Transcript
Page 1: Collapsible graphs and matchings

Collapsible Graphs

Zhi-Hong Chen and Matchings

WAYNE STATE UNIVERSITY DETROIT, MICHIGAN

Hong-Jian Lai WEST VIRGINIA UNIVERSITY

MORGANTOWN, WEST VIRGINIA

ABSTRACT

A graph G is collapsible if for every even subset R G V(G), there is a spanning connected subgraph of G whose set of odd degree vertices is R. A graph is reduced if it does not have nontrivial collapsible subgraphs. Collapsible and reduced graphs are defined and studied in [41. In this article, we obtain a lower bound on the size of a maximum matching in a reduced graph. As an application, we verify and strengthen the Benhocine, Clark, Kohler, and Veldman conjecture [ I I , when restricted to 3-edge-connected graphs, by showing that for n large, a simple graph G with order n and with d ( G ) I 3 is collapsible or is contractible to the Petersen graph if for each edge uu E €(G), d(u) + d(u) I (n/5)- 2. We also characterize the extremal graphs. 0 1993 John Wiley & Sons, Inc.

INTRODUCTION

We follow the notation of Bondy and Murty [3], except when otherwise stated. A graph may have multiple edges but not loops. For a graph G , O ( G ) denotes the set of vertices of odd degree in G . If X G E(G), the contraction G / X is the graph obtained from G by identifying the ends of each edge in X and deleting the resulting loops. If H is a subgraph of G , we use G / H for G / E ( H ) . A vertex u in G / H is nontrivial if u is the contraction image of a nontrivial connected subgraph L of G ; and the connected subgraph L of G is called the preimage of u. Throughout this note, we let P denote the Petersen graph.

A graph is supereulerian if it has a spanning eulerian subgraph. A graph G is collapsible if for every even subset R C V(G) , there is a spanning connected subgraph H R of G with O(HR) = R . Thus K1 is

Journal of Graph Theory, Vol. 17, No. 5, 597-605 (1993) 0 1993 John Wiley & Sons, Inc. CCC 0364-9024/93/050597-09

Page 2: Collapsible graphs and matchings

598 JOURNAL OF GRAPH THEORY

both supereulerian and collapsible. Following Catlin [4], we use 62' and $J to denote the families of collapsible graphs and supereulerian graphs, respectively. Obviously, 6'1 C $1.

In [4], Catlin showed that every graph G has a unique collection of painvise disjoint maximal collapsible subgraphs H I , H 2 , . . . , H, . The reduction of G is the contraction G/(Uf='=IE(Hi)). A graph is reduced if it is the reduction of some other graph.

Theorem A (Catlin [4,5]). subgraph of G .

Let G be a graph and H be a collapsible

(a) G is reduced if and only if G has no nontrivial collapsible subgraphs. (b) G is collapsible if and only if G / H is collapsible. (c) G is supereulerian if and only if G / H is supereulerian. (d) If G @ { K 1 , K 2 } is reduced, then G is K3-free with 6 ( G ) 5 3 and

(e) If G has 2 edge-disjoint spanning trees, then G E (?J. I

For graphs with few vertices, Chen proved:

Theorem B (Chen [7],[81). If G is a simple graph with at most 11 vertices and with K'(G) L 3, then either G E @J or the reduction of G is isomorphic to the Petersen graph. I

A LOWER BOUND ON THE SIZE OF A MAXIMUM MATCHING

Let M(G) denote a maximum matching of G. An odd component of G is one that has an odd number of vertices. Let q(G) denote the number of odd components of G .

Theorem C (Berge [2] and Tutte [lo]). Let G be a graph of n vertices. If

t = max {q(G - S C V ( G )

then IM(G)\ = (n - t ) /2 . I

Theorem 1. with 6 ( G ) 2 3. Then

Let G be a connected reduced graph with IV(G)l = n and

Page 3: Collapsible graphs and matchings

COLLAPSIBLE GRAPHS AND MATCHINGS 599

Proof. t 2 2, then

Define t by (1). Then by Theorem C , it suffices to show that if

n - 8 t 5 - 3 (3)

Suppose that t 1 2 . Let S C V(G) attain the maximum in (1). Since G is connected and since t L 2, IS1 L 1. Assume that G - S has r odd components containing exactly one vertex.

Assume that m = q(G - S) and let G1, G2, . . . , G, be the odd compo- nents of G - S.

Case I : r = 0. Then p(G,)l 2 3, (1 I i 5 m). We may assume that

(la) IV(G,)l = 3. Then by (4),

By (d) of Theorem A, G is K3-free and so G1 zz K1.2. By 6(G) L 3, by 6 ( K 1 , 2 ) = 1 and since G has no 3-cycles, IS1 5 2 and so by (9,

(lb) IV(Gl)l 2 5. Then by (4),

Since m - IS1 = t 2 2 and IS\ L 1, we have m 2 3 and so by (6),

n 2 16. (7)

Case 2. r 2 1. Let G1,G2, . . . , G , be the odd components of G - S containing exactly one vertex, say that V(Gi) = {ui}, (1 I i 5 r ) . Let V“ = { u l , . . . , ur} , and let GI’ = G[V” U S] and n” = IV(G”)l. Then

Page 4: Collapsible graphs and matchings

600 JOURNAL OF GRAPH THEORY

and

n” 5 n - 3(m - r ) ,

which implies

Since G” is also a reduced graph and since all the r vertices in V” have degree at least 3 in G”, it follows that GI’ G { K l , K2) and so by (d) of Theorem A,

3r I IE(G”)l 5 2n” - 4.

By (S), we have

6 r S 4n” - 8 = n” - 8 + 3(r + ISl),

which implies

Combine (9) and (10) to get

t = m - IS1 = ( m - r ) + ( r -

Hence (3) holds always and so (2) follows. I

Corollary 2. and d ( G ) 2 3, then IM(G)I 2 (n + 4 ) / 3 .

If G is a nontrivial connected reduced graph with IV(G)l = n

Proof. By Theorem B, either G = P or n 2 12. Since [ (n + 41/31 I [ (n - 1) /2 ] for n 2 10, we are done by Theorem 1. I

MATCHINGS AND REDUCTIONS

Let G be a graph and let G’ be the reduction of G. Define a”(G) to be the maximum cardinality of an independent set of edges in GI. Since G’ is uniquely determined by G (see [4]), d ( G ) is well defined. Let X = (xiyi: ( 1 5 i I k ) } be a set of k edges in G. Define

Page 5: Collapsible graphs and matchings

COLLAPSIBLE GRAPHS AND MATCHINGS 601

When X = {e}, we use xG ( e ) for xG ({e}) . For convenience, we regard K’ (K I ) = and a”(K1) = 0.

Theorem 3. Let G be a 3-edge-connected simple noncollapsible graph with n vertices and let p be a positive integer. If for every matching M , of size p in G,

and if

then GI, the reduction of G, satisfies

Proof. Since d ( G ) 2 3, we have K’(G’) 1 3 also. Let c = IV(G’)l and m = a”(G). Since K’(G’) 2 3, we have m L 2. Since G is not collapsible, c > 1. If m 5 p , then by Corollary 2, the conclusion of Theorem 3 holds. Hence we assume that

m ? p + l . (13)

Let M = { e l , e2, . . . , e m } be a matching in G’ with size m. By Corollary 2,

c + 4 3

m I -

Note that M E(G) also. Without loss of generality, we assume that

By (13), p 5 m - 1 . Thus by ( l l ) ,

Page 6: Collapsible graphs and matchings

602 JOURNAL OF GRAPH THEORY

and so

For each i ( 1 I i I m), let ei = viui , and let H i ( v ) and H;(u) denote the preimages of ui and ui in G , respectively. Recall that H l ( u ) , . . . , H m ( u ) , H l ( u ) ,..., H,(u) are painvise disjoint. Let S = V(G’[M]). Since K’(G’) 2 3, G’ # K2 and so by (d) of Theorem A, there are at most 2)E(G’)I 5 4c - 8 incidences in G of edges in E(G’) with S .

By (15) and (16),

By (14), c 5 3m - 4. Then by (17),

mn ~ I 4(3m - 4) - 8 + n . P

Suppose that p = 1. If n 2 12, then (18) implies

n - 12 I m(n - 12) I n - 24,

a contradiction. If n I 1 1 , then G’ = P by Theorem B, whence we reach a contradiction with (11).

Hence p 2 2 and so by (12), n > 12p. It follows from (18) that

By (12), we have ( (n - 24)p)/(n - 12p) < p + 1 and so by (19), we have m 5 p , contrary to (13). This completes the proof of Theorem 3 . I

The following corollary follows from Theorem 3.

Corollary 4. n > 12p(p - 1 ) vertices and with d ( G ) 2 3. If for every e E E(G),

Let p > 0 be an integer and let G be a simple graph with

n G P

Z ( e ) 2 - - 2 ,

Page 7: Collapsible graphs and matchings

COLLAPSIBLE GRAPHS AND MATCHINGS 603

then exactly one of the following holds:

(a) G is in (2‘1; (b) G‘, the reduction of G, satisfies

a”(G) 5 p and IV(G’)l 5 3 p - 4.

AN APPLICATION

The line graph of a graph G, denoted by L(G), has vertex set E(G), where two vertices in L(G) are adjacent if and only if the corresponding edges are adjacent in G. In [l], Benhocine, Clark, Kohler, and Veldman conjectured that L(G) is hamiltonian for any 2-edge-connected simple graph G of large order n satisfying

for each edge e E E(G). Li [8] proved this conjecture with an additional condition that the minimum degree is at least 4.

An eulerian subgraph H of G such that each edge in G is incident with at least one vertex in H is called a dominating eulerian subgraph. In [4], Catlin proved:

Theorem D (Catlin [4]). Let G be a graph with lE(G)I 2 3 and let G’ be the reduction of G. Then L(G) is hamiltonian if and only if G’ has a dominating eulerian subgraph that contains all nontrivial vertices of G’. I

Note that every supereulerian graph has a dominating eulerian subgraph, and that by @1 C SJ, a collapsible graph also admits a dominating eulerian subgraph. For 3-edge-connected graphs, we prove the following.

Corollary 5. Let G be a simple graph with d ( G ) 2 3 and n = IV(G)l > 240. If for every matching M5 of size 5 in G,

then either G E (2‘1 or the reduction of G is the Petersen graph.

Proof. Let G‘ denote the reduction of G. By Theorem 3 with p = 5 , we have a”(G) 5 5 and IV(G’)( 5 11, and so by Theorem B, either G’ = K1 and so G E (2, or G’ is the Petersen graph. I

Page 8: Collapsible graphs and matchings

604 JOURNAL OF GRAPH THEORY

Corollary 6. Let G be a graph satisfying the hypotheses of Corollary 4. Then either L(G) is hamiltonian or G can be contracted to the Petersen graph in such a way that every vertex of the contraction is nontrivial.

Proof. It follows from Corollary 5 and Theorem D, and from the fact that P - u E Sf’, for any vertex u E V ( P ) .

The following gives more details about the extremal graphs.

Theorem 7. IV(G>l > 240 vertices. If for each edge e E E(G) ,

Let G be a simple graph with d ( G ) L 3 and with n =

then exactly one of the following holds:

(a) G is collapsible; (b) n = 10s for some integer s > 24, and G can be contracted to the

Petersen graph P in such a way that the preimage of each vertex of P is either K, or K, - el for some e’ E E(K, ) .

Proof. The proof is routine and so is omitted. I

Chen ([7],[8]) previously proved Theorem 7 with an additional condition 6(G) 2 4 and without the restriction on the number of vertices.

ACKNOWLEDGMENTS

The authors would like to thank the referees and Professor Paul A. Catlin for their helpful suggestions.

References

[l] A. Benhocine, L. Clark, N. Kohler, and H. J. Veldman, On circuits and

[2] C. Berge, Sur le couplage maximum d’un graphe. CRAcad. Sci. Paris

[3] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

[4] P. A. Catlin, A reduction method to find spanning eulerian subgraphs.

[5] P. A. Catlin, Supereulerian graphs, collapsible graphs and four-cycles.

pancyclic line graphs. J. Graph Theory 10 (1986) 411-425.

247 (1958) 258-259.

American Elsvier, New York (1976).

J. Graph Theory 12 (1988) 29-44.

Congress. Numer. 58 (1987) 233-246.

Page 9: Collapsible graphs and matchings

COLLAPSIBLE GRAPHS AND MATCHINGS 605

[6] P. A. Catlin, Spanning eulerian subgraphs and matchings. Discrete

[7] Z.-H. Chen, Supereulerian graphs and the Petersen graph. J. Combinat.

[8] Z.-H. Chen, Ph.D. thesis, Wayne State University (1991). [9] X. W. Li, Supereulerian graphs of minimum degree at least 4. Preprint.

[lo] W. T. Tutte, The factorization of linear graphs. J. London Math. Soc.

Math. 76 (1989) 115-124.

Math. and Combinat. Comput. 9 (1991) 79-89.

22 (1947) 107-111.


Recommended