Transcript
Page 1: Cellular respiration in detail

Cellular Respiration

Page 2: Cellular respiration in detail

Key Concepts we will cover today. . .

Respiration is the release of energy by combining oxygen with digested food (glucose).

Carbon dioxide and water are also produced as byproducts. They are the waste products of respiration.

Cellular respiration has two stages. First glucose is broken down to pyruvate during glycolysis, making some ATP.

The second stage involving the Krebs cycle is a series of reactions that produce energy-storing molecules during anaerobic respiration.

During aerobic respiration, large amounts of ATP are made in an electron transport chain.

When oxygen is not present, fermentation follows glycolysis, regenerating NAD+ needed for glycolysis to continue

Page 3: Cellular respiration in detail

Cellular Energy

Most of the foods we eat contain energy stored in proteins, carbohydrates, and fats.

Before our cells can use this energy it must be transferred to ATP within the cells.

Cells transfer the energy in organic compounds to ATP through a process called cellular respiration.

Process cellular respiration

Page 4: Cellular respiration in detail

Cellular Energy

• Oxygen in the air you breath makes the production of ATP more efficient. Some ATP is made without this oxygen however.

1. Metabolic processes that require

oxygen are called aerobic processes.

2. Metabolic processes that require

NO oxygen are called anaerobic processes.

Page 5: Cellular respiration in detail

Cellular Energy: Respiration

The energy-producing process in living

things is called respiration.

Respiration is the release of energy by combining oxygen with digested food (glucose).

Carbon dioxide and water are also produced as byproducts. They are the waste products of respiration.

A simple formula to show respiration looks like this:

Glucose + oxygen carbon dioxide (waste) + water (waste) + energy

Page 6: Cellular respiration in detail

Stages of Cellular Respiration

Cellular respiration is the process cells use to extract the energy in organic compounds, particularly glucose.

Cellular respiration occurs in three major stages

Stage 1: glucose is converted to pyruvate producing a small amount of ATP and NADH

Stage 2: Aerobic respiration occurs: this is when oxygen is present, pyruvate and NADH make more ATP.

Stage 3: In an electron transfer chain, continuing reactions create a large amount of ATP from the materials from stage 2.

Page 7: Cellular respiration in detail

Stage 1: Breakdown of Glucose

The primary fuel for cellular respiration is glucose which is formed when carbohydrates such as starch and sucrose are broken down.

In the First stage of cellular respiration, glucose is broken down in the cytoplasm during a process called glycolysis.

Glycolysis is an enzyme-assisted anaerobic process that breaks down one six carbon

molecule of glucose to two three-carbon pyruvate

ions

1

Page 8: Cellular respiration in detail

Stage 1: Breakdown of Glucose: Glycolysis

Glycolysis can be summarized in 4 steps

Step 1:

in a series of three reactions,

phosphate groups from two ATP molecules

are transferred to a glucose molecule

Page 9: Cellular respiration in detail

Stage 1: Breakdown of Glucose: Glycolysis

Glycolysis can be summarized in 4 steps

Step 2:

In two reactions, the resulting six-carbon

molecule is broken down to two three-carbon compounds, each with a phosphate group

Page 10: Cellular respiration in detail

Stage 1: Breakdown of Glucose: Glycolysis

Glycolysis can be summarized in 4 steps

Step 3:

Two NADH molecules are produced,

and one more phosphate group is transferred

to each three-carbon compound.

Page 11: Cellular respiration in detail

Stage 1: Breakdown of Glucose: Glycolysis

Glycolysis can be summarized in 4 steps

Step 4:

In a series of 4 reactions, each three carbon compound

is converted to a three-carbon pyruvate, producing 4 ATP molecules

in the process

Page 12: Cellular respiration in detail

Stage 1: Breakdown of Glucose: Glycolysis

Summary: In this 4 step process:

1. Glycolysis uses two ATP molecules

2. but produces four ATP molecules in return.

3. Thus, we gain two ATP molecules for a gain ratio of 2 to 1.

Glycolysis is followed by another set of reactions that uses the energy temporarily stored in NADH to make more ATP.

Page 13: Cellular respiration in detail

Stage 2: Production of ATP

When oxygen is present, pyruvate produced during glycolysis enters a mitochondrion and is converted to a two-carbon compound.

This reaction produces one carbon dioxide molecule, one NADH molecule, and one two-carbon acetyl group

The acetyl group is attached to a molecule called coenzyme A forming a compound called acetyl-CoA.

Page 14: Cellular respiration in detail

Stage 2: Production of ATP

Acetyl-CoA enters a series of enzyme-assisted reactions called the Krebs Cycle.

The Krebs Cycle has several steps we will be breaking down.

Page 15: Cellular respiration in detail

Stage 2: Production of ATP

Step 1:

Acetyl-CoA combines with a 4 carbon compound, forming a six carbon compound and releasing

“coenzyme A”

Page 16: Cellular respiration in detail

Stage 2: Production of ATP

Step 2:

Carbon Dioxide (CO2)

is released from the six-carbon compound, forming a five-carbon compound.

Electrons are transferred to NAD+, making a molecule of NADH.

Page 17: Cellular respiration in detail

Stage 2: Production of ATP

Step 3:

Carbon dioxide is released from the five-carbon compound, resulting in a four-carbon compound.

A molecule of ATP is made, and a molecule of NADH is produced.

Page 18: Cellular respiration in detail

Stage 2: Production of ATP

Step 4:

The existing four-carbon compound is then converted to a new four-carbon compound.

Electrons are transferred to an electron acceptor called FAD, making a molecule of FADH2.

FADH2 is another type of electron carrier.

Page 19: Cellular respiration in detail

Stage 2: Production of ATP

After the Krebs Cycle, NADH and FADH2 now contain much of the energy that was previously stored in glucose and pyruvate.

When the Krebs Cycle is completed, the four-carbon compound that began the cycle has been recycled, and acetyl-CoA can enter the cycle again.

Page 20: Cellular respiration in detail

Electron Transfer Chain

In aerobic respiration, electrons donated by NADH and FADH2 pass through an electron transport chain.

Step 1: The electron transfer chain pumps hydrogen ions out of the inner compartment

Page 21: Cellular respiration in detail

Electron Transfer Chain

Step 2: At the end of the chain, electrons and hydrogen ions combine with oxygen, forming water (H2O).

Page 22: Cellular respiration in detail

Electron Transfer Chain

Step 3: ATP is produced as hydrogen ions diffuse into the inner compartment through a channel protein.

Page 23: Cellular respiration in detail

Electron Transfer Chain

Hydrogen ions diffuse back into the inner compartment through a carrier protein that adds a phosphate group to ADP, making ATP.

At the end of the electron chain, hydrogen ions and spent electrons

combine with oxygen molecules (O2) forming water molecules (H20)

Page 24: Cellular respiration in detail

Respiration in the Absence of Oxygen

What happens when there is not enough oxygen for aerobic respiration to occur?

When oxygen is not present, NAD+ is recycled in another way

Under anaerobic conditions, electrons carried by NADH are transferred to pyruvate produced during glycolysis.

This process recycles NAD+ needed to continue making ATP through glycolysis.

This recycling of NAD+ using an organic hydrogen acceptor is called fermentation.

Page 25: Cellular respiration in detail

Respiration in the Absence of Oxygen

Two important types of fermentation are lactic acid fermentation and alcoholic fermentation.

Lactic acid fermentation by some prokaryotes and fungi is used in the production of foods such as yogurt and some cheeses.

Page 26: Cellular respiration in detail

Lactic Acid Fermentation

Lactate is the ion of an organic acid called lactic acid. For example, during exercise, pyruvate in muscles is converted to lactate when muscles must operate without enough oxygen.

Fermentation enables glycolysis to continue producing ATP in muscles as long as the glucose supply lasts. Blood removes excess lactate from muscles.

Lactate can build up in muscle cells if it is not removed quickly enough, sometimes causing muscle soreness.

Page 27: Cellular respiration in detail

Alcoholic Fermentation

Alcoholic fermentation is a two-step process.

First, pyruvate is converted to a two-carbon compound, releasing carbon dioxide.

Second, electrons are transferred from a molecule of NADH to the two-carbon compound, producing ethanol.

Page 28: Cellular respiration in detail

Alcoholic Fermentation

Alcoholic fermentation by yeast, a fungus, has been used in the preparation of many foods and beverages.

Wine and beer contain ethanol made during alcoholic fermentation by yeast.

Carbon dioxide released by the yeast causes the rising of bread dough and the carbonation of some alcoholic beverages, such as beer.

Ethanol is actually toxic to yeast. At a concentration of about 12%, ethanol kills yeast.

Thus, naturally fermented wine contains about 12% ethanol.

Page 29: Cellular respiration in detail

Production of ATP: Summary

The total amount of ATP that a cell is able to harvest from each glucose molecule that enters glycolysis depends on the presence or absence of oxygen.

Cells use energy most efficiently when oxygen is present.

In the first stage of cellular respiration, glucose is broken down to pyruvate during glycolysis. Glycolysis is an anaerobic process (no oxygen required), and it results in a gain of two ATP molecules.

In the second stage of cellular respiration, the pyruvate passes through either aerobic respiration (requires oxygen) or fermentation. When oxygen is not present, fermentation occurs instead.

Page 30: Cellular respiration in detail

Production of ATP: Summary

Most of a cell’s ATP is made during aerobic respiration. (requiring oxygen)

For each molecule of glucose that is broken down, as many as two ATP molecules are made directly during the Krebs cycle,

and up to 34 ATP molecules are produced later by the electron transport chain.

Page 31: Cellular respiration in detail

Key Concepts: Review . . . Cellular respiration has two stages. First glucose is broken

down to pyruvate during glycolysis, making some ATP.

The Krebs cycle is a series of reactions that produce energy-storing molecules during anaerobic respiration

During aerobic respiration, large amounts of ATP are made in an electron transport chain.

When oxygen is not present, fermentation follows glycolysis, regenerating NAD+ needed for glycolysis to continue

Page 32: Cellular respiration in detail

Computer Lab Activities Go to the following Web-based activities

and watch and complete both activities including the quiz at the end of the second site

video 1 cellular respiration

Aerobic respiration UK version

Aerobic Respiration

Page 33: Cellular respiration in detail

Recommended