;1 :437-45.SukumarK,PerichMJ,BoobarLR.Botanicalderivativesin6.mosquitocontrol:areview.J Am Mosq Control Assoc 1991;7 : 210-37.ShaalanEAS,CanyonbD,YounescMWF,Abdel-WahabaH,7.MansouraAH.A review of botanical phytochemicals withmosquitocidalpotential.Environ Int2005;3:1149-66.Shahi M, Hanafi-Bojd AA, Iranshahi M, Vatandoost H,8.Hanafi-BojdMY.Larvicidal efficacyof latexandextractofCalotropis procera (Gentianales: Asclepiadaceae) againstCulex quinquefasciatus and Anopheles stephensi (Diptera:Culicidae).J Vector Borne Dis 2010; 47:185-8.

IsmanMB.NeemandotherBotanicalinsecticides:Barriersto9.commercialization. Phytoparasitica1997;25:339-44.World Health Organization.10. Regional Framework for an Integrated Vector Management Strategy for the South-East Asia Region.SEA-VBC-86,2005.p.1-13.RoseRI.Pesticidesandpublichealth:integratedmethodsof11.mosquitomanagement.Emerg Infect Dis2001;7:17-23.Sharma P, Mohan L, Srivastava CN. Phytoextract-induced12.developmental deformities in malaria vector. Bioresource Tech2006;97 : 1599-604.SakthivadivelM,DanielT.Evaluationofcertaininsecticidal13.plants for the control of vector mosquitoes viz. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti.Appl Entomol Zool2008;43:57-63.MauryaP,MohanL,SharmaP,BatabyalL,SrivastavaCN.14.LarvicidalefficacyofAloe barbadensisandCannabis sativa against the malaria vector Anopheles stephensi (Diptera:Culicidae).Entomol Res2007;37:153-6.SheerenME.Larvicidaleffectsof15. EucalyptusextractsonthelarvaeofCulex pipiensmosquito.Int J Agric Biol2006;8 :896-7.MohanL,SharmaP,ShrivastavaCN.Evaluationof16. Solanum xanthocarpumextractasasynergistforcypermethrinagainstlarvaeoffilarialvectorCulex quinquefasciatus(Say).Entomol Res2006;36:220-5.Mansour SA, Messeha SS, EL-Gengaihi SE. Botanical17.biocides.MosquitocidalactivityofcertainThymus capitatus constituents. J Nat Tox 2000;9:49-62.KassirJT,MohsenZH,MehdiNS.Toxiceffectsoflimonene18.againstCulex quinquefasciatusSaylarvaeanditsinterferencewithoviposition.J Pest Sci1989;62 :19-21.TraboulsiAF, Taoubi K, El-Haj S, Bessiere JM, Salma R.19.Insecticidal properties of essential plant oils against themosquitoCulex pipiens molestus (Diptera: Culicidae). Pest Management Sci 2002;58:491-5.RahumanAA,GopalakrishnanG,Venkatesan P, GeethaK.20.Larvicidal activity of some Euphorbiaceae plant extractsaginst Aedes aegypti and Culex quinquefasciatus (Diptera:Culicidae).Parasitol Res2007;102 :867-73.Karmegan N, Sakthivadivel M, Anuradha V, Daniel T.21.Indigenous plant extracts as larvicidal agents againstCulex quinquefasciatusSay. Bioresource Technol 1997;5:137-40.Rahuman AA, Venkatesan P. Larvicidal efficacy of five22.cucurbitaceous plant leaf extracts againstmosquito species.Parasitol Res2008;103:133-9.Maurya P, Sharma P, Mohan L, Batabyal L, Srivastava23.CN.Evaluation of the toxicity of different phytoextracts ofOcimum basilicum against Anopheles stephensi and Culex quinquefasciatus. J Asia-Pacific Entomol2009;12:113-5.Singh RK, Dhiman RC, Mittal PK. Mosquito larvicidal24.properties of Momordica charantia Linn (Family:Cucurbitaceae).J Vect Borne Dis2006;43:88-91.Choochate W, Kanjanapothi D, Panthong A, Taesotikul T,25.Jitpakdi A, Chaithong U, et al. Larvicidal, adulticital andrepellenteffectsofKaempferia galangal.South East J Trop Med Publ Hlth1999;30:470-6.

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 595

Page 16: 0502 flour moringa

ChoochateW,ChaiyasitD,KanjanapothiD,Rattanachanpichai26.E,JitpakdiA,TuetunB,et al.Chemicalcompositionandanti-mosquitopotentialofrhizomeextractandvolatileoilderivedfrom Curcuma aromatica against Aedes aegypti (Diptera:Culicidae).J Vector Ecol2005;30:302-9.RodriguesAMS,PaulaJE,RoblotF,FournetA,EspíndolaLS.27.Larvicidal activity ofCybistax antisyphilitica againstAedes aegyptilarvae. Fitoterapia2005;76:755-7.Singh RK, Dhiman RC, Mittal PK.28. Studies on mosquitolarvicidalpropertiesof Eucalyptus citriodora Hook(family-Myrtaceae).J Comm Dis 2007;39 :233-6.RaghavendraK,SinghSP,SubbaraoSK,DashAP.Laboratory29.studiesonmosquitolarvicidalefficacyofaqueous&hexaneextractsofdriedfruitofSolanum nigrum Linn.Indian J Med Res2009;130:74-7.Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajkumar30.G, Mariamuthu S, et al. Larvicidal activity of medicinalplant extracts against Anopheles stephensi and Culex tritaeniorhynchus.Indian J Med Res2011;134:101-6.SaxenaRC,DixitOP,SukumaranP.Laboratory assessment31.ofindigenousplantextractsforanti-juvenilehormoneactivityin Culex quinquefasciatus. Indian J Med Res1992;95 :199-204.RajMohanD,RamaswamyM.Evaluationoflarvicidalactivity32.of the leaf extract of a weed plant,Ageratina adenophora,against two important speciesofmosquitoes,Aedes aegypti andCulex quinquefasciatus.Afr J Biotech2007;6:631-8.RahumanaAA,GopalakrishnanG,GhouseS,ArumugamS,33.HimalayanB.EffectofFeronia limoniaonmosquitoLarvae.Fitoterapia2000;71:553-5.Kaushik R, Saini P. Larvicidal activity of leaf extract of34.Millingtonia hortensis (Family: Bignoniaceae) againstAnopheles stephensi, Culex quinquefasciatus and Aedes aegypti. J Vector Borne Dis 2008; 45:66-9.Anees AM. Larvicidal activity of35. Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus(Say).Parasitol Res2008;101 :1451-3.Maniafu BM,Wilber L, Ndiege IO,Wanjala CCT,Akenga36.TA.LarvicidalactivityofextractsfromthreePlumbago sppagainstAnopheles gambiae. Mem Inst Oswaldo Cruz 2009;104 :813-7.Yadav R, Srivastava VK, Chandra R, SinghA. Larvicidal37.activityofLatexandstembarkofEuphorbia tirucalliplantonthemosquitoCulex quinquefasciatus. J Communicable Dis 2002;34:264-9.Khatune NA,Md. Haque E, Md. MosaddikA. Laboratory38.EvaluationofNyctanthes arbortristis Linn.flowerextractanditsisolatedcompoundagainstcommonfilarialVector,Cufex quinquefasciatusSay(Diptera:culicidae)Larvae.Pak J Bio Sci2001;4 :585-7.BagavanA,KamarajC,RahumanA, ElangoG, ZahirAA,39.PandiyanG.Evaluationoflarvicidalandnymphicidalpotentialof plant extracts againstAnopheles subpictus Grassi,Culex tritaeniorhynchusGilesandAphis gossypiiGlover.Parasitol Res2009;104 :1109-17.MatasyohJC,WathutaEM,KairukiST,ChepkorirR,Kavulani40.J.Aloe plant extracts as alternative larvicides formosquitocontrol.Afr J Biotech2008;7:912-5.

Yene41. sew A,DereseS,MidiwoJO,HeydenreichM,PeterMJ.EffectofrotenoidsfromtheseedsofMillettia duraonlarvaeofAedes aegypti. Pest Manage Sci2003;59 :1159-61.YangYC, LimMY, LeeHS.42. Emodin isolated fromCassia obtusifolia (Leguminosae) seed shows larvicidal activityagainst threemosquito specie. J Agri Food Chem 2003;51 :7629-31.SivagnanameS,KalyanasundaramM.Laboratoryevaluation43.of Methanolic extract of Atlanta monophylla (Family:Rutaceae) against immature stage of mosquitoes and non-targetorganisms.Mem Inst Oswaldo Cruz 2004;99 :115-8.Senthil-NathanS,KalaivaniK,SehoonK.Effectsof44. Dysoxylum malabaricumBedd.(Meliaceae)extractonthemalarialvectorAnopheles stephensi Liston(Diptera:Culicidae).Bioresource Tech2006;97:2077-83.Senthil Nathan S, Savitha G, George DK, Narmadha A,45.SuganyaL,ChungPG.EfficacyofMelia azedarachL.extracton themalarial vectorAnopheles stephensi Liston (Diptera:Culicidae).Bioresource Tech2006;97:1316-23.KamarajC,RahumanAA.Larvicidalandadulticidalpotential46.ofmedicinalplantextractsfromsouthIndiaagainstvectors.Asian Pacific J Trop Med2010;3:948-53.Al-Doghairi M, El-NadiA, El hag E,Al-Ayedh H. Effect47.ofSolenostemma argel onoviposition, egghatchability andviabilityofCulex pipiensL. larvae. Phytother Res2004;18 :335-8.Kamaraj C, Rahuman AA, Bagavan A, Abduz Zahir A,48.ElangoG,KandanP,et al.Larvicidalefficacyofmedicinalplant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera:Culicidae).Trop Biomed 2010;27 :211-9.Prabhakar K, Jebanesa A. Larvicidal efficacy of49.some cucurbitacious plant leaf extracts against Culex quinquefasciatus. Bioresource Tech2004;95:113-4.KrishnanK,SenthilkumarA,ChandrasekaranM,Venkatesalu50.V. Differential larvicidal efficacy of four species of Vitex againstCulex quinquefasciatuslarvae.Parasitol Res 2007;10 :1721-3.Rajkumar S, JebanesanA. Larvicidal and adult emergence51.inhibition effect ofCentella asiatica Brahmi (umbelliferae)against mosquito Culex quinquefasciatus Say (Diptera:Culicidae). Afr J Biomed Res2005;8:31-3.Vahitha R, Venkatachalam MR, Murugan K, Jebanesan52.A. Larvicidal efficacy ofPavonia zeylanica L. andAcacia ferruginea D.C. against Culex quinquefasciatus Say. Bioresource Tech2002;82:203-4.JangYS,BaekBR,YangYC,KimMK,LeeHS.Larvicidal53.activityofleguminousseedsandgrainsagainstAedes aegypti andCulex pipiens pallens. J Am Mosq Control Assoc2002;18:210-3.Das NG, Goswami D, Rabha B. Preliminary evaluation of54.mosquito larvicidal efficacy of plant extracts. J Vect Borne Dis2007;44:145-8.JangYS, Jeon JH, LeeHS.Mosquito larvicidal activity of55.activeconstituentderivedfromChamaecyparis obtusaleavesagainst3mosquitospecies.J Am Mosq Control Assoc2005;21:400-3.

596 INDIANJMEDRES,May 2012

Page 17: 0502 flour moringa

KovendanK,MuruganK,V56. incentS.EvaluationoflarvicidalactivityofAcalypha alnifoliaKleinexWilld.(Euphorbiaceae)leafextractagainstthemalarialvector,Anopheles stephensi,denguevector,Aedes aegyptiandBancroftianfilariasisvector,Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 2012;110 :571-81.ChowdhuryN,ChatterjeeSK,LaskarS,ChandraG.Larvicidal57.activity of Solanum villosum Mill (Solanaceae: Solanales)leaves to Anopheles subpictus Grassi (Diptera: Culicidae)with effect on non-target Chironomus circumdatus Kieffer(Diptera:Chironomidae). J Pest Sci2009;82 :13-8.GhoshA,ChandraG.Biocontrolefficacyof58. Cestrum diurnum (L.) (Solanales: Solanaceae) against the larval forms ofAnopheles stephensi. Nat Prod Res2006;20:371-9.GhoshA,ChowdhuryN,ChandraG.Laboratoryevaluation59.of a phytosteroid compound of mature leaves of DayJasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus(Diptera:Culicidae)andnontargetorganisms. Parasitol Res2008;103:271-7.Chowdhury N, Ghosh A, Chandra G. Mosquito larvicidal60.activities of Solanum villosum berry extract against theDenguevectorStegomyia aegypti.BMC Comple Alternative Med2008;8:10.RajkumarS,JebanesanA.Larvicidalandovipositionactivity61.ofCassia obtusifoliaLinn(Family:Leguminosae)leafextractagainstmalarialvector,Anopheles stephensiListon(Diptera:Culicidae).Parasitol Res2009;104:337-40.Azmi MA, Naqvi SNH, Ahmad I, Tabassum R, Anbreen62.B. Toxicity of neem leaves extract (NLX) compared withmalathion (57 E.C.) against late 3rd instar larvae of Culex fatigans (WildStrain) byWHOmethod.Turk J Zool 1998;22:213-8.ChansangU,ZahiriNS,BansiddhiJ,BoonruadT,Thongsrirak63.P,MingmuangJ,et al.Mosquitolarvicidalactivityofcrudeextracts of long pepper (Piper retrofractum vahl) fromThailland.J Vector Ecol 2005;30:195-200.SumroiphonS,YuwareeC,ArunlertareeC,KomalamisraN,64.RongsriyamY.Bioactivityofcitrusseedformosquito-bornediseaseslarvalcontrol.Southeast Asian J Trop Med Pub Hlth 2006;37(Suppl3):123-7.MgbemenaIC.Comparativeevaluationoflarvicidalpotentials65.of threeplantextractsonAedes aegypti.J Am Sci 2010;6 :435-40.ChoochateW,TuetunB,KanjanapothiD,Rattanachanpichai66.E,ChaithongU,ChaiwongP,et al. Potential of crude seedextractofcelery,Apium graveolensL.,againstthemosquitoAedes aegypti (L.)(Diptera:Culicidae).J Vector Ecol 2004;29 :340-6.Kabaru JM, Gichia L. Insecticidal activity of extracts67.derivedfromdifferentpartsofthemangrovetreeRhizophora mucronata (Rhizophoraceae)Lam.against threearthropods.Afr J Sci Tech2001;2 :44-9.Chaithong U, Choochote W, Kamsuk K, Jitpakdi A,68.Tippawangkosol P, Chaiyasit D, et al. Larvicidal effect ofpepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J Vector Ecol2006;31:138-44.OmenadeC,NavarroDMAF,PauladeJE,FerreiradeLima69.JSMR, Sant’Ana AEG. Larvicidal activities against Aedes

aegypti of Brazilian medicinal plants. Bioresource Technol 2007;98:2549-56.Macêdo70. ME, Consoli RAGB, Grandi TSM, Anjos AMG,Oliveira AB, Mendes NM, et al. Screening of Asteraceae(Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera:Culicidae). Mem Inst Oswaldo Cruz 1997;92:565-70.MullaiK, JebanesanA,PushpanathanT.Mosquitocidaland71.repellent activity of the leaf extract of Citrullus vulgaris (cucurbitaceae) against the malarial vector, Anopheles stephensi liston(dipteraculicidae).Euro Rev Med Pharma Sci 2008;12:1-7.GovindarajanM,JebanesanA,PushpanathanT,SamiduraiK.72.StudiesoneffectofAcalypha indicaL.(Euphorbiaceae)leafextracts on themalarial vector,Anopheles stephensi Liston(Diptera:Culicidae).Parasil Res2008;103:691-5.Mullai K, Jebanesan A. Larvicidal, ovicidal and repellent73.activities of the leaf extract of two cucurbitacious plantsagainstfilarialvectorCulex quinquefasciatus(Say)(Diptera:Culicidae).Trop Biomed2007;24:1-6.Senthil Nathan S, HishamA, JayakumarG. Larvicidal and74.growth inhibitionof themalariavectorAnophelesstephensibytriterpenesfromDysoxylum malabaricum andDysoxylum beddomei.Fitoterapia2008;79 :106-11.Rawani A, Ghosh A, Chandra G. Mosquito larvicidal75.activities of Solanum nigrum L. leaf extract againstCulex quinquefasciatusSay.Parasitol Res2010;107:1235-40.RawaniA,MallickHaldarK,GhoshA,ChandraG.Larvicidal76.activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 2009;105:1411-7.KhannaG,KannabiranK.Larvicidal effect of77. Hemidesmus indicus, Gymnema sylvestre, and Eclipta prostrata againstCulex qinquifaciatus mosquitolarvae.Afr J Biotechnol2007;6:307-11.AlyMZY,BadranRAM.Mosquitocontrolwithextractsfrom78.plantsoftheEgyptianEasternDesert.J Herbs Spices Medicinl Plants1996; 3:3540-80.ChowdhuryN,LaskarS,ChandraG.Mosquitolarvicidaland79.antimicrobialactivityofproteinofSolanum villosum leaves.BMC Comple Alter Med2008;8:62.IannaconeJ,PérezD.Insecticidaleffectof80. Paullinia clavigera var.bullataSimpson(Sapindaceae)andTradescantia zebrina HortexBosse(Commelinaceae)inthecontrolofAnopheles benarrochi Gabaldon, Cova García & López 1941, mainvectorofmalaria inUcayali,Peru.Ecol Aplicada 2004;3 :64-72.Rajkumar S, Jebanesan A. Mosquitocidal activities of81.octacosanefromMoschosma polystachyumLinn(lamiaceae).J Ethnopharmacol 2004;90:87-9.Kelm MA, Nair MG. Mosquitocidal compounds and a82.triglyceride, 1, 3 dilinoleneoyl-2-palmitin, from Ocimum sanctum. J Agri Food Chem1998;46:3092-4.Jantan I,YalvemaMF,Ahmad NW, Jamal JA. Insecticidal83.activitiesoftheleafoilsofeightCinnamomumspeciesagainstAedes aegyptiandAedes albopictus. Pharmceutical Biol2005;43:526-32.

GHOSH et al: PLANT EXTRACTS AS MOSQUITO LARVICIDE 597

Page 18: 0502 flour moringa

KelmMA,Nai84. rMG,SchutzkiRA.MosquitocidalcompoundsfromMagnolia salicifolia.Int J Pharmacog1997;35:84-90.KiranSR,DeviPS.Evaluationofmosquitocidal activityof85.essential oil and sesquiterpenes from leaves ofChloroxylon swieteniaDC.Parasitol Res2007;101 :413-8.Baraza LD, Joseph CC, Munissi JJE, Nkunya MHH,86.ArnoldN,PorzelA,et al.Antifungal rosanediterpenesandotherconstituents of Hugonia castaneifolia. Phytochemistry 2008;69:200-5.SenthilNathanS,KalaivaniK,MuruganK.Effectsofneem87.limonoidsonthemalariavector,Anopheles stephensi Liston(Diptera:Culicidae).Acta Trop 2005; 96 : 47-55.Francois G, Looveren MV, Timperman G, Chimanuka88.B, Assi LA, Holenz J, et al. Larvicidal activity of thenaphthylisoquinoline alkaloid dioncophylline-A against themalariavectorAnopheles stephensi.J Ethnopharmacol1996;54:125-30.Bandara KANP, Kumar V, Jacobsson U, Molleyres LP.89.Insecticidal piperidine alkaloid from Microcos paniculata stembark.Phytochemistry2000;54:29-32.Mungkornasawakul P, Chaiyong S, Sastraruji T, Jatisatienr90.A,JatisatienrC,PyneSG,et al.AlkaloidsfromtherootsofStemona aphylla. J Nat Prod2009;72:848-51.Joseph CC, Ndoile MM, Malima RC, Nkunya MHH. 91.Larvicidal and mosquitocidal extracts, a coumarin,isoflavonoids and pterocarpans from Neorautanenia mitis.Trans R Soc Trop Med Hyg2004;98:451-5.Breytenbach JC, Rall GJH. Structure and synthesis of92.isoflavonoid analogues from Neorautanenia amboensis Schinz. J Chem Soc Perkin Trans1980;1:1804-9.

Kanna93. thasan K, SenthilkumarA, Venkatesalu V. Mosquitolarvicidalactivityofmethyl-p-hydroxybenzoateisolatedfromthe leaves ofVitex trifolia Linn.Acta Tropica 2011; 120 :115-8.RahumanAA,GopalakrishnanG,Venkatesan P, GeethaK.94.IsolationandidentificationofmosquitolarvicidalcompoundfromAbutilon indicum(Linn.)Sweet.Parasitol Res2008;102 :981-8.Lee SE. Mosquito larvicidal activity of pipernonaline, a95.piperidinealkaloidderivedfromlongpepper,Piper longum. J Am Mosq Control Assoc2000;16:245-7.Chowdhury N, Bhattacharjee I, Laskar S, Chandra G.96.Efficacy ofSolanum villosumMill. (Solanaceae: Solanales)as a biocontrol agent against fourth Instar larvae ofCulex quinquefasciatusSay.Turk J Zool2007;31:365-70.KishoreN,MishraBB,TiwariVK,TripathiV.Areviewon97.naturalproductswithmosquitosidalpotentials.In:TiwariVK,editor.Opportunity, challenge and scope of natural products in medicinal chemistry.Kerala:ResearchSignpost;2011.p.335-65.Rattan RS. Mechanism of action of insecticidal secondary98.metabolitesofplantorigin.Crop Protec2010;29:913-20.Senthilnathan S,99. ChoiMY, SeoHY, PaikCH,KalaivaniK,KimJD.Effectofazadirachtinonacetylcholinesterase(AChE)activityandhistologyofthebrownplanthopperNilaparvata lugens(Stål).Ecotox Environ Safety2008;70 :244-50.BowersWS,SenerB,EvansPH,BingolF,ErdoganI.Activity100.ofTurkishmedicinalplantsagainstmosquitoesAedes aegypti andAnopheles gambiae.Insect Sci Appl1995;16:339-42.

Reprint requests:DrGoutamChandra,Professor,DepartmentofZoology,Mosquito&Microbiology ResearchUnits,ParasitologyLaboratory,TheUniversityofBurdwan, Burdwan713104,WestBengal,India e-mail:[email protected]

598 INDIANJMEDRES,May 2012


Recommended