Transcript
Page 1: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Electrochemical Gradients

Ion GradientsCell MembranesIon Channels

Topics I Topics IIIntroduction Synaptic Transmission Electrochemical Gradients Electrophysiology

TechniquesPassive Membrane Properties

Basic Circuits (Spinal Cord)

Action Potential I Sensory Systems OverviewVoltage-Gated Ion Channels

Synaptic Plasticity

Ligand-Gated Ion Channels Recapitulation

Page 2: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Study Material

• NEUROSCIENCE Third Edition– Dale Purves

• Chapter 2 pages 34-43

Page 3: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Aims for this Lecture

• Know the values of the main ion concentration gradients.

• Understand the interaction between diffusion gradients and electrical fields.

• Know and understand the Nernst equation.• Understand the effect of multiple

permeabilities (Goldman equation).• Know the typical resting membrane potential.

Page 4: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Recapitulation L1

• Diffusion is fast over short distances (organelles to small cells), but very slow over long distances (many cells to organs).

• Multicellular organisms need to communicate and need to do so quickly and efficiently.

• Electrical signals across cell membranes are the main signals in nervous systems.

Page 5: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Biophysical Basis

… why did the ion cross the membrane?

All the phenomena that we will be talking about in the next two hours are manifestations of ion flux across membranes.

Which brings us to the central question…

Page 6: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Diffusion and Movement

Wikimedia: Diffusion

Really?

Page 7: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Diffusion

X X

XX

X

X

XX

X XX

X

X

X

X

X

X

X

X

X

l r

Page 8: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

XX

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

l r

Diffusion

Page 9: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Chemical Potential

X X

XX

X

X

XX

X XX

X

X

X

X

X

X

X

X

X

l

r

X

XRT

][

][ln

l r

Constant pressure and temperature

Page 10: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Electrical Potential

K+

Cl-

Cl-

Cl-

Cl-

K+

K+

K+

Cl-Cl-

Cl-Cl-

Cl-

Cl-

Cl-

Cl-Cl-

Cl-

Cl-

Cl-

Cl-

Cl-

Cl-

Cl-

K+

K+

K+

K+

K+

K+K+

K+

K+K+

K+

K+

K+

K+

K+

K+

Page 11: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Electrical Potential

K+

Cl-

Cl-

Cl-

Cl-

K+

K+

K+

Cl-Cl-

Cl-Cl-

Cl-

Cl-

Cl-

Cl-Cl-

Cl-

Cl-

Cl-

Cl-

Cl-

Cl-

Cl-

K+

K+

K+

K+

K+

K+K+

K+

K+K+

K+

K+

K+

K+

K+

K+

Page 12: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Equilibrium

)( ai EEnzF

Electrical Field Chemical Energy

i

a

K

KnRT

][

][ln

n Amount (Mol)

z Valence (+1 for K)

F Faraday‘s constant (charge of one Mole of Ions)

E Potential

R Gas constant

T Temperature (absolute K)

[ ] Concentration in the respective compartment

Page 13: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Nernst Equation

i

aai K

KRTEEzF

][

][ln)(

i

ai K

K

zF

RTE

][

][ln

Nernst EquationDescribes equilibrium No net flux

Page 14: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Specific Equilibrium Potentials

i

ai K

K

zF

RTE

][

][ln

i

ai K

KmVE

][

][log)(61

Intracellular Extracellular E

Potassium Ions

155 mM 4 mM -98 mV

Sodium Ions

12 mM 145 mM +67mV

Page 15: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Mixed Potentials

iNaiK

aNaaKi NaPKP

NaPKP

F

RTE

][][

][][ln

Goldmann, Hodkin, Katz

Page 16: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

-80

-60

-40

-20

0

20

40

0.80.40.0

Resting Membrane Potential

Time (s)

Pote

ntial

(mV)

-71-70-69-68

0.80.40.0

Time (s)

Pote

ntial

(mV)

Page 17: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

A simple calculation..Spherical cell 25 μm radius

252 1085.74 cmrA 383 105.6

3

4cmrV

- ---

-

-

--

-- -

++

++

+

+

+

++

+ +

Specific capacitance 1 μF/cm2

Number of ions, needed to charge this capacitor to 100 mV 7109.4

Total number of ions in a saline solution of 300 mM

%00039.0109.3102.1

109.4 613

7

13102.1

Fraction of ions needing to cross the membrane

Avogadro‘s number 6.0221 10^23Elementary charge 1.6022 10^-19 C

Page 18: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Electrostatic Force

• 2 individuals (weighing 72 kg – made up of water for simplicity’s sake).

• At a distance of 10 m from each other• Of all their charged particles (protons

electrons..) they decide to exchange 0.5% such that person 1 is positively and person 2 negatively charged.

• What force do these two persons exert on each other.

Page 19: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Result

221

04

1

r

QQF

Coulomb’s law

CQQ

mrNm

sA

821

2

2211

0

107.7

10

1085.8

Force = 5.35*1025 N

As a comparison:The gravitational attraction between moon and earth is around 1.98*1020 N

If the two individuals were as far apart from each other as earth and moon, the force would amount to about 3.6*1010 N

Page 20: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Voltage?

How does 70 mV over 8 nm compare to the breakdown voltage in air?

Equivalent to 87.5 kV per cm!

Page 21: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Breakdown Voltages

Wikipedia

Page 22: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Actively Maintained

Intracellular Extracellular

Potassium Ions

155 mM 4 mM

Sodium Ions

12 mM 145 mM

Na+

K+K+

Na+

2

3

Page 23: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

Na/K ATPase

First descriptionThe influence of some cations on an adenosine triphosphatase from peripheral nerves.SKOU JC.Biochim Biophys Acta. 1957 Feb;23(2):394-401.

Page 24: Electrochemical Gradients Ion Gradients Cell Membranes Ion Channels Topics ITopics II IntroductionSynaptic Transmission Electrochemical GradientsElectrophysiology

The Simulators

• Please use the instructions file to unzip and install the simulation environments.

• For the moment focus on the diffusion simulator and the Goldmann simulator.

• Email me questions or even better ask them in class.


Recommended