Transcript
Page 1: 1 Ion Implantation M.H.Nemati Sabanci University

1

Ion ImplantationM.H.Nemati

Sabanci University

Page 2: 1 Ion Implantation M.H.Nemati Sabanci University

2

Ion Implantation

• Introduction

• Safety

• Hardware

• Processes

• Summary

Page 3: 1 Ion Implantation M.H.Nemati Sabanci University

3

Introduction

• Dope semiconductor

• Two way to dope– Diffusion– Ion implantation

• Other application of ion implantation

Page 4: 1 Ion Implantation M.H.Nemati Sabanci University

4

Dope Semiconductor: Diffusion

• Isotropic process

• Can’t independently control dopant profile and dopant concentration

• Replaced by ion implantation after its introduction in mid-1970s.

Page 5: 1 Ion Implantation M.H.Nemati Sabanci University

5

Dope Semiconductor: Ion Implantation

• Used for atomic and nuclear research

• Early idea introduced in 1950’s

• Introduced to semiconductor manufacturing in mid-1970s.

Page 6: 1 Ion Implantation M.H.Nemati Sabanci University

6

Dope Semiconductor: Ion Implantation

• Independently control dopant profile (ion energy) and dopant concentration (ion current times implantation time)

• Anisotropic dopant profile

• Easy to achieve high concentration dope of heavy dopant atom such as phosphorus and arsenic.

Page 7: 1 Ion Implantation M.H.Nemati Sabanci University

7

Ion Implantation, Phosphorus

Poly Si

n+

P-type Silicon

n+

SiO2P+

Page 8: 1 Ion Implantation M.H.Nemati Sabanci University

8

Ion Implantation Control

• Beam current and implantation time control dopant concentration

• Ion energy controls junction depth

• Dopant profile is anisotropic

Page 9: 1 Ion Implantation M.H.Nemati Sabanci University

9

Stopping Mechanism

• Ions penetrate into substrate

• Collide with lattice atoms

• Gradually lose their energy and stop

• Two stop mechanisms

Page 10: 1 Ion Implantation M.H.Nemati Sabanci University

10

Two Stopping Mechanism

• Nuclear stopping – Collision with nuclei of the lattice atoms– Scattered significantly – Causes crystal structure damage.

• electronic stopping – Collision with electrons of the lattice atoms– Incident ion path is almost unchanged– Energy transfer is very small – Crystal structure damage is negligible

Page 11: 1 Ion Implantation M.H.Nemati Sabanci University

11

Implantation Processes: Channeling

• If the incident angle is right, ion can travel long distance without collision with lattice atoms

• It causes uncontrollable dopant profile

Very few collisions

Lots of collisions

Page 12: 1 Ion Implantation M.H.Nemati Sabanci University

12

Channeling Effect

Channeling Ion

Collisional Ion

Lattice Atoms

Wafer Surface

Page 13: 1 Ion Implantation M.H.Nemati Sabanci University

13

Implantation Processes: Channeling

• Ways to avoid channeling effect– Tilt wafer, 7° is most commonly used– Screen oxide– Pre-amorphous implantation, Germanium

• Shadowing effect– Ion blocked by structures

• Rotate wafer and post-implantation diffusion

Page 14: 1 Ion Implantation M.H.Nemati Sabanci University

14

Implantation Processes: Damage

• Ion collides with lattice atoms and knock them out of lattice grid

• Implant area on substrate becomes amorphous structure

Before Implantation After Implantation

Page 15: 1 Ion Implantation M.H.Nemati Sabanci University

15

Implantation Processes: Anneal

• Dopant atom must in single crystal structure and bond with four silicon atoms to be activated as donor (N-type) or acceptor (P-type)

• Thermal energy from high temperature helps amorphous atoms to recover single crystal structure.

Page 16: 1 Ion Implantation M.H.Nemati Sabanci University

16

Thermal Annealing

Dopant AtomLattice Atoms

Page 17: 1 Ion Implantation M.H.Nemati Sabanci University

17

Thermal Annealing

Dopant AtomLattice Atoms

Page 18: 1 Ion Implantation M.H.Nemati Sabanci University

18

Thermal Annealing

Dopant AtomLattice Atoms

Page 19: 1 Ion Implantation M.H.Nemati Sabanci University

19

Thermal Annealing

Dopant AtomLattice Atoms

Page 20: 1 Ion Implantation M.H.Nemati Sabanci University

20

Thermal Annealing

Dopant AtomLattice Atoms

Page 21: 1 Ion Implantation M.H.Nemati Sabanci University

21

Thermal Annealing

Dopant AtomLattice Atoms

Page 22: 1 Ion Implantation M.H.Nemati Sabanci University

22

Thermal Annealing

Dopant AtomLattice Atoms

Page 23: 1 Ion Implantation M.H.Nemati Sabanci University

23

Thermal Annealing

Dopant AtomsLattice Atoms

Page 24: 1 Ion Implantation M.H.Nemati Sabanci University

24

Implantation Processes: Annealing

Before Annealing After Annealing

Page 25: 1 Ion Implantation M.H.Nemati Sabanci University

25

Ion Implantation: Hardware

• Gas system

• Electrical system

• Vacuum system

• Ion beamline

Page 26: 1 Ion Implantation M.H.Nemati Sabanci University

26

Implantation ProcessGases and Vapors:

P, B, BF3, PH3, and AsH3

Select Ion: B, P, As

Select Ion Energy

Select Beam Current

Next StepImplanter

Page 27: 1 Ion Implantation M.H.Nemati Sabanci University

27

Ion Implanter

Gas Cabin

Ion Source

Vacuum Pump

Vacuum Pump

Electrical System

Electrical System

Analyzer Magnet

Beam Line

End Analyzer

WafersPlasma Flooding System

Page 28: 1 Ion Implantation M.H.Nemati Sabanci University

28

Ion Implantation: Gas System

• Special gas deliver system to handle hazardous gases

• Special training needed to change gases bottles

• Argon is used for purge and beam calibration

Page 29: 1 Ion Implantation M.H.Nemati Sabanci University

29

Ion Implantation: Electrical System

• High voltage system– Determine ion energy that controls junction depth

• High voltage system– Determine ion energy that controls junction depth

• RF system– Some ion sources use RF to generate ions

Page 30: 1 Ion Implantation M.H.Nemati Sabanci University

30

Ion Implantation: Vacuum System

• Need high vacuum to accelerate ions and reduce collision

• MFP >> beamline length

• 10-5 to 10-7 Torr

• Turbo pump and Cryo pump

• Exhaust system

Page 31: 1 Ion Implantation M.H.Nemati Sabanci University

31

Ion Implantation: Control System

• Ion energy, beam current, and ion species.

• Mechanical parts for loading and unloading

• Wafer movement to get uniform beam scan

• CPU board control boards– Control boards collect data from the systems,

send it to CPU board to process, – CPU sends instructions back to the systems

through the control board.

Page 32: 1 Ion Implantation M.H.Nemati Sabanci University

32

Ion Implantation: Beamline

• Ion source

• Extraction electrode

• Analyzer magnet

• Post acceleration

• Plasma flooding system

• End analyzer

Page 33: 1 Ion Implantation M.H.Nemati Sabanci University

33

Ion Beam Line

Ion Source

Vacuum Pump

Vacuum Pump

Analyzer Magnet

Beam Line

End Analyzer

Wafers

Plasma Flooding System

Post Acceleration Electrode

Extraction Electrode

Suppression Electrode

Page 34: 1 Ion Implantation M.H.Nemati Sabanci University

34

• Hot tungsten filament emits thermal electron

• Electrons collide with source gas molecules to dissociate and ionize

• Ions are extracted out of source chamber and accelerated to the beamline

• RF and microwave power can also be used to ionize source gas

Ion implanter: Ion Source

Page 35: 1 Ion Implantation M.H.Nemati Sabanci University

35

Ion Implantation: Extraction

• Extraction electrode accelerates ions up to 50 keV

• High energy is required for analyzer magnet to select right ion species.

Page 36: 1 Ion Implantation M.H.Nemati Sabanci University

36

Ion Implantation: Analyzer Magnet

• Gyro radius of charge particle in magnetic field relate with B-field and mass/charge ratio

• Used for isotope separation to get enriched U235

• Only ions with right mass/charge ratio can go through the slit

• Purified the implanting ion beam

Page 37: 1 Ion Implantation M.H.Nemati Sabanci University

37

Analyzer

Ion Beam

Smaller m/q Ratio

Larger m/q Ratio

Right m/q Ratio

Magnetic Field (Point Outward)

Flight Tube

Page 38: 1 Ion Implantation M.H.Nemati Sabanci University

38

Ion Implantation: The Process

• CMOS applications

• CMOS ion implantation requirements

• Implantation process evaluations

Page 39: 1 Ion Implantation M.H.Nemati Sabanci University

39

Implantation Process: Well Implantation

• High energy (to MeV), low current (1013/cm2)

P-EpiP-Wafer

Photoresist

N-Well

P+

Page 40: 1 Ion Implantation M.H.Nemati Sabanci University

40

PhotoresistB+

P-EpiP-Wafer

N-WellP-WellSTI USG

Implantation Process: VT Adjust Implantation

Low Energy , Low Current

Page 41: 1 Ion Implantation M.H.Nemati Sabanci University

41

Photoresist

P+

P-EpiP-Wafer

N-WellP-WellSTI USG

Lightly Doped Drain (LDD) Implantation

• Low energy (10 keV), low current (1013/cm2)

Page 42: 1 Ion Implantation M.H.Nemati Sabanci University

42

Implantation Process: S/D Implantation

• Low energy (20 keV), high current (>1015/cm2)

P-EpiP-Wafer

N-WellP-Well

Photoresist

P+

STI USGn+n+

Page 43: 1 Ion Implantation M.H.Nemati Sabanci University

43

Process Issues

• Wafer charging

• Particle contamination

• Elemental contamination

• Process evaluation

Page 44: 1 Ion Implantation M.H.Nemati Sabanci University

44

Ion Implantation: Safety

• One of most hazardous process tools in semiconductor industry

• Chemical

• Electro-magnetic

• Mechanical

Page 45: 1 Ion Implantation M.H.Nemati Sabanci University

45

Summary of Ion Implantation

• Dope semiconductor

• Better doping method than diffusion

• Easy to control junction depth (by ion energy) and dopant concentration ( by ion current and implantation time).

• Anisotropic dopant profile.

Page 46: 1 Ion Implantation M.H.Nemati Sabanci University

46

Summary of Ion Implantation

• Ion source

• Extraction

• Analyzer magnets

• Post acceleration

• Charge neutralization system

• Beam stop

Page 47: 1 Ion Implantation M.H.Nemati Sabanci University

47

Summary of Ion Implantation

• Well High energy, low current• Source/Drain Low energy, high current• Vt Adjust Low energy, low current• LDD Low energy, low current


Recommended