Transcript
Page 1: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�

Introduction to On-farmOrganic Plant Breeding

Organic Seed AllianceAdvancing the ethical development and stewardship of the genetic resources of agricultural seedPO Box 772, Port Townsend, WA 98368

This publication was made possible through a grant from Organic Farming Research Foundation and Seed Matters

Page 2: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org2

Section I: Introduction...................................................................................................................................................3 Whyplantbreedingisimportant......................................................................................................................................3 Aphilosophyoforganicplantbreeding.........................................................................................................................4 Ourfarmingancestorsneverstoppedbreeding...........................................................................................4 Returningfarmerstotheirroleasseedstewards........................................................................................4

Section II: Plant breeding basics...............................................................................................................................5 Selectionintheoryandpractice........................................................................................................................................5 Howtoselect..............................................................................................................................................................................8 Acrop’smatingsystemandhowitaffectsplantbreeding.....................................................................................8 Self-pollinatedcrops................................................................................................................................................9 Cross-pollinatedcrops............................................................................................................................................9 Breedingself-pollinatedcropsvs.breedingcross-pollinatedcrops..................................................................9

Section III: Developing a plant breeding plan.....................................................................................................12 Thinkingaboutyourtargetenvironment...................................................................................................................12 Determiningtraits.................................................................................................................................................................13 Prioritizingtraits...................................................................................................................................................................13 Howcanthetraitsbemeasured?.....................................................................................................................13 Howeasilycanthetraitsbeinherited?.........................................................................................................14 Choosingparents...................................................................................................................................................................13 Creatingabreedingtimeline............................................................................................................................................15

Section IV: Theories of field-based organic plant breeding...........................................................................21 Howgenestravelfromparentstooffspring..............................................................................................................21 Howgenesdeterminetheappearanceandperformanceofplants..................................................21 Howgenestraveltogetherduringreproduction......................................................................................22 Howgenesoperateinpopulations................................................................................................................................24 Howtoseethegeneticdifferencesbetweenplants...............................................................................................28 Understandtheeffectsoftheenvironment.................................................................................................28 Ensurethatplantsreceiveconsistenttreatment.......................................................................................29 Usesufficientpopulationandplotsizes.......................................................................................................29

Section V: Examples of farmers breeding for organic systems......................................................................30 ‘AbundantBloomsdale’organicspinachbreedingproject...................................................................................30 Whatwerethegoalsofthisproject?..............................................................................................................30 Breedingprocedure...............................................................................................................................................30 ‘WinterSprouting’Broccoli...............................................................................................................................................31 Whatwerethegoalsofthisproject?..............................................................................................................31 BreedingProcedure...............................................................................................................................................31

Glossary and index.......................................................................................................................................................33

References and resources..........................................................................................................................................36

Table of Contents

Page 3: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org3

Why plant breeding is importantThehistoryofthedomesticationofourcropplantsisalsothehistoryofplantbreeding.Throughmanygenerationsoflaborioushumanselection,wildplantsbecameusableasagriculturalcrops.

Ourhunter-gathererancestorshadtohaveanintimaterelationshipwithplantstonoticethegeneticvariationthatexistedandcontinuallyaroseinordertomakemeaningfulprogressinthedo-mesticationprocess.Thisisoneofthefundamentalpreceptsofplantbreedingandgivestheseearlyinnovatorsfullstatusasplantbreeders.

Coupledwithearlyhumanselectionwasastrongelementofnatural selection.Alloftheancestorstoourmoderncropspeciesweregrownwithoutsup-plementalnutrition,fertility,orpestprotectants,andwereconstantlyexposedtothechallengesoftheenvironment.Thebestofthefarmer-breed-ersspedthisprocessalongbyselectingfromthemostdesirableplantsfortheirfoodandfibervalue,usingtheseastheparentalstocksforsubsequentgenerations.Thisbalancebetweenhumanandnaturalselectionpersisteduntilthebeginningoftheindustrialagriculturaleraofthe20thcentury.

Allagriculturalcropshavecontinuouslychangedwiththeselectionpressuresappliedfrombothfarmersandtheenvironmentsinwhichtheywerecultivated.Whenfarmersandtheenvironmentchanged,thecropchanged.Manyofourcropscon-tinuetochangeandadapttonewchallenges.

Thenumberofenvironmentsthatcropsarebredin,andthenumberofbreeders,havebothshrunkoverthepast100years.Thisisbecausefarmersinmostagriculturalregionsoftheglobedolittleornoplantbreedinganymore,andthenumberofre-gionalizedseedcompaniesdoingbreedinghasalsodrasticallyshrunkinthepast40to60years.

Withtheadventoftheindustrialagriculturalmodeltherehasbeenanarrowingofthesetoftraitsthatareconsideredcriticaltotheproductionofmostmoderncrops.Theindustrialmodelhasalsoled

toagradualspecializationshiftinwhereandhowmanyofthemosteconomicallyimportantcropsaregrown.Inthepre-industrialagriculturalera,almostallcropswerespreadacrossmanyenvironmentalandgeographicnichestosatisfythediversityofagriculturalsettlements.Thismeantthattheywereconstantlyadaptingtoadiversityofclimaticcondi-tionsandtheever-changingneedsofthehumanag-riculturalsocietiesthatwereusingthesecrops.Thefarmersineachregionwerethebreeders.Somefarmerswereundoubtedlybetterbreedersthanothers.Therehasalwaysbeensomespecializationinmanyaspectsofagriculturalsocieties,butinthispre-industrialera,everyagriculturalcommunitycertainlyhadtheseedneededbythatcommunity.Seedofeachofthesecommunityvarietiesweregeneticallyuniquefromasimilarvarietyofthesamecropinthenextcommunity.Thispatchworkofuniquevarietiesisthenmultipliedthousandsoftimesacrosstheuniqueenvironmentsofagricul-turalcommunitiesaroundtheglobe.

Cropgeneticdiversityinthepre-industrialerawasalsomuchgreaterthanwhatcurrentlyexistsinmodernagriculturebecausethediversitywithineachcommunityvarietywasfarricher.Farmersdidnotdemandthekindoftraituniformitythatisnowthenorminourmoderncrops.Thisallelic*di-versitywaspartofeverycroppopulationandwasreflectedbymanyuniquegenotypes(andpheno-types)ineachfield.

TherewasagreatblossomingofseedcompaniesinNorthAmericaandEuropeinthesecondhalfofthe19thcentury.Withtheadventofseedasacommercialcommodity,andtheemergenceofseedcompanies,therewasanincentivetoproduceseedofcropvarietiesthatweremuchmoreuniformandpredictable.Theseearlyseedcompanieswereregionalinnature.Theyreliedonacentralstoreinametropolitancenterandsupplementedwithmailordersformuchoftheirbusiness.

Theindustrializationofagricultureinthe20thcenturyledtoamuchhigherdegreeofspecializa-tion.Specificregionswithmore“idealclimates”foracertaincroptypeandprimeagriculturallandbe-camecentersoflarge-scaleproductionforcertaincrops.Inaddition,plantbreedingprogramsstarted

I. Introduction

*Definitionsfortechnicalwordsthatareitalicizedandboldedcanbefoundintheglossary

Page 4: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�

cateringtoindustrializedsystems,frommechanicalplanting,cultivation,andharvesting,totheneedsofthepackers,shippers,andretailershandlingthecroppost-harvest.

The philosophy of organic plant breedingAsorganicplantbreeders,wehaveanopportunitytoshapeorganicagricultureinfundamentalways.Bymakingnewvarietiesavailabletoorganicfarm-ers,weareabletogivethesefarmersnewoptions.

Buildingahealthy,sustainableagriculturefuturerequiresfarmer-centricseedsystemsatthere-gionallevel,wherefarmersandthecommunitiestheyserveconsciouslychoosewhichcropgeneticstheyuse,howtheyaremaintained,andhowthesegeneticsarecontrolled.

Donewell,organicplantbreedingcanhelpensurethatfarmerscontroltheseedtheyuse.Breedingworkcangivefarmersfreeaccesstogeneticre-sourcesandthefreedomtogrowwhattheyplease,whilesupplyingthemwiththeknowledgeandskillstobothgrowseedandimproveacrop’schar-acteristicstobestmeettheirneeds.

Overthepastseveraldecades,plantbreedinghasbecomeincreasinglyformalizedandcentral-ized.Breedingworkthatwasoncedonemainlyinfarmers’fieldsisnowdonealmostexclusivelybylargeseedcompaniesandonstate-runagricul-turalexperimentstations.Mostbreedersworkingforlargeseedcompanies,aswellasmostpublicbreeders,focustheirattentionprimarilyonthelargestmarketsforseed,whicharetypicallylarge,conventionalfarmingsystemslocatedinprimeagriculturalregions.Thisfocusontheneedsoflarge-scale,conventionalagricultureleavesorganicfarmerswithoutvarietiesthatareadaptedtotheneedsoftheirsystems.Researchhasfoundthatthelackoforganicallyadaptedvarietiesleavesorganicfarmersatadisadvantage,resultingin,amongotherthings,loweryieldsthaniftheyhadvarietiesadaptedtotheirsystems.Organic,on-farmbreed-ingworkisdevotedtoservingtheneedsoftheseorganicfarmers.

Our farming ancestors never stopped breedingAllgoodfarmerswhosurvivedandflourishedwere,bynecessity,plantbreeders.Theyusedob-

servationalskillstodetermineandselectthebestadaptedplantseveryyear.Thismeantselectingthehighestyielding,besttasting,andmostdisease-re-sistantplants.Alloftheheirloomcropvarietiesweknowandenjoytodayweredevelopedoveralong,richperiodofourhistory,tellingthetaleofourplantbreedingancestorswhoweremakingselec-tionsandsavingseedfromthehealthiestandmostvigorousplantsyearafteryear.Thesefarmerswereconstantlystrivingtoimprovevarietiestobettersuittheirneeds,engaginginaconstantdanceofimprovementandco-evolutionwiththeirfood.

Theseancestorswereneverfullysatisfiedwiththecropstheyhad.Theywantedtoimprovetheirfarmer-bredvarieties(sometimescalledlandra-ces),sinceitcouldmeanthedifferencebetweenlifeanddeathfortheirfamiliesandcommuni-ties.Modernorganicfarmerswhoarechoosingtoproduceandselectcropvarietiestoflourishintheirregionalagro-ecosystemsarerubbingshoul-derswiththebestfarmer-breedersofthepastwhodomesticatedandcontinuallyimprovedourcropgeneticresources.

Therewillalwaysbeaneedtoadaptnewvariet-iestocurrentchallenges,suchasclimatechange.Classicalplantbreedingallowsustoselect,adapt,andcontinuallyco-evolvewithourfoodcrops.Thisformofplantbreedingisnottobeviewedas“messing”withnature,anditiscertainlynotgenet-icengineering.Theprinciplesofevolutionshowusthatthereisalwaysvariationinbiologicalpopula-tions,environmentalconditionsalwayschange,andnobiologicalentityeverstaysthesameinresponsetoitsenvironment.Inotherwords,noorganismiseverstaticinnature.Selectionpressureandchangeovertimeareinevitable.Weadvocateforanevolu-tionarybreedingmodelthatallowsthevarietiesweusetobepartofthesustainableagriculturalsys-temswearepioneering.

Returning farmers to their role as seed stewardsOurworkatOrganicSeedAlliance(OSA)isintend-edtoempowerfarmerstoagainbepartoftheseedsystemthatmostfarmershavebeendivorcedfromforalmost100years.Overthelastcentury,wehavenotonlylostvaluablegeneticdiversitythroughmodernagriculturalpractices,wehavealsolostmuchofthefarmerknowledgeneededtosteward

Page 5: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�

thegeneticresourcesthataremostimportanttothemandtheircommunities.Webelievethereisjustasmuchimportantworktobedoneintrainingfarmerstobreed,maintain,andgrowhigh-qualityseedcropsadaptedtotheneedsoflow-input,agro-ecosystemsasthereisforpreservingthegeneticresourcesofthepast.Thebestwayforvaluablegeneticresourcestobecomepartofmodernag-ricultureistogetthemintothehandsoffarmers.Asskilledstewards,thesefarmerswillcontinuetoadoptandfurtheradaptthegeneticstotheirneeds.Itisthereforecriticalthatfarmersfirsthaveaccesstothesegeneticresources.

Ourbreedingworkisdoneonagro-ecologicalfarmsbyapplyingsoundclassicalplantbreedingmethodology.Weemphasizebuildinggeneticresil-ienceanddiversityintoeverycroppopulation.Ourplantbreedingworkstrivestoestablishadiversi-fiedandecologically-basedagriculture,tofosterthemanagementofcropsgeneticsattheregionallevel,andtostrengthenaregion’seconomy.OSApromotesthestewardshipofseedinamannerthatencouragestheadaptationofplantgeneticstotheecologicalandmarketneedsoffarmersandthecommunitiestheyfeed.Thisincludeshelpingfarmersperformon-farmplantbreedinginthesamemannerasourmostinnovativeancestors.Tonotencouragesuchimprovementswouldbeadisservicetofarmers,eaters,theplanet,andfuturegenerations.

Thissectioncoversthebasicsofhowtocreateandimprovevarietiesforyourorganicfarm.Firstwedescribethebasicstepsofplantbreeding.Thenwedescribesomebasicgeneticprinciplesandhowtheyapplytoplantbreeding.

Initsessence,plantbreedingcanbeboileddowntothefollowing:

Select plants with superior genes from a genetically variable population of plants.

Howyoudothiswilldependonyourgoals,thecropsyouareworkingon,andthetimeandre-

sourcesyouwanttoinvest.

Selection in theory and practiceSelectioninplantbreedingreferstotheprocessofchoosingwhichplantsproducethenextgenerationofapopulation.

Therearetwomajortypesofselectionappropriateforon-farmbreeding:massselectionandfamilyselection.Therearebenefitsanddrawbackstoeachtypeofselection.Whetheryouuseoneortheother,oracombinationofboth,willdependonthecropyouareimprovingaswellasyourtimeframe,resources,andultimategoals.

Withmass selection,youmakeselectionsbasedonhowindividualplantswithinapopulationperform.Massselectionisthemoststraightforwardbreed-ingmethod.Assuch,itrequiresminimumtime,labor,andrecordkeeping.Becauseofthesimplicity,itcanmakeworkingwithlargepopulationsmorepracticalduringthebreedingprocess.However,itdoeshaveafewdrawbackswhencomparedtofamilyselection.First,becauseyourselectionsarebasedsolelyontheplant’sphenotype(itsoutwardappearance),youaremorelikelytochooseaplantbasedonenvironmentalinfluenceratherthanonsuperiorgenetics.Forexample,thesoilwherethatplantisgrowingmaybemorefertileincomparisontoaneighboringspotinthefield.Theseconddraw-backwithusingmassselectionisthepotentialthatundesirablerecessive genesmaybecarriedbytheplantsyouselectinahiddenheterozygousstate.

Griddedselectionisonetechniquethatcanbeusedwhendoingmassselectiontohelpaccountfortheinfluenceoffieldvariationonplantpheno-types.Whenusinggriddedselection,imaginethefieldthatisplantedwithyourbreedingpopulationdividedintoagridofsmallersections.Forexample,thefieldcouldbedividedintoquarters.Whense-lecting,attempttoselectanequalnumberofplantsfromeachsection.Evenif,forexample,theplantsinthenorthwestcornerofthefieldlookinferioringeneraltotheotherquarters,selectthebestplantsfromthatsection.

Incontrasttomassselection,withfamilyselec-tionyouarelookingattheoverallperformanceofagroupofrelatedplants(afamily)andusingthe

II. Plant Breeding Basics

Page 6: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org6

Figure 2. This diagram exhibits the steps to execute family selection in three successive steps.

family’soverallperformancetomakeselections.Infamilyselection,youplantaseriesofrowsofplants,whereeachrowcomesfromseedsavedfromasingleselectedplantfromthepreviousgeneration.Theadvantagesoffamilyselectionaretwo-fold.First,becauseyouaremakingselectionsbasedonawholerowofplantsthatarecloselyre-lated(siblingsor“sibs”),ormorethanonerowforeachfamilyifyouareusingreplication(seemore

Key: Each star represents a selected plant

Gridded Selection

Figure 1. Gridded selection is one technique that can be used when doing mass selection to help account for the influ-ence of field variation on plant phenotypes.

aboutthisconceptbelowinthetheorysection),itbecomeslesslikelythatyoumightselectplantsbasedontheinfluencesofverylocalizedenviron-mentaleffects.Second,becauseyouareabletoseemanycloselyrelatedplantsnexttoeachother,youaremorelikelytospotsomeplantsexhibitingdeleteriousrecessivetraitsthatmaybecarriedinagivenfamily.

Page 7: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org7

Figure2exhibitsthestepstoexecutefamilyselec-tioninthreesuccessivesteps.Instep1,eachoftherowsisafamilyinacornbreedingprogram,withthesamerowrepresentedlefttorightsequentiallyacrossthethreeselectionsteps.Step1involvesevaluatingeachfamilyasawholebasedontheper-formanceoftheentirerow.Step2istoeliminateanyfamiliesthatdonothaveahighproportionofsuperiorplants.Althoughtherearenohardandfastrulesinplantbreeding,whendecidingwhichfamiliestoselect,atOSAweeliminateafamilyunlessithasatleast60to70%acceptableplants.Onceyouhavedeterminedwhichfamiliestokeep,step3istoeliminatethepoorest30to40%oftheplantswithinthesefamilies.Step4showsthefinalfieldarrangement,withonlytheselectedplantsintheselectedfamiliesremaining.

Thefamiliesthatareusedinfamilyselectioncancomeinvariousforms.Threeofthemostcommonformsarehalf-sibfamilies,full-sibfamilies,andS1families.Half-sib(HS)familiesarefamilieswherealloftheplantsshareacommonmotherbutmayhavedifferentfathers.Youwouldproduceahalf-sibfamilybysavingseedfromaplantthathasbeenallowedtoopenlypollinatewithmanyotherplants.Alloftheseedyousavefromthatplantsharesamother,buteachseedwaspotentiallycreatedbyfertilizationwithpollenfromdifferentfathers.Plantsinafull-sib(FS)familysharebothamotherandfather.Youwouldproduceafull-sibfamilybyconductingacontrolledpollinationbetweentwoplants.PlantsinanS1familyallcomefromaself-pollination.Inotherwords,theyallsharethesamesingleparent,whichactedasbothmotherandfather.Allthreeofthesefamilieshavetheiruses.Ingeneral,asyougofromfamilieswithlessrelat-ednesstofamilieswithmorerelatedness(HStoFStoS1),thefamiliesbecomemoreuniform.Thisuniformityallowsyoutobetterpredicthowtheir offspringwillperform.Inaddition,withS1familiesinparticular,youarebetterabletoseethetraitscontrolledbyrecessivegenesinthatfamily.How-ever,FSandS1familiesoftentakemoretimeandeffecttoproduce,andtheycreateagreaterriskforinbreedingincross-pollinatingspecies.

Selectioncan,andshould,bedoneatmanypointsthroughouttheseason.Selectionfortraitssuchasgermination,vigor,plantstature,leafshape,color,

andweedcompetitivenesscanoccurearlyintheseason.Byplantingatahighinitialdensity,someofthesetraitscanbeselectedforduringthethinningprocess.Manyvegetablecrops,suchascarrots,let-tuce,cabbage,onions,andkaleproduceaharvest-ablecropbeforepollination.Ontheotherhand,theharvestablecropofsomecroptypes,suchascorn,wintersquash,tomatoes,andmelons,canonlybeevaluatedafterpollinationoccurs.Itisdesirabletodoasmuchselectionaspossiblebeforepollina-tionoccurstoincreasetherateofprogressofyourbreedingwork.Anyselectiondoneafterpollinationislesseffectivethanselectiondonebeforepollina-tion.Thisisbecauseinthelatterscenariothepol-lenfrominferiorplantsisallowedtofertilizethesuperiorplants,thuspassingtheirgenesontothenextgeneration.

Thefinalconcepttounderstandinselectionistheselection intensity.Inessence,theselectioninten-sityisbasedonthefractionofplants,orfamilies,youselectfromthestartingpopulation.Forexam-ple,youwouldbepracticingagreaterintensityofselectionifyouselectedonly50plantsoutof500tosaveseedfromthanifyouselected300plantsoutof500.Asyouincreasetheselectionintensity,youwillmakemoreprogressinyourbreeding.However,especiallyincross-pollinatedcrops,youneedtoavoidendingwithtoosmallofapopula-tion,whichcanincreasetheriskofinbreedingdepressionorlosingvaluablegeneticdiversitythatyoumayneedinthefuture.Ageneralguideontheminimumnumberofplantstokeepinyourpopu-lationcanbefoundinOSA’sSeed Saving Guide for Gardeners and Farmers.Becauseitisimportanttoavoidgoingbelowtheseminimumpopulationsizerecommendations,thebestwaytoincreaseyourbreedingefficiency–throughincreasingtheselec-tionintensity–istostartwithmoreplants.

Therearetwobroadtermsthatconveytheinten-sityofselection.Thetermpositive selectionisusedwhenasubstantialfractionoftheplantsinapopulationarebeingremoved.Negative selection,alsoknownasroguing,referstotheremovalofonlyasmallfractionofthepopulation,usually10to20%orless,duringaseason.Manytimes,suchaswhenmaintainingavariety,negativeselectionmaybeallthatisneeded.Evenifyouareunsureofwhichplantsarebestinyourpopulation,youwill

Page 8: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org8

probablybeabletospotandremovethepoorestperformingplantsandtheplantsthatareobviousoff-types.Thisconceptisbestexpressedintheoldplantbreedingaxiom:“Idon’talwaysknowwhatIlike,butIalwaysknowwhatIdon’tlike!”

How to selectHowdoyouactuallypracticeselectioninthefield?Thereareanumberofmethodsforchoosingwhichplantswillproducethenextgenerationofthebreedingpopulation.Afewofthesemethodsaredescribedbelow.

Eliminate inferior plants or entire families as you identify them.Thismethodcanbeeasilyusedwhenselectingfortraitsduringthinning,asmentionedabove,orwhenpracticingnegativeselection.Thismethodhastheadvantageofbeingverysimpleanddirect:cutdown,hoeout,orpullupanyplantsthatdonotmeetyourselectioncriteria.Themethodhasafewlimitations,however.First,ifyourbreed-ingpopulationhasrelativelyfewgoodplantsandrequiresahighselectionintensity,itcanbemoretime-consumingtoidentifytheinferiorplantsinsteadofidentifyingthefewsuperiorplants.Sec-ond,ifyouarelookingformultipletraitsatonce,andyoudon’texpecttofindplantsthatperfectlyexhibitthesetraits,youmayneedamorerobustwayofselectingplantsbasedontheiroverallper-formanceacrossmultipletraits.

Select superior plants or families as you see them. Thismethodistheconverseoftheonejustde-scribed.Typicallyyouwalkyourbreedingfieldonanumberofoccasionsthroughouttheseason,evalu-atingforoneormoretraitsatappropriatetimes.Toselectaplantorfamily,placeaflagorstakenexttotheplantorfamily.Youcanusedifferentcoloredflagsduringevaluationsfordifferenttraits,oryoucanmakenotesonastakeorinanotebooktodescribewhyyouareselectingcertainplantsorfamilies.Thismethodisusefulwhenfindingasmallpercentageofsuperiorplantsorfamiliesoutofalargerpopulation.Thismethodcanalsocutdownonextensiverecordkeepingwhenthechoicesofwhichplantsorfamiliestoselectareobvious.

Select superior plants of families based on data. Thismethodinvolvesrecordingmeasurementsorscoresforeachplantorfamilyforthetraitsof

interest.Thedataisthenusedtomakeselections.Thismethodisthemosttimeandlaborintensiveofthethreeandonlybecomespracticalwhendealingwithsmallernumbersofplantsorfamilies(lessthanafewhundred).However,thereareanumberofreasonstousethismethod.First,thismethodisusefulforidentifyingasmallnumberoffamiliesthatperformedbestbasedonarangeoftraitsthataremeasuredovertheseason.Forexample,sayyouwanttopickoutthebestkalefamiliesbasedonearlyvigor,leafcolor,resistancetoearlyaphidpressure,andlengthofharvestseason.Inthiscase,youmayneedtomakeyourselectionattheendoftheseason,butyouwillneeddetailedinformationabouteachfamily’sperformancethroughoutthewholeseason.Second,thismethodhelpsincaseswherethetraitsarenotimmediatelyvisiblebutyouneedsomemeasurementstoevaluate.Thesemeasurementsmightincludeweighingyieldsormeasuringplantheights.Third,thismethodworkswellwhenyouhaveplantedyourfamiliesinmulti-plereplicationsandwanttofindtheaverageper-formanceofafamilyacrossallreplications.

Whenrecordingdatatoguideselections,atraitcaneitherbemeasuredorscored.Tomeasureatrait,toolssuchasscalesoryardsticksareusedtogetavalue.Toscoreatrait,youassignavaluetoaplantorfamilybasedonaratingsystem.Forexample,youmightscoreleafsizeonascalefrom1to9,where1representsatinyleafand9representsalargeone.Whenscoringtraits,beginbywalkingtheentirefieldtoassesstherangeofexpressionwithinthepopulationforthetraitofinterest.Theplantsorfamilieswiththeworstorleastdesirableexpressionofthetraitwillbethe1onyourscaleandtheplantsorfamilieswiththemostdesir-ableexpressionwillbeyour9.Thenproceedtoscoreallplantsorfamiliesbasedonthatrange,attemptingtousethewholerangeofscoresfrom1to9.MoreinformationonhowtoconducttheseevaluationscanbefoundinOSA’sOn-farm Variety Trials: A Guide for Organic Vegetable, Herb, and Flower Producers.Boththisguideanddatasheetsforevaluatingandselectingplantsareavailableforfreedownloadatwww.seedalliance.org.

A crop’s mating system and how it affects plant breedingThewayaplantmatescanbedescribedasfalling

Page 9: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org9

alongaspectrumbetweenstrongly self-pollinating andstrongly cross-pollinating.Whereacropfallsonthisspectrumhasseveralimplicationsforwhichbreedingmethodwillbemosteffective.Thisideawillbediscussedindetailbelow.

Self-pollinated cropsInplants,self-pollinationoccurswhenthespermofanindividualplantfertilizesanovuleofthesameplant.Essentially,theplantmateswithitself.Theplant’sinbredoffspringreceivealloftheirgenesfromthisoneandonlyparent.Thus,theoffspringareverygeneticallysimilartothisparent.Allpre-dominatelyself-pollinatingplantshaveperfectorbisexualflowers,whereboththemaleandfemalesexualstructuresareborneineachflower.Self-pol-linatingplantsalsohaveflowersthatexcludecross-pollinationasdescribedbelow.

Therearetwoimportantadvantagesofself-pol-lination.First,inplantsthathaveevolvedtobe-comeextremelywelladaptedtotheirenvironment,self-pollinationoffersawaytoensurethataplant’soffspringwillbejustaswelladaptedasitsparents.Inotherwords,self-pollinationisawayofreplicat-ingsuccess.Second,self-pollinationhelpstoensurereproductivesuccessunderavarietyofenviron-mentalcircumstances,asitdoesnotrequirethepresenceofwind,insects,oranimalstotransferpollenfromoneplanttoanother.

Theplantsthatwecallstrongly self-pollinatingrelyalmostcompletelyonself-fertilizationtoreproduce.Theperfectflowersoftheseplantshaveevolvedwaysofexcludingpollenfromotherflowerstopreventcross-pollination.Forexam-ple,theflowersofmostmoderntomatovarietieshaveanthersthatformaconearoundthepistil,effectivelysealingofftheflower’sstigmafromanypollenotherthanitsown.Inpeas,thepet-alsofthefloweraretypicallyclosedwhenthestigmafirstbecomesreceptivetopollen,givingpollenfromitsownanthersexclusiveaccesstothestigma.Whenthepeafloweropens,itisnearlyalwaysalreadyfertilized.Otherexamplesofstronglyself-pollinatingplantsincludecom-monbeans,wheat,andoats.

However,evenastronglyself-pollinatingplantwilloccasionallycrosswithanotherplantofthe

samespecies.Forexample,beescaneatthroughortearopenflowersanddepositpollenfromadifferentplantofthatspecies.Anumberofplantbreedersandseedgrowershavealsonotedthatwiththeincreaseofinsectactivitythatusuallyoccursinorganicallymanagedsystems,thereisoftenanincreaseinthepercentageofcrossesthatoccurinstronglyself-pollinatingplantspecies.Also,undercertainclimaticconditions,theflow-ersofsomeself-pollinatingplantswillopenearli-erthannormalandthestigmawillbereceptivetoreceivingpollenfromanotherplantbeforeithasachancetoself-fertilize.Andofcoursehumanscanperformcontrolledcrossesbetweenself-pol-linatingplantsbyintentionallytransferringpollenfromoneplanttoanother.

Cross-pollinated cropsOntheotherendofthebiologicalspectrumarecross-pollinatedplants.Cross-pollinationoccurswhenthespermofoneplantfertilizesaneggofadifferentplantofthesamespecies.Inotherwords,aplantmateswithanotherplantofthesamespe-cies.Whentwoplantscross-pollinate,theyproduceoffspringthataregeneticallydifferentfromeitherparent.Ingeneral,allplantshavethepotentialtocross-pollinate,becauseeveryplantcanbefertil-izedbyanotherplantofthesamespecies.

Thecentraladvantageofcross-pollinationisthatitfacilitatesaplantspecies’abilitytoadapttochang-ingenvironments.Plantspeciesthatconstantlymixtheirgenesintonewcombinationsincreasethelikelihoodthatatleastafewindividualswithinthespecieswillhavetherightcombinationofgenestowithstandnewenvironmentalchallenges.

Breeding self-pollinated crops vs. breed-ing cross-pollinated cropsThematingsystemofthecropaffectsbreedingstrategiesinsomefundamentalways.Self-polli-natedcropsneedlessisolationdistancefromeachotherandothercompatiblespeciesthancross-pol-linatedcropstoavoidunintendedcross-pollination.Theneedforlessisolationmakesiteasiertoman-ageseveralsimultaneousbreedingprojectsofthesamespeciesinalimitedspace,andwillallowyoutogrowyourbreedingprojectnearacommercialcropwithoutthreatofcross-contamination.Itisgenerallyhardertomakecrossesbetweenself-pol-

Page 10: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�0

linatedplantsthancross-pollinatedones.Inordertoovercomeaself-pollinatedplant’stendencytoonlyself-pollinate,somehandlaborisoftenre-quired,suchasremovingthemalepartsofoneplant(knownasemasculation)andcollectingandbringinginpollenfromanotherplant.Foron-farmbreedingprojects,cross-pollinatedcropscanbehandledwithsimpletechniqueslikestraincross-ing,explainedbelow.

Thechallengeofcross-pollinationinself-pollinatedcropshasanimportantadditionaleffect.Popula-tionsofcross-pollinatedcropscaneasilycross-pollinateandrecombinetheirgenes.Ontheotherhand,afteraninitialcrossismadeinaself-polli-natedcrop,eachsubsequentgenerationofself-pol-linationrapidlyfixesgroupsofgenes.Seebelowforanillustrationofthisphenomenon.

Doingbreedingworkwithself-pollinatedcropsallowsyoutoeasilycreateuniformvarietiesfromcrosses.Oncethesevarietiesaredeveloped,theyaremucheasiertomaintaincomparedtocross-pollinatedvarieties.

Finally,self-pollinatedcropssufferlessfromin-breedingdepression.Thisallowsyoutoworkwithfewerplantsinaself-pollinatedbreedingprogramcomparedtoacross-pollinatedbreedingprogramandstillproduceavigorousvariety.

Asfigure3shows,ifwefollowthegenerationsofplantsafteracrossismadeineitheraself-pol-

Comparison of Attributes of Self- and Cross-pollinated Crops

Self-pollinated crops Cross-pollinated crops

Isolation Less More

Crossing Harder Easier

Self-pollinating Easier Harder

Inbreeding depression Less More

linatedspeciesorinacross-pollinatedspecies,fundamentaldifferencesariseinthestructureofthepopulations.Inacross-pollinatedspecies,theplantsineachgenerationareabletointermate.Intermatingcreatesaunifiedgene poolandallowsnewcombinationsbetweenplantstobemadeeachyear.Incontrast,unlesshumansintervenetomakeadditionalcrosses,self-pollinatedplantswillself-pollinateineachgenerationaftertheinitialcross.Self-pollinatingineachgenerationleadstoeachplantderivingseparatefamiliesorlines.Ineachgeneration,theplantsineachfamilywillbecomemoreuniformwithinthefamily,whilestrongerdifferenceswillarisebetweenfamilies.Thegeno-typesofeachfamilybecomefixed,andnewgeneticcombinationsbetweenfamiliesonlyoccurthroughhand-pollinationorthroughrarenaturalcross-pollination.Theconsequenceforbreedersisthat,whendealingwithself-pollinatedcrops,asufficientnumberoflinesmustbecreatedandmaintainedtofindalinethathasallofthetraitsofinterestfrombothparents.Incontrast,thegenepoolofcross-pollinatedcropscanbegraduallyimprovedbyeliminatingtheworstplantsorfamilies,andallow-ingthebesttocross-pollinatetocreatenewcom-binationsthatmaycontainthedesiredtraitsfrombothparents.

Inbreeding depressionisalossofvigorduetoself-pollinationorthecrossingofgeneticallysimi-larplants.Essentially,inbreedingdepressionisthereverseofheterosis(hybridvigor).Inbreedingdepressionresultsfromtheaccumulationofho-

Page 11: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org��

mozygouspairsofrareanddetrimental recessive alleles.Tosimplifytheidea,figure4servesasanexamplewherethereisararemutantrecessiveallele,a,inapopulation.Ifaplanthastwocop-iesofthisallele(aa),theplantcannoteffectivelyproducechlorophyll.Theplantappearsverylightgreenandgrowspoorly.Aslongasaplanthasonecopyofthefunctioningallele,A,itwillbeabletoproducechlorophyll.Inotherwords,plantswiththegenotypeAAorAaarehealthy.Asmallfractionofthepopulationcarriesthisalleleasaheterozy-gote(Aa).WhentheseAaplantscross-pollinate(ontheright-sideoffigure4),almostallofthepollentheyreceivewillcarrythedominantAallele,andtheiroffspringwillbehealthy,evenifhalfoftheoffspringarecarryingthedeleteriousrecessiveaallele.However,iftheseheterozygousAaplantsself-pollinate,oriftheypollinatewithcloserela-

tives,thesituationchanges.Asyoucanseeontheleftinfigure4,whenoneoftheseplantsself-pol-linates,25%oftheiroffspringwillbehomozygousaaandwillshowthedetrimentaleffectsfromhav-ingtwocopiesofthisallele.Mostcross-pollinatingplantscarrymanydeleteriousrecessivealleles.Theseplantsrelyoncross-pollinationamonglargepopulationstoavoidinbreeding.Withself-pollinat-ingplants,ontheotherhand,selectionhasactedovermanygenerationstoweedouttheplantswithdeleteriousalleles.

Figure 3. This diagram show how populations of self-pollinated and cross-pollinated crops differ in their genetic structures.

Page 12: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�2

Thinking about your target environmentInaperfectworld,plantbreederscoulddevelopva-rietiesthatthrivedinanysituationandanywhereontheplanet.Infact,mostlargeseedcompaniesstrivetoproducevarietiesthatcanbegrownacrosswidegeographicregionsinmanyagriculturalsitua-tions.Thisconceptisknownasbroad adaptation.However,varietiesthatarebroadlyadaptedmaynotbethebestvarietyforanygivenarea,andtheymayrequirehighlevelsofinputstorecreatethegrowingenvironmentunderwhichtheywerebred.Creatingbroadlyadaptedvarietiesmayalsore-quireextensivetestingthatmostsmallerbreedingprogramsdonothavetheresourcestoundertake.Incontrasttobreedingbroadlyadaptedvarieties,specifically adaptedvarietiesarebredtoexcelinspecificenvironments.Thesevarietiesarenotex-pectedtodowelleverywhere,justinthetargeten-vironment.Theconceptoftherelativeperformance

ofavarietychangingbasedontheenvironmentitisgrowinginiscalledthegenotype by environ-ment interaction(GxE).

Oneofthefirststepsinplanningabreedingproj-ectistoidentifythetargetenvironment.Theenvi-ronmentcanbeasbroadornarrowasyouchoose,keepinginmindthatadditionalresourceswillberequiredasthebreadthoftheprojectincreases.Developingabroadlyadaptedvarietywillrequiremoretimeandresourcesthandevelopingavari-etyspecificallyadaptedtoyourlocalconditionsandchallenges.

Whendetailingthetargetenvironmentwhereyouwantyourvarietytoexcel,thereareseveralimpor-tantfactorstoconsider.Someoftheseare:

Geographicregion(daylengthandfrost-freeperiod)Temperatureregime(highs,lows,fluctuations,andcumulativeheatunits)Rainfall(amountandtiming)

Figure 4. Inbreeding depression results from the accumulation of homozygous pairs of rare and detrimental recessive alleles. This diagram serves as an example where there is a rare mutant recessive allele, a, in a population.

III. Developing a Plant Breeding Plan

Page 13: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�3

SoiltypeDiseasepressuresWeedpressures

Youshouldalsoconsiderculturalfactorsinyourtargetenvironment,suchas:

Croppingsystem(directseedingvs.transplanting)Irrigationsystem(overhead,drip,orflood/furrow)Fertilization(typeandfrequency)Cultivationtechniques(frequencyofplowing,mechanicalvs.handtechniques)

Finally,considerthemarketandsocialfactorsthatareintegraltoyourtargetenvironment,includingexpectationsfor:

ColorStoragepropertiesFlavorCulinaryusesQualityofproductTransportationability

Determining traitsKnowingwhatyouwantiscriticaltogettingwhatyouwant.Themostsuccessfulbreedingprojectshaveclearlydefinedtraitsthatarebeingselectedfororagainst.Priortostartingthebreedingeffort,itisimportanttotakethebroadlydefinedgoalsforthevarietyanddigdowntodefineexactlywhatyouwillbelookingforinthefield.Itmaybeveryeasytocomeupwithalistofthetraitsthroughbrain-storming.Anotherwaytounderstandwhichtraitsareimportantisbydiscussingthebestcurrentlyavailablevarieties.Whatarethetraitsthatmakecertainvarietiessogreat?Whataretheylacking?Ausefulconceptisthatofan ideotype.Anideotypeisessentiallyanidealizedcropvarietythatisper-fectlysuitedtoaparticularsetofproductionandmarketcriteria.Whatwouldthisidealvarietylooklike?Howwoulditperform?Whattraitswoulditneedtohavetobesuccessful?Whatarethetraitsthatareimportanttothefarmerandmarketplace?

Someexamplesoftraitsthatyoumaywanttose-lectforinclude:

PlantheightPlantstature

•••

••••

••••••

••

DaystomaturityHarvestableyieldColorFlavorTextureStoragelifeSeedlingvigorPestResistanceDiseaseResistance

Prioritizing traitsOnceyouhavecompiledalistoftraits,thenextstepistoprioritizethem.Ingeneral,abreedingprojectshouldnotattempttoactivelyselectformorethanfiveorsixtraitsatanygiventime.Theremaybemorethanfivetraitsthatareimportant,butit’snotfeasibletoworkoneverythingallatonce.Alsoconsiderthatsometraitsmaybeeasilyfixed,or“lockedin,”bychoosingparentsthatsharethesetraits.Inthiscase,effectiveselectionmaybeachievedsimplybythrowingoutacoupleofoff-typeplantshereandthere.

Toprioritizethetraitsandlimitthelisttofive,twoquestionstoconsiderare:

Isthetraiteasilymeasurable?Howheritableisthetrait?

How can the traits be measured?Plantbreedingisanexerciseinbalancingwhatwewantwiththeresourceswehavetodothework.Mostplantbreedingprojectshavelimitedresources,soitmakessensetoavoidbreedingfortraitsthatrequireexcessivelabor.Itmightbewonderfultode-velopalettucevarietythatsupportsadiversefloraofmicroorganismsarounditsroots,butunlessyourprogramhastheresourcestodeterminetheidentityofawidevarietyofspeciesofsoilmicrobesinhabit-inghundredsoflettucelines,youwillneedtoworkwithtraitsthatareeasiertomeasureandselect.Intheprocessofprioritizingselectioncriteria,consid-erwhenandhowthetrait(s)willbemeasured.Thisplandoesn’tneedtobefleshedout,butitshouldbesufficientlydetailedsothatyouhaveanideaofhowmuchworkwillberequired.Willyoubeabletovisuallyratethetraitona1to9scale?Willyoubeabletoquicklymeasurethetraitwithayardstickorascale?Howmanytimesthroughouttheseasonwillthetraitneedtobemeasured?

•••••••••

••

Page 14: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org��

How easily can the traits be inherited? Theseconditemtoconsiderwhendeterminingwhichtraitstoprioritizeinyourbreedingproj-ectistheheritability ofthetraits.Simplystated,heritabilityexpressesthelikelihoodthatatraityouseeinaplantthisyearwillshowupintheplant’soffspring.Putanotherway,heritabilityexpresseswhatfractionoftheappearanceofatraitcomesfromtheplant’sgeneticsasopposedtotheenvironment.Althougheachcropandsituationisdifferent,traitsthatarehighlyheritableoftenincludesuchqualitiesascolor,shape,andspinesversusspinelessness.Themorehighlyheritableatraitis,theeasieritistoselectandseerapidprog-ressfromonegenerationtothenext.Traitswithlowheritabilitytypicallyincludeyieldandvariousformsofstresstolerance(i.e.,drought,salinity,andheattolerance).Thesetraitsrequiremorebreedingexpertise,aswellasamorefinelytunedexperi-mentalfieldmodeltoteaseoutsubtledifferencesinthesetraitstomakeimprovementsacrosscyclesofselection.Werecommendthatyouchooseonlyacoupleoftraitswithlowheritabilitytoselectforinyourbreedingproject,especiallyatthebeginning.Manytraits,suchasflavor,plantheight,anddiseaseresistance,maybeeitherhighlyheritableorlessheritable,dependingonthepopulation.Gettingadvicefromaformallytrainedbreederwhohasexperiencewithyourcropofinterestcanhelpyoudefinewhichtraitsaremoreorlessheritable.

Choosing parentsGermplasmisageneraltermthatreferstothecollectionofgeneticresourcesforaplantspecies.Varieties,landraces,collections,breedinglines,andunimprovedmaterialarealltypesofgerm-plasm.Essentiallygermplasmisanyformoflivingtissue(e.g.,seeds,cuttings,roots,andtubers)fromwhichplantscanbegrown.Germplasmistheparentalmaterialusedtobeginyourbreed-ingwork.Sourcingqualitygermplasmdetermineshoweasilyandrapidlyyouwillbeabletodevelopyourdesiredvariety.

Therearetwomainfactorstoconsiderwhenchoosinggermplasm:

Quality:thegermplasmshouldincludeelementsoftheideotypeyouarestrivingtoproduce

Variability:thegermplasmshouldhavevaria-tionforthetrait(s)youwanttoimprove

Considervarietiesthat:

PerformwellinyourtargetenvironmentAreconsideredtobecommercialstandardsContainuniquetraitsthatyouwanttoincorpo-rateintoyourproject

Manyvaluablevarietiesforbreedingworkcanbefoundinthecatalogsofdomesticandinternationalseedcompanies.However,beawareoflegalpro-tectionsonsomevarietiesthatrestricttheiruseforbreedingorlimitwhatyoucandowiththeminotherways.Theseprotectionsincludeplantpat-ents,utilitypatents,plantvarietyprotectioncertifi-cates,andlicenses.YoucanfindmoreinformationabouttheseprotectionsoneOrganic’sintellectualpropertyprotectionpageathttp://www.extension.org/pages/18449.Alwaysinvestigateyourgerm-plasmsourcestoensuretherearenolegalrestric-tionsonbreeding.

Besidesseedcompanies,youcanalsosourcegermplasmfrom:

FarmersSeedexchangesGermplasmResourceInformationNetwork:http://www.ars-grin.gov/

Unlessyouarealreadyfamiliarwiththegermplasmyouwanttouseinyourproject,itiswisetocon-ductvarietytrialstoevaluatetheavailablesourcesofgermplasm.MoreinformationonhowtoconductvarietytrialscanbefoundinOSA’sOn-farm Vari-ety Trials: A Guide for Organic Vegetable, Herb, and Flower Producers.

Herearefourcategoriesofgermplasmthatareusefultoevaluateandconsiderforuseinorganicplantbreeding:

1) Heirloom varieties:Thiscategoryincludesfamilyorcommunity-basedheirloomsaswellasnon-hybridcommercialcropvarietiesthatwereinexistencebeforeWorldWarII.Heirloomsareopen-pollinated(OP)varietiesthatwereselected,adapted,andmaintainedovergenerationswithin

•••

•••

Page 15: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org��

familiesoragriculturalcommunities.Theywereoftenuniquelyadaptedtothechallengesofthesoil,climate,andendemicdiseasesofparticularregions.Inmanycases,thecommercialvarietiesreleasedduringthisperiodbyregionalseedcompanieswereimprovedorrefinedheirloomvarietiesal-readyimportanttothatparticularregion.ThesecommercialOPvarietieswereeitherdevelopedbyoneofthemanyregionalseedcompaniesthatflourishedduringtheearly20thcenturyorbyplantbreedersatoneofthelandgrantuniversities.Thesevarietieswerethenmadewidelyavailabletofarmersandgardenersacrosstheregion.

2) Early modern varieties:Thisisatermforcropvarietiesdevelopedbybothregionalseedcompa-niesandlandgrantuniversitiesfromtheendofWorldWarIIuntilabout1980.Mostofthesevari-etiesarenotF1hybridsbutopen-pollinatedvariet-iesincross-pollinatedcropsand“pureline”variet-iesinself-pollinatedcrops.Earlymodernvarietieswerebredfortheconditionsofspecificregions.Thebreedingofvegetablesandotherminorcropswasn’tusuallydoneunderoptimumfertilityorheavysprays.Manyofthesevarietiesthatarestillusedtodayhaveproventheirworthas“workhorsevarieties,”andanumberoffarmer-breedershavechosenvarietiesoutofthiscategorytoserveasgermplasmfortheirbreedingprojects.

3) F1 hybrid varieties:Hybridvarietieswerefirstextensivelydevelopedincornduringthe1920sandbegantorepresentalargepartofthevarietyofferingsofmanycross-pollinatedcropsafterWorldWarII.Hybridsbecamepopularfor

anumberofreasons.Theyareaneffectivewaytocreategeneticallyuniform,vigorousvariet-ies.Inaddition,theyrepresentaformofbiologi-calintellectualpropertyprotectionfortheseedcompaniesthatdevelopthembecausetheoff-springofhybridsdonotgrowtrue-to-type(duetotheirhighlyheterozygousnature).BecausemanybreedingeffortssinceWorldWarIIhavefocusedondevelopinghybridvarieties,alotofthemostelitecropvarietiescurrentlyarehybrids.Hybridsareoftengeneticallydiverseandcanrepresentgoodgermplasmformanybreedingprojects.

4) Modern open-pollinated varieties (non-hybrids):Variousseedcompaniesarebreedinggoodopen-pollinatedvarieties(generallysmall-tomedium-sizedregionalcompanies)asaresomepublicbreedersatlandgrantuniversities.Thebestmodernopen-pollinatedvarietiesprovideexcellentgermplasmforbreedingprograms.

Beforebeginningabreedingproject,itisagoodideatoscreencropvarietiesfromawideswathofgerm-plasmsources,includingsomefromeachofthefourcategoriesabove.Thisprocesswillhelpyouidentifythehighestqualitygermplasmcurrentlyavailable.Thepotentialforincreasingyoursuccessandde-creasingyourfrustrationisgreatestwhenyoubeginaprojectwiththebestpossiblegermplasm.

Creating a breeding timelineFigure5onthefollowingpageisasummaryofageneralbreedingtimeline.Afterthesummary,wewillgothroughthestepsinmoredetail.

Page 16: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�6

Step 1.Conductvarietytrialstoidentifythebestpotentialparentalgermplasm.

Step 2. Ifnecessary,makecrossesbetweenparents.Ifadequatevariationexistsinafavorableexistingvariety,thennocrossesarenecessary.

Step 3.Ifyouareworkingwithacross-pollinatingcropandyoumadecrosses,allowtheoffspringtorandomlymateforatleasttwoorthreegenera-tionswhileremovingobviousundesirableplants.Inthecaseofself-pollinatedcrops,allowtheplantstonaturallyself-pollinateforatleasttwoorthreegenerationsafterthecross,removingonlytrulydysfunctionalplants.

At this point, you can conduct a breeding program purely based on mass selection by proceeding to step 8. To conduct family selection, first go through steps 4 through 7.

Step 4.Growalargepopulationandsaveseedseparatelyfromindividualplants.Theseedfromindividualplantsbecomefamilies.

Step 5. Thefollowinggeneration,growfamiliesoutinrows.Planteachrowfromseedharvestedfromanindividualplant.Evaluateandselectthebestperformingfamiliesandplants.

Step 6. Harvestseedfromtheselectedplantswith-intheselectedfamilies.Dependingonwhatyouseeandyourgoals,eitherkeepseedfromindividualplantsseparateorcombinewithinfamilies.

Step 7. Repeattheprocessofgrowingandselectingfamilyrowsuntilyouaresatisfiedwiththeperfor-manceofallfamilies.

Step 8.Oncetheselectedfamiliesareallaccept-able,combinetheseedofthesefamiliesintoabulkpopulation.

Step 9.Growthebulkedpopulationagainandre-movetheleastdesirableplants.Repeatasnecessary.

Step 10.Oncethepopulationisuniformlyaccept-able,increaseseedforrelease.

Figure 5. This diagram shows a summary of a general breeding timeline.

Page 17: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�7

Herearefurtherdetailsoneachstep:

Step 1. Conduct variety trials to identify the best potential parental germplasm.

Beforecommittingtoalong-termbreedingproj-ect,carefullyevaluatepotentialparentalgerm-plasm.Thisevaluationtypicallytakestheformofavarietytrial.Avarietytrialisasystematicwaytoevaluateasetofvarietiesusinggoodtrialdesign.Thepurposeofatrialdesignistohelpminimizetheenvironmentalvariationtoensurethatthedif-ferencesobservedrepresentgeneticdifferencesbetweenplants.Moreinformationonhowtocon-ductvarietytrialscanbefoundinOSA’sOn-farm Variety Trials: A Guide for Organic Vegetable, Herb, and Flower Producers.

Step 2. If necessary, make crosses between parents. If adequate variation is present in a favorable existing variety, then no crosses are necessary.

Toimproveyourpopulation,somedegreeofvaria-tionforimportanttraitsisnecessary.SeeSectionIV. Theories of field-based organic breedingbelowformoreinformationabouthowvariationworks.Tohaveavariablepopulation,youneedtoeitherstartwithgermplasmthatisvariableforthetraitsyouintendtoimprove,oryouneedtocreatevariationbycrossingtwoormorevarietiestogeth-er.Thesecrossescanbemadeinanumberofways,dependingonyourgoalsandresources.

Types of Crosses

Controlled pollinations:Plantbreedingmightevokeanimageofbreedersmakingcontrolledcrosses,perhapswithtweezers,magnifyingglasses,andsmallpaintbrushes.Thegeneralstrategywilldependonwhetherthespeciesyouworkwithhasperfectflowersornot.Per-fectflowershavebothmalestamenandfemalepistilsonthesameflower.Iftheplanthasper-fectflowers,youwillgenerallyneedtoemas-culatethefemaleparentbyremovingthemalestamenandthentransferpollenfromthemaleparent.Iftheplanthasonlyunisexualflow-ers–flowersthatcontaineitherallmaleorall

femaleparts–thereisnoneedtoemasculate.Youjusttransferpollenfromamaleflowertoafemaleflower.Afterpollinating,somesortofcoverisoftenusedtoexcludeotherpollenfromcontaminatingthecross.

Open pollinations:Thesecrossesarealsoknowasstrain crossesorblindcrosses,andaredonebyallowingoneplantorasetofplantstocrosswithanotherplantorsetofplantswithoutmakinganattempttoensurethatpollenisonlytransferredbetweencertainplants.Thisisaccomplishedbybringingalloftheplantstogetherandallowingthemtofreelycross-pollinate.Outsidepollenisexcludedeitherbyisolationdistanceorbycagingtheplantsinsideastructurethatpreventsinsectsandpollenfromentering.

Hybrids:Thesevarietiescanbeusedaspre-madecrosses,savingastepinthebreedingpro-cess.Keepinmind,however,thatmosthybridsaremadebycrossingtwonarrowlyselectedin-bredparentsandthereforeapopulationformedfromasinglehybridwillhavecomparativelylittlegeneticdiversityrelativetoonecreatedfromastrainorblindcrossbetweenopen-pol-linatedvarieties.

Step 3. If you are working with a cross-pol-linating crop and you made crosses, allow the offspring to randomly mate for at least two or three generations while removing obvious un-desirable plants. In the case of self-pollinated crops, allow the plants to naturally self-polli-nate for at least two or three generations after the cross while removing undesirable plants.

Priortoselection,growyournewbreedingpopula-tionforafewgenerations,allowingtheplantstoflowerandfreelycross-pollinate.Duringthistime,youmaypracticenegativemass selectiontorogueouttheworstperformingplants.

Itistemptingtobeginintensiveselectioninthegenerationafteryourcrossesaremade,asplantbreedingcanbesuchalongprocess.However,werecommendthatyoudonotskipthisstep.Incross-pollinatedcrops,allowingafewgenerationsofran-

Page 18: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�8

dommatingbreaksupthelinkagebetweengenes.Simplystated,linkagereferstohowgenesinaplantwilltendtotraveltogether.Forexample,ifyoucrossatallplantwithdarkleaveswithashortplantwithlightleaves,you’remorelikelytogeteitheratalldarkplantorashortlightplantthanyouaretogetatall,lightplantorshort,darkplant.Randommatingforacouplegenerationsallowsthegenestoshuffleandmakesitmorelikelythatyouwillseenewcom-binationsofgenesinthepopulation.

Forself-pollinatedcrops,itisalsovaluabletowaitforatleasttwoorthreegenerationsbeforemak-inganysignificantselections.Thereasonforthisisdifferentthanforcross-pollinatedcrops.Asde-scribedinthepreviousdiscussionofdifferencesingeneticstructuresbetweencross-andself-pol-linatedcrops,randommatingandthebreakingoflinkagesdoesnotoccurinself-pollinatedcrops.Instead,eachplantderivedfromtheoffspringofacrosshasthepotentialtobecomeaseparate,independentfamilylinewithuniquecombina-tionsoffixedpairsofgenes.Aseachoftheselinescontinuestoself-pollinateoverthecourseofafewgenerations,eachlinewillbecomemoreuniformandthedifferencesbetweenlineswillbecomemoreobvious.Itwillbeeasiertomakedistinctionsbetweenfamiliesifsufficienttimehaspassedtoallowthefamiliestoessentiallybecomefixedanddistinctfromoneanother.

Additionally,themoregenerationsyouspendimprovingthepopulationbythisgradualprocess(massselection),thebetterthegeneticsofthepopulationwillbe,andthemorelikelyyouwillbesuccessfulinthelaterphasesofbreeding.

Thesegenerationswillalsogiveyouachancetogettoknowthepopulation,toseewhatkindsofvaria-tionexistinit,andtoevaluatewhatitsstrengthsandflawsare.Usetheseyearstorefineyourgoals,traitsofinterest,andevaluationtechniques.Re-member,whenpracticingselection,makesurethefieldlocationrepresentsthelocationyouwanttoselectforandisrelativelyuniformthroughout.

Step 4. Grow a large population and save seed separately from individual plants. The seed from individual plants become families.

Duringthisgenerationyouwillbeselectingyourbestplantstoserveasparentsforfamilies.Evalu-ateyourplantsmultipletimesthroughouttheseason,consideringthegoalsandtraitsyouhaveprioritized.Sincetheremaybesomevariationinthesoilquality,weedpressures,andotherfactorsinyourfield,selectthebestplantsfromallpartsofthefieldequally.Ifalloftheplantsinonecor-nerofyourfieldlookworseoffthantherest,stilltrytopicksomeofthebestlookingplantsinthatpatch–thoseareplantsthatcansurviveundersomeenvironmentalstressorpotentiallysub-op-timalconditions.

Ifyourcropiscross-pollinatingandisacropwhereyouhaveanopportunitytoevaluateandselectthebestplantsbeforepollinationoccurs,youwillmakefasterprogressbyremovingallinferiorplantsfromthefieldbeforepollinationoccurs.Inthisway,anycross-pollinationthatoccurswillonlybebetweentheselectedplants.

Whenyouharvestseedfromselectedplants,putseedfromeachplantintoaseparatebag.Theseedineachbagrepresentsafamily.Labeleachfamilywithauniquenumber.Alongwiththenumberoneachlabel,youmaywanttomakenotesaboutwhyyouselectedthatplant.Theseplantswillrepresentfamiliesforthenextgeneration’sroundofselec-tion.Inthecaseofcross-pollinatedcrops,trytosaveseedfromatleast20to50individualplants.Inthecaseofself-pollinatingcrops,saveseedfromatleast30to100plants.

Step 5. The following generation, grow family plots by planting each separate plot with seed harvested from an individual plant. Evaluate and select the best performing families.

Thisgenerationyouwillbelookingattheprog-enyofyourselectedplantsasfamilies.Inbreed-ingterms,thisistheprocessoffamily selection.Thismeansyouwillplantseedfromeachplantthatyouselectedinseparateplotsorrows,justasifyouwereconductingatrial,followingthebestpracticesoftrialdesignasoutlinedinOSA’sOn-farm Variety Trials: A Guide for Organic Vegetable, Herb, and Flower Producers.

Examineeachplotasawhole.Howdoesthisfamily

Page 19: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org�9

ofrelatedplantslook?Onaverage,whichfamilieslookbestgivenyourgoalsandtraits?Selectthebestfamiliesbasedontheiroverallquality,andeliminatetheotherfamilies,preferablybeforetheyhaveachancetocross-pollinatewiththeselectedfamilies.Lookforfamilieswhereatleast60to80%oftheplantsareacceptable.

Next,selectthebestplantswithinthebestfami-lies.Aimtoeliminate30to40%oftheplantswithinafamily,keepinginmindtheminimumpopulationsizeyouwanttomaintaintokeepthepopulationhealthy(seebox,“Whymaintainlargepopulationsizes?”).

Step 6. Harvest seed from the best plants within the best families.

Atthispoint,savetheseedfromeachfamily.Inotherwords,combinetheseedfromallofthese-lectedplantswithineachfamilysothatyouendupwithaseparatebagforeachfamily.

Why maintain large population sizes?

Whatistheadvantageofmaintaininglargenumbersofplantsinyourbreedingpopula-tions?Afterall,ifyouhaveafewexcellentlook-ingplantsinthefield,whysaveseedfromanyplantsthatdon’tlookasnice?Therearetwomainreasonstomaintainlargepopulations.

Inthecaseofcross-pollinatingcrops,largepopulationshelpavoidinbreedingdepression.

Inbreedingdepressionisalossofvigorduetothecrossingofgeneticallysimilarplants.Plantssufferingfrominbreedingdepressiongerminatepoorly,yieldpoorly,andsuccumbmorequicklytoenvironmentalstress.Ingen-eral,plantsthatarestronglycross-pollinatingaremostsusceptibletoinbreedingdepression,whilethosethatarestronglyself-pollinatingareleastsusceptible.

Thesecondreasontomaintainlargepopula-tionsizesistoavoidlosingimportantgenesthroughgenetic drift.Geneticdriftistherandomchangeinthefrequencyofgenesinthepopulationasitreproduces.Evenintheabsenceofselection,thepopulationthatgrowsfromonegenerationtothenextmayhaveaslightlydifferentpercentageofgenesjustbychance.If,bychance,noneoftheplantsinagivengenerationcarryacertaingene,itwillbelosttothepopulation.Thisismuchmorelikelytohappeninsmallpopulationsthaninlargeones.Thethreechartsbelowshowasimula-tionofthechangeingenefrequencyafter25generationsforsomehypotheticalgenesthatarefoundinbetween20to80%oftheplantsinapopulationtostartwith.Whenthepopula-tionsizeiskeptat200plants,allofthegenesarestillpresentinthepopulationattheendof25generations.Withonly30plants,one-fifthofthegenesarefixedorlostwithin25genera-tions.Whenseedissavedfromonly10plantseverygeneration,themajorityofgenesarefixedorlostwithin25generations.

Page 20: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org20

Step 7. Repeat the process of growing and se-lecting family plots until you are satisfied with the performance of all selected families.

Thefollowinggeneration,continuetoplanttheselectedfamiliesinseparateplotsandevaluatethemagainthroughouttheseason.If,duringthesecondroundofevaluations,someofthefamiliesnolongerseemacceptable,discardthosefami-lies.Alsoeliminateallinferiorplantswithintheselectedfamiliesthatyoudecidetocarryontothenextgeneration.

Step 8. Once the selected families are all accept-able, combine the seed of these families togeth-er into a bulk population.

Forthesepastfewgenerations,youhavebeenmaintainingthepopulationasasetofseparatefamilies.Oncealloftheremainingfamiliesmeet

yourgoals,youcancombinethemtogethertore-formthepopulation.

Step 9. Grow the population again and remove the least desirable plants. Repeat as necessary.

Oncethefamilieshavebeenreformedintoasinglepopulation,youcanmaintainthispopulationinsubsequentgenerationsthroughmassselection(i.e.,selectingthebestindividualplantstorepro-duceeachgeneration).Ifatanypointyoubelievethevarietyneedstobemoreintensivelyselected,youcancompleteanothercycleoffamilyselectionbysavingseedseparatelyfromindividualplantsandplantingtheminindividualplotsthefollowinggeneration,aspreviouslydescribed.

Step 10. Once the population is uniformly ac-ceptable, increase seed for release.

Page 21: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org2�

Asyouincreasetheseed,continuetorogueoutanyundesirableplantsastheyarise.

Lookingatbroccoliseedandkaleseed,youmaynotbeabletotellthemapart.Theyarebothsmall,brownish-greyseeds,essentiallyindistinguishablefromoneanother.Butplanttheseedintheground,andastheygerminateandgrowintomatureplants,thedifferencesbecomegreater.Thekaleseedpro-duceskaleplantswithbroad,curlygreenleaves,whilethebroccoliseedproducesbroccoliplantswithlarge,tightflowerheads.Whatexactlyiscontainedinthatseedthatcausesbroccoliseedtogrowintobroccoliandkaleseedtogrowintokale?Genes,madeupofDNA,“program”thewayplants(andalllivingthings)grow,thewaytheylook,andthewaytheytaste,amongmanyothercharacteris-tics.Genesarehowaplant’sprogrammingpassesdownfromonegenerationtothenext.Asplantbreeders,ourjobistopicktheplantswiththebestgenesandmakesurethosegenesgetpasseddown.

Thissectionwillintroduceyoutothebasicsofgeneticsbyexplaininghowgenesarepassedfromonegenerationtothenextandhowthosegenesde-terminetheappearanceandperformanceofplants.

How genes travel from parents to offspringJustasitisinhumans,DNAisbundledtogetherintopackagescalledchromosomesinplants.Plantsalsohavemultiplechromosomes,eachofwhichcontainsmanygenes.Mostcropspeciesarediploid,meaningtheyhavetwosetsofchromosomes:onesetfromtheirmotherandonefromtheirfather.Forexample,tomatoes,ingeneral,have12pairsofchromosomes,withtwo#1chromosomes,two#2chromosomes,etc.,foratotalof24chromosomes.However,someplantsarepolyploidy,meaningtheyhavemorethantwosetsofchromosomes.Forexample,commonwheatisahexaploid,meaningithassixsetsofchro-mosomes.Althoughpolyploidyisfoundinanumberofimportantcropplants,forthesakeofsimplicity,wewillfocusonlyondiploidspeciesforthefollow-ingexplanationsandexamples.

Toreproduce,plantsproducespermandeggs.Spermandeggshaveonlyonesetofchromosomesratherthantwo.Again,lookingattomatoes,whiletherestoftheplanthas24chromosomes,thespermandeggsonlyhave12.Wheneachspermoreggiscreated,itreceives,atrandom,eitherachromosomefromtheplant’smotherorachromosomefromtheplant’sfather.Thismakeseachspermandeggunique.Later,whenthespermiscarriedonthepollenandfertilizesanegg,auniquenewplantwillbecreated.Becauseofthis,plantscreatedfromthesamecrossbetweentwoplantscanalllookdifferent.Theexceptiontothisisiftheparentplantsarehighlygeneticallyuniform,whichcanoccureitherthroughinbreedingacross-pollinatedspeciesortheuseofpurelineself-pollinat-ingvarieties.Inthiscasetheoffspringfromthecrosswillalllooknearlyidentical.

How genes determine the appearance and per-formance of plantsAswelearnmoreaboutthecomplexityoflife,weseemoredeviationsandexceptionstohowweoriginallyunderstoodgenestofunction.Neverthe-less,althoughthefollowingdescriptionsaresimpli-fiedversionsofhighlycomplexsystems,theyarestillrelevantandusefulforplantbreedingwork.

Genesareinstructionsforourcells,writteninthelanguageofthenucleicacidsthatmakeupDNA.Cells“read”theseinstructionsandmakeproteins.Typi-cally,onegenemakesoneprotein.Eachchromosomecontainshundredsorthousandsofgenes–mostoftheinstructionsnecessarytocreateaplant.

Asmentioned,halfofthosegeneswillcomefromthemother(maternal)andhalffromthefather(paternal).Foranygiventraitthatiscontrolledbyonegene,suchasgrowthhabitintomatoes,aplantwillhaveamaternalgeneandapaternalgene.Whatifthematernalandpaternalgenesdif-fer?Forexample,whatifthegenereceivedfromthemotherproducesproteinsthatmakeashorter,determinantplant,whilethegenefromthefathermakesalarger,indeterminateplant?Formanytraitstherearegenesthatresultinproperlyfunc-tioningproteinsandgenesthatresultindefective,non-functioningproteins.Also,formanytraits,oneproperlyfunctioninggeneisenoughtocreatesuf-ficientproteintomeettheplant’sneeds.Inthesecases,ifaplanthasjustonecopyofagenethat

IV. Theories of Field-based Organic Plant Breeding

Page 22: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org22

Tomato 1Sp Sp

Tomato 2Sp sp

Tomato 3sp sp

encodesforfunctioningproteins,itwilllookandfunctionthesameasifithadtwoofthosegenes.Onlywhentherearenocopiesofthatgenepresenttoencodeforthefunctioningproteindoweseeadifferenceinappearance.Toillustrate,letuslookatdeterminantversusindeterminategrowthhabitintomatoes.Figure6illustratestomatoesthathave:(1)twofunctionalcopiesofthe“self-pruning”gene(Sp),(2)onecopyofSpandonenon-functional“self-pruning”gene(sp),and(3)twonon-function-al“self-pruning”genes.

Noticethattomatoes1and2lookthesame.ThatisbecauseonlyonecopyofSpwasrequiredtopro-ducetheproteinsthatallowedthetomatotogrowcontinuously.Onlywhenbothcopieswerenon-functional,asintomato3,doesthetomatoendupshortanddeterminate.Inthiscase,wewouldcallsparecessivegeneandSpadominantgene.Inthecaseofdominantandrecessivegenes,thefunda-mentalconcepttounderstandisthatrecessivegenesareonlyvisibleinthephenotypeofaplant(whataplantlookslike)whentwocopiesofthegenearepresent,whereasasinglecopyofadomi-nantgenewillresultinthedominantphenotype.

How genes travel together during reproductionUltimately,whenweengageinplantbreedingweareparticipatinginthesexualreproductionofplants.Inthissexualprocess,someoftheparentalcellsundergomeiosis,splittingtheirchromosomepairsintogametes:eitherspermoreggs.Thesegametesthencombinewithacomplementarygam-eteandformazygote,whichisthebeginningofanewplant.Oneofthewaysinwhichthisprocessprofoundlyaffectsplantbreedingisthroughthephenomenonoflinkage.

Linkagereferstothefactthatsomegenesresideonthesamechromosomeandarethusphysicallylinkedtogether.Inbreeding,weoftenrepresentlinkedgeneswithtwolines,eachlineconnectingoneofthelinkedpairsofgenes:

AbaB

InthisexampleAandbarelinkedtogetherononehalfofachromosomepair,whileaandBarelinkedontheotherhalf.Linkagecausessomeoutcomesthatwewouldnotanticipateifthegeneswere

Figure 6. This figure illustrates determinant versus indeterminate growth habit in tomatoes.

Page 23: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org23

notlinked.Forexample,ifweself-pollinatedtheaboveplant,wewouldgetthefollowingoffspring:AAbb,aaBB,andAaBb.WewouldnotseeanyAABBoraaBB,becauseAbandaBarelinkedpairsthattraveltogetherthroughtheprocessofmeiosis.Thisiswhathappensduringreproduction:

AbGametes:AbaBaB

Zygotes:AbAbaB AbaBaB

ButwhatifthemostdesirablegenotypeisAABB?Unfortunately,linkagepreventsthisgenotypefromoccurring.Whenlinkagecausesanabundanceorlackofgenotypesthatisdisproportionatetowhatwewouldexpectbasedonthegenesthatareinthepopulation,wecallitlinkage disequilibrium.Fortunately,naturehasawaytoreducetheeffectsoflinkagebycrossing overchromosomes.

Duringmeiosis,pairsofchromosomesconnecttogether.Whentheycomeapartagain,partsofonechromosomecanendupswappedwithpartsoftheotherchromosomethatitpairedwith.Thisswappingofchromosomepiecesbreaksuplinkedgenes.Dependingonhowclosetwogenesaretoeachother,thelinkagesbetweenthemmaybreakupmoreorlessquicklyandeasily.Tightlylinkedgenes,orthosethatareveryclosetogether,aremoredifficulttobreakapartthanthosethatarelooselylinkedorfartherapartfromeachother.Itispossibleforgenestobesotightlylinkedthatbreakingthemapartisvirtuallyimpossible.Hereisanillustrationofhowcrossingoveractstobreakapartlinkedgenes:

Ab Ab ABaB aB ab

Whyarelinkageandlinkagedisequilibriumimpor-tantforusasbreeders?Therearemanyreasons,buttwoofthemostimportantaretheneedforcautionwhenselectinginearlygenerationsandlinkage’srelationtoheterosis.

Aftermakingacrossorcrossestogenerateanewpopulation,youneedtobecarefulaboutselectingjustafewofthebestplantsforthefirstfewgenera-

tions.Toillustrate,let’scontinuewiththetomatoexamplewherethelinkedgenesthatcomefromoneparentareA b,andthegenesfromtheotherparentarea B.IfwewanttofindplantsthathavetheA Bgenotypethenweneedtowaituntilthepopulationhasgonethroughenoughgenerationstoallowtimeforthoseparticularchromosomestohavecrossedoverbetweenthoseparticulargenes.OnlythencanweendupwithAandBonthesamechromosome.Ifselectionsaremadetooearlyontheycanreducethepotentialforcertaingenecombinationstooccur,ultimatelylimitingwhatyouhavetoworkwith.

Heterosisisthetermusedwhentheoffspringofacrossaresuperiortotheirparents.Heterosisisalsocalledhybridvigor.Therehavebeenmanyargu-mentsovertheyearsaboutwhatcausesheterosis.Recently,mostscientistsagreethattheprimarycauseofheterosisinvolvestwoprincipleswehavealreadydiscussed:dominanceandlinkage.Tounderstandheterosis,let’slookatthecrossoftwocornplants.

Parent1

Parent2

Offspring

Figure 7. This diagram illustrating heterosis shows the cross of two corn plants that creates an offspring superior to its parents.

Whyistheoffspringsomuchtaller?Inthesecornplants,therearetwoloci(locationofagene)thatdetermineplantheight:AandB.PlantswithAaretallerthanplantswitha,andplantswithBaretallerthanplantswithb.BothAandBarecom-pletelydominantgenes,soaslongastheplanthasonecopyofthedominantgene,itisastallasifithadtwocopies.Inthisexampleparent1isAAbbandparent2isaaBB.

Sowhathappenswhenwecrossthem?Theoff-springgetAbfromparent1andaBfromparent2,

Page 24: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org2�

sotheirgenotypeisAaBb.BecausebothAandBaredominant,theyaffectplantheightinthesamewayregardlessofwhetherthegenotypeisAABBorAaBb.Thechartbelowshowsthatwhenparents1and2arecrossed,theiroffspringgetsaboosttoheightfromparent1’sdominantAgene(shownasa“+”)andaboosttoheightfromparent2’sdomi-nantBgene.Thisresultsinthehybridoffspringbeingtallerthaneitherparent.

Parent 1

Parent 2

Offspring

Genes AAbb aaBB AaBb

Effect of A + +

Effect of B + +

Overall height

+ + ++

Inthiscase,theparentseachhadcomplementarygenes.Whentheycrossed,eachparentcontributedallelesthat,throughtheirdominanteffects,maskedtheinferiorrecessiveallelesoftheotherparent.

Heterosisisquitecommoninmanycropplants.Why,then,betweennaturalselectionandtheef-fortsofplantbreeders,havewenotbeenabletocombineallofthebestgenesintooneplant/vari-ety?Whydowehavetomakehybridstohidethepoorgenesoftheparents?Thisiswherelinkagecomesintoplay.Let’sassumethelociforAandBarerightnexttoeachotheronthechromosomeandaretightlylinked.Inparent1’scase,A bwilltraveltogetheruntilthechromosomecrossesoverintotheregionbetweenthegenes.Likewise,inparent2’scase,aBwilltraveltogether.Untilacrossoveroccurstobreakthislinkageapart,thebestwecandoiskeepremakingthehybrid.Mosttraits,suchasplantheight,aredeterminedbymul-tiplegenes,notjustone.Manyofthesegenes,bothdesirableanddeleterious/undesirable,arelinkedtogether.Sinceitisunlikelywewillevercreateorcomeacrossaplantwiththeperfectcombinationofgenesforeverytraitwefinddesirable,wemustcontinuetoexploittheeffectofdominantgenestoproducesuperioroffspringbyfindingparents

whosegenecombinationscomplementeachother.

How genes operate in populations Upuntilnowwehavebeenfocusingonhowgenespassfromonegenerationtothenextandhowtheyaffecttheappearanceoftheplantswegrow.Tokeepourdiscussionsimple,wehavepresentedexampleswherejustoneortwogenescontrolatraitlikeplantheight.Now,letustakeastepclosertoreality.Manyofthetraitsthatwecareabout–plantheight,vigor,flavor,stresstolerance–arecontrolledbymultiplegenes.Ratherthanplantsappearingeitherbigorsmall,theirheightmightex-istalongaspectrum.Inthisspectrum,afewoftheplantswillbeverysmall,afewwillbeverylarge,andmostwillbesomewhereinthemiddle.Ifyoumeasuredalltheplantheightsandgraphedhowcommonthevariousheightswere,youmightseethemappearasabellcurve,asshowninfigure8.

When,asbreeders,weworkwiththesepoly-genic(multiple-gene)traits,ourgoalistoselecttheplantswiththetraitswewantandslowlyshiftthewholepopulationinthedesireddirec-tion.Figure9showstheslightimprovementyoumightexpectfromonegenerationtothenextthankstoyourselection.

Tobesuccessfulasplantbreeders,wewanttoimproveplantpopulationsforthetraitsweareinterestedin.Fundamentally,thewaytoimproveapopulationistofindplantsthatwillproducesupe-rioroffspring.Howdowefindtheseplants?Let’slookatfigure10toseeanexampleofafieldplant-edwithapopulationofcornthatweareinterestedinimprovingforheight.

Thereisobviousvariationinthephenotypesoftheseplants.Ifthetaskistopickoutthetallestplants,itwouldbesimple:plants2,4,5,6,and12arethetallest.However,whatwereallywanttoknowiswhichoftheseplantswillproducethetallestoffspring.Thefirststepinfindingtheseplantsistounderstandthatthephenotype(P)isinfluencedbytwoprimaryfactors:thegenetics,orgenotype(G),oftheplantandtheenvironment(E).Inbreedingterms:P=G+E.Thegenotypeisthesumofallthegeneticinformationwithintheplant,althoughwegenerallyusethetermtorefertothegenesintheDNA.Theenvironmentencompasses

Page 25: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org2�

Frequency of plants

Plant height

Figure 8. Rather than plants appearing either big or small, their height might exist along a spectrum. In this spectrum, a few of the plants will be very small, a few will be very large, and most will be somewhere in the middle as shown in this bell curve.

Frequency of plants

Plant height

Generation 1 Generation 2

Figure 9. This graph illustrating how polygenic traits operate in populations shows the slight improvement you might expect from one generation to the next thanks to your selection.

Figure 10. This figure represents a field planted with a population of corn that we are interested in improving for height.

Page 26: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org26

allofthenon-geneticinfluencesonthephenotype.Examplesofenvironmentalfactorsaffectingplantgrowthincludefertility,temperatures,water,weedcompetition,plantingdensity,andpestanddis-easepressure.Sayweareabletogrowthesesametwelveplantswithverylittlewaterandtheyallgrow10inchesshorterthanbeforeasseeninthebelowfigure:

Clearly,theenvironmentaffectedtheplantpheno-types,butdiditaffecttheminawaythatchangesourabilitytopickthebestparents?Inthiscase,no.Wewouldstillpick2,4,5,6,and12asourfavor-ites.Ifalleffectsfromenvironmentalstresseswereuniformlikethisexample,itwouldbesimpleforustopickthebestparentsbasedontheirpheno-types.Unfortunately,lifeisnotsosimple.Thereareenvironmentaleffectsthatmakeitmorechalleng-ing.Theseeffectsarebasicallyclassifiedintotwotypes:errorandgenotypebyenvironmentinterac-tion(GxE).Errorisacatch-alltermforeffectsthatwecannot,ordidnot,measureoraccountfor.Forexample,imaginethatadditionalfertilizerwasac-cidentallyappliedtothesoilunderplant4,provid-ingafertilityboostthatnoneoftheotherplants

experienced.Thisfertilityboostwouldbeaneffectthatwasnotreplicable,andwouldinfluenceourselectioninanunpredictableandprobablyunhelp-fulway.Thisiserror.Someerrorwecanreducethroughgoodexperimentaldesign,especiallytheuseofreplicationandrandomization.Toillustrate,let’stakeanotherlookatthecornplants.Whatifplants7through12aresmalleroverallbecausethe

fieldisdrierontheright?Totestthiswecouldsplitthefieldintotwosectionsandreplicatetheexperi-mentbyplantingeachcornrandomlyoneachsideofthefieldasshowninfigure11.

Byreplicatingourtrial,weseetheplantsontherightareconsistentlysmallerthanthoseontheleft.Replicationallowsustomeasurethiseffectandcorrectforit.Unlikeanyoftheothereffectsonplantphenotype,weareabletoaccountforandremoveeffectsthatarecapturedbyreplication.

ThesecondeffectthatconfoundsourabilitytopickthebestparentsistheGxEinteraction.GxEisastatisticaltermthataccountsforthefactthatdif-ferentgenotypessometimesresponddifferentlyto

Figure 11. Here is the above field split into two sections and the experiment replicated by planting each corn randomly on each side of the field.

Page 27: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org27

Original environment

Dry environment

thesameenvironment.Tocontinuewithourcornexample,saythatwegrewourcornbothintheenvironmentandinamuchdrierenvironmentasshownbelow.

Inthisexample,theheightofmostplantswasre-ducedinthedryenvironmentrelativetotheorigi-nalenvironment.However,theplantheightswerenotuniformlyreduced.Number4ismuchsmaller

thanintheoriginalenvironment,andnumber12isthesameheightinbothenvironments.Thisunequalresponsefromdifferentgenotypestodif-ferentenvironmentsiscapturedbytheconceptofGxE.Asbreeders,wehavetwochoicesofwhattodowiththisinformation.Wecanfocusourbreed-ingeffortstowardacertainenvironment–inthiscasetoselectforadryenvironment.Thismethodiscalledselectingforspecificadaptation.Alternately,wecanselectforthegenotypesthat,onaverage,performbestinallenvironments.Thismethodiscalledselectingforgeneral adaptation.Inreal-ity,breedingoftenmixesthesetwoapproachesbybreedingforadaptationwithinacertainspecifiedtarget population of environments(TPE).

Asplantbreeders,weareinterestedintheplantsthataremostlikelytoproducethebestoffspring,notsimplyperformthebestthemselves.Hereisanotherkeytoplantbreeding:Theplantswiththebestgenotypesmaynotproducethebestoffspring.

Thisisbecause,unlesstheyareclonallyreproduced,plantspassongenes,notgenotypes.Thenextsec-tionwillexplainwhy,includingtheimplications.

Dominanceeffectsconfoundoureffortstofindthebestparentsbecausetheyaregeneticeffectsthatarenottransferablefromparenttooffspring.Tounderstanddominanceeffects,wewillreturntoourtomatoes(seenextpage).

Again,givenidenticalenvironments,tomatoes1and2havethesameappearance,becausetheybothhaveatleastonecopyofthedominantSpallele.However,whiletomato1willonlyproduceindeter-minateoffspring,tomato2hasachanceofproduc-ingdeterminantoffspring.

Sincetomato1(Sp Sp)andtomato2(Sp sp)areindistinguishablefromeachother,youareequallyaslikelytochoosethemasparents.Thisisprob-lematicbecauseyoumaypreferoneortheotherforyourbreedingwork.ThedominanceeffectthatallowsSp spplantstoappearthesameastheSp Spplantsisagenotypiceffectthatisnotreliablytransferabletoitsoffspring.Thebottomlineisthatgenotypiceffectsduetodominancearenottransferabletooffspring.

Insummary,geneticeffectsandenvironmentaleffectsinfluenceplantphenotypes.Ifproperex-perimentaldesignsareusedwecanaccountfor

Page 28: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org28

environmentaleffects.Theseexperimentaldesignsallowustoachieveoneofourprimarygoalsasplantbreeders,whichistominimizeandaccountforthevariabilitycausedbynon-geneticeffects.

Onemoreimportantplantbreedingtermisherita-bility.Heritabilitydescribeshowpredictablyatraitispassedonfromparenttooffspring.Plantbreed-ersoftentalkabouttheheritabilityofatraitandhowtoincreaseit.Sometraitsarenaturallyhighinheritability.Oftenthesetraitsarerelativelyunaf-fectedbyenvironment,likeseedcolororflowershape.Wecanincreasetheheritabilityinalltraitsbyusingmatingdesignsthatincreaseormaintainadditivegeneticvariance,andbyusingexperimen-taldesignsthatreducethevarianceofothereffects.

How to see the genetic differences between plantsEarlierwetalkedabouttheimportanceofreduc-ingenvironmentalerror.Webrieflymentionedreplicationasonetooltohelpreducethiserror.Nextwe’llgointomoredepthabouthowtousereplicationandothertoolsofexperimental de-signtohelpmakemoreeffectiveselectionsinourbreedingwork.

Experimentaldesignreferstohowtheexperimentissetuporarrangedinthefield.Oneofthemore

commondesignsforbreedingiscalled“random-izedcompleteblockdesign,”orRCBD.ARCBDisreplicatedusingmultipleblocks,witheachblockcontainingthecompletesetofbreedinglineswithinit.TocreateaRCBD,assigneachbreedinglinetoaplotineachblockandarrangetheplotsinarandomizedorderwithineachblock.Thebreed-ingtrialshouldideallybelocatedwherethereisaslittlevariabilityaspossible.Wherevariabilityexists,trytoorienttheblockssothevariabilityisbetweenblocksratherthanwithinthem,becausebreedinglinesarecomparedtoeachotherwithineachblock.Replication,randomization,andblock-ingaretheessentialelementsoftheexperimentaldesignthathelpstoseparateoutthegenotypicef-fectsfromtheenvironmentaleffects.

Understand the effects of the environmentEnvironmentaleffectsrefertotheinfluencethatvariablefieldconditionshaveontheperformanceofplants.Forexample,ifthefieldisonaslopeandthesoilisricheronthedownhillside,thenplantsonthedownhillsidemaygrowlargerbecauseofbettersoilconditions,notbecausetheyhavesupe-riorgenetics.Likewise,plantsgrownonthesouth-westsideofafieldmaygrowlargerbecausetheyreceivemoreafternoonsun,orsmalleriftheyaresun-sensitiveandtheirrootsareeasilydriedoutbyafternoonsun.Naturalvariabilityoftenexistsinthefieldthataffectscropgrowth,includingvariations

Tomato 1Sp Sp

Tomato 2Sp sp

Tomato 3sp sp

Page 29: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org29

insoilquality,soiltexture,soilpH,soilfertility,drainage,pestpressures(insect,weed,disease,andanimals),sunexposure,irrigation,andtemperature(bothwarmandcoldpockets).Somesourcesofenvironmentalvariationarerelativelystable,likesoiltypeandproductionpractices,whileothersvaryfromyear-to-year,likeweatherandclimate.Pests(diseases,insects,andweeds)maybestableorvariabledependingontheorganism.Forex-ample,thesoilinsectsknownassymphylansareusuallyfoundinthesamespotyearafteryearandwouldberegardedasstable,whereasaphidsblownintotheplotsfromanotherregionwouldbemorevariable.Stablesourcesofvariabilitycanbecom-pensatedforbytheuseofrandomizationwhereasseasonallyvariablesourcesofvariabilityrequiretestingovermultiplelocationsand/orseasons.“Seasons,”asusedhere,maybedifferenttimesofyearordifferentyears.Theobjectiveistoobtaindatainanumberofdifferentgrowingenviron-ments.Thegoaloftheexperimentaldesignistominimizetheeffectsofenvironmentalvariabilityontrialresultsbyblockingreplicationssofieldvariationisminimizedwithinblocks.Inessence,replicationinthebreedingtrialaccountsforstableeffectsandrepeatingtheexperimentovertimecompensatesforvariableeffects.

Ensure that plants receive consistent treatmentManagementpracticesshouldbeconsistentacrossallbreedingplots,includingirrigation,soilfertil-ization,pestmanagement,staking,cultivationandweeding,oranyotherhorticulturalaspectofcropproduction.Ifpracticesarenotconsistent,differ-encesinperformancemaybetheresultofunequaltreatmentsasopposedtogeneticdifferencesinvarieties.Forexample,ifhalfthefieldwasculti-vatedandtheotherhalfleftuncultivated,theplotsintheuncultivatedsectionwouldhaveanunfair

disadvantage,astheywouldlikelybesubjectedtogreaterweedcompetition.

Randomize the plotsRandomizingplotswithineachblockhelpstoincreasetheconfidencethattheevaluationresultsareduetogeneticdifferencebetweenvarietiesratherthanvariationintheenvironment.Themorereplicationsusedthegreatertheassurancethatmeasurementswillreflectdifferencesinthevariet-iesratherthanvariationinthefield.Randomizingisalsoimportanttominimizetheinfluencethatvarietieshaveononeanother.Forexample,ifeachbreedinglinewasplantedinthesameorderineachblockratherthanifonelineisplantednexttoanotherverytall,vigorousline,itmightbeunfairlyaffectedbythecompetitionforlightandnutrients.

Theorderofplotsmayberandomizedusinganyba-sicrandomizationtool,asbasicasdrawingnumbersfromahat.Aneasymethodistomarkalloftheplantstakesforeachblockandthenmixthemup,walkingtheblockandinsertingwhicheverstakecomestohandfirsttomarkthefirstplot.Continuedowntherowmarkingplotsinthismanner.

Use sufficient population and plot sizesThesizeofplotsinthetrialshouldbelargeenoughthattheresultingnumberofplantsprovidesagoodrepresentationofthewholefamilyorpopulation.Thegreatertheplotsize,themorerepresentativeitwillbeofthepopulation.However,thelargertheplotthemoredifficultitmaybetomanage,especiallyifyouaredealingwithalargenumberofvarietiesandthreeormorereplications.Ingeneral,whenevaluatingopen-pollinatedvarietiesofself-pollinatedcrops,fewerplantsarenecessarytogetarepresentativesamplingthanincross-pollinatedcrops.Thisisduetothegenerallygreaterinherent

Example of RCBD, where all varieties would be in each block or “rep”

Page 30: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org30

geneticvariabilityincross-pollinatedpopulations.

Ideallyplotsshouldbelargeenoughthatyoucantreatthemthesameastherestofyourfarmandmaintainthemwithyournormalfarmingpractices.Forexample,ifyouusuallyplantyourcabbageon36-inchcentersandfieldcultivatewithatractor,youwilllikelygetdifferentresultsthensomeonewithasmallgardentrialon24-inchspacingus-inghandhoeing.Similarly,ifyouusuallyapplydripirrigation,thenoverheadirrigationmayskewresults.Forbestresults,locateyourbreedingtrialwithinyourproductionfieldofthesamecropsothatallproductionpracticesarethesameasforcommercialproduction.Plotsizemaybedictatedbyyournormalplantingandmanagementprac-tices.Forexample,aminimumamountofseedmayberequiredtoplantwithaseeddrillorvacuumplanter,andtheplantingequipmentmayneedtorunacertaindistancetofunctionproperly.Me-chanicalharvestingequipmentmayalsorequireacertainminimumscaletooperateappropriately.

Anothervariabletoconsiderwhendeterminingplotsizeisthenumberofrowstoincludeperplot.Singlerowplotsallowyoutoplacemorelinesorfamiliesinyourtrial,butmaygivemorevariableresultsbecauseoffewerplantsperplotandpoten-tialcompetitionbetweenvarietiesinadjacentplots.Withthreeorfourrowplots,thecenteroneortworowscanbeevaluatedwithoutconcernofcompeti-tioneffectswithneighboringplots.Whilethisap-proachtakesmorespace,itdoesminimizeinter-plotcompetitionandproducesmoreaccuratedata.Aswithplotlength,aminimumnumberofrowsmaybedeterminedbyequipment.Forexample,youmaybelimitedbythesetupofyourplantingequipment.Borderrowsaroundyourexperimentalplotswillminimizewhatisknownastheedgeeffect,where-byplotsontheedgeexperienceslightlydifferentgrowingconditionsrelativetotherestofthetrial.Withoutborders,plotsontheedgemaybemoreproductivebecausetheylackcompetingplantsaroundthemorlessproductivebecausetheyarenexttoamorecompetitivecropordamagedbyfieldoperationsoccurringinadjacentcrops.Assuch,datafromun-borderedplotsaroundtheout-sideofthetrialwillbebiasedrelativetothecenterofthefield.Borderrowsshouldbeplantedatthefrontandbackofatrialaswellasalongthesides.

‘Abundant Bloomsdale’ organic spinach breeding projectWhat were the goals of this project?Thereisastrongdemandformoreopen-pollinatedsavoyspinachvarieties,whichareimportanttodiversifiedorganicfarms.ThegoaloftheAbundantBloomsdaleprojectwastodevelopadarkgreen,open-pollinatedsavoyspinachvarietywithhighnutritionalcontent,goodflavor,andsuperiorboltresistance.Thevarietyneededtohaveanuprightplanthabitandbeusefulatallstagesfrombabyleaftofullymaturebunchingtypes.

ThePacificNorthwestisaprimespinachseedproducingregion,yetthereislittleorganicspin-achseedproducedthere,asmostseedcompanieshaveignoredtheorganicspinachseedmarket.Anendresultofthisbreedingprojectwillbetohelpbothorganicfarmersandsmallorganicseedcompaniesbysupplyingthemwithanalternativetothespinachhybridsthatarelargelybredforconventionalsystems.

Breeding procedureTheprojectbeganwithacrossof‘WinterBlooms-dale’and‘Evergreen.’‘WinterBloomsdale’isacoldhardy,open-pollinatedspinachvarietywithdarkgreenleaves,deepcurl,andgoodflavor.ThevarietywasoriginallybredforwinterandearlyspringharvestincoastalVirginia.ItisthelastoftheoldfullysavoyspinachvarietiesthatisstillwidelygrowninNorthAmerica.‘Evergreen’isasemi-savoyspinachvarietydevelopedbyDr.TeddyMorelockoftheUniversityofArkansasforwinterproductioninArkansasandTexas.Thevarietyhasstronghorizontalresistancetomanyofthemajordiseasesofspinach.

Inthefirstyearofbreeding,OSAbreederJohnNa-vaziomadea‘straincross,’whereapproximately20plantsofbothparentalvarietieswereplantedside-by-sideandallowedtocrossthroughopen-pollina-tion.Bymakingthecrossinthismanner,ratherthanpollinatingbyhand,morecrossesbetweenthevarietiescouldoccurandmoreofthegeneticvari-abilityofthetwoparentsisretained.

V. Examples of Farmers Breeding for Organic Systems

Page 31: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org3�

Afterthatinitialcross,theresultingpopulationwasgrownforfivegenerationsonvariousfarmsinWesternWashington.Thisintermatingprocessbrokeupsomeofthegeneticlinkages(seelinkagedescriptioninprevioussection)andallowedthegenesofthetwoparentstothoroughlymix.Duringthisprocess,alowintensityofmassselectionwasappliedforappropriateleafshapeandvigor.

Inthesixthseason,afterfivegenerationsofin-termating,NavazioandlocalfarmerMarkoColbyplanteda2,000plant“spaceplantnursery,”whereeachplantwasspacedfarenoughfromallotherssotheycouldbeevaluatedindividually.Fromthese2,000plantstheyselectedintenselyforthetraitsalreadymentioned,andendedupwith130spin-achplants.Theseselectedplantswereallowedtoopenlypollinate.

Asspinachisdioecious,withplantscontainingeithermaleflowersorfemaleflowers,onlyabouthalfoftheselectedplantswereseedbearing.Ulti-mately,seedfrom67femaleplantswereharvestedintoseparatebagsthatwerenumberedsequential-lyfrom1to67.Sevenfamiliesweresubsequentlydroppedbecauseoftheirpoorseedqualityoryield.Inthefollowingyear(yearseven),seedoftheremaining60familieswereplantedinfamilyrowsandevaluatedatseveralstagesofgrowthbetweenthebabyleafandmaturebunchingstages.Ofthese60families,onlyfiveprovedtobesuperiorthroughallgrowthstages.Theother55undesirablefami-lieswereeliminatedandtheremainingfivese-lectedfamilieswereallowedtointermatethroughopen-pollination.Theresultingseedofeachofthefivefamilieswereharvestedseparatelyintofivefamilybags.

Inyeareight,NavazioandColbyplantedseedfromthesefivefamiliesasfamilyrows,withthegoalofidentifyingthebestoftheseselectedfamiliestocomprisethefinalpopulationthatwouldbere-leasedas‘AbundantBloomsdale.’Thefivefamilieswereagainevaluatedatallstagesofgrowthbe-tweenthebabyleafandmatureleafstage.Inthisfinalevaluation,onlyoneofthefivefamilieswasuniforminallofthetraitsthatsatisfiedthebreed-inggoals.Thisfamilyhaddarkgreen,fullysavoyedleavesonaveryupright,vigorousplant,andarich,

sweetflavorandsuperiorcoldhardiness.Theotherfourfamilieswereeliminatedandthechosenfam-ilywasroguedforofftypes.Theremainingplantswereallowedtointermateandproducethestockseedof‘AbundantBloomsdale.’

Winter sprouting broccoliWhat were the goals of this project?Thisbreedingprojectisongoing,andthegoalsaretodevelopapurplesproutingbroccolivarietythatreliablyoverwintersinthePacificNorthwestandproducesgoodyieldsoftender,flavorful,6to8inchshootswithpurpleflorets.ThepurplewintersproutingbroccolivarietiesthatarecommonlyavailabletoPacificNorthwestgrowersgenerallycomefromWesternEuropeandmostarenotcon-sistentlycoldhardytotemperaturesbelow18°F(-8°C).SomePacificNorthwestwintersprovidelowtemperaturesbetween8°and14°F(-13and-10C).Also,manyoftheEuropeanopen-pollinatedvariet-ieshavesproutsthatareinconsistentinthelengthandsizeoftheirflorets.

ThisprojectisacollaborationwithOrganicallyGrownCompany,thelargestall-organicproducedistributorinthePacificNorthwest.OrganicallyGrownCompanyisinvestingintheprojecttoex-pandaccesstoregionallygrown,organicproduce.

Breeding procedureOSAbeganthisbreedingprojectbyconductingatrialwithtensproutingbroccolivarieties.Sixofthesewereopen-pollinatedvarietiesandfourwerehybrids.ThistrialwasplantedinPortTownsend,Washington,inthemid-summerof2010andgrownthroughthecoldwinterof2010and2011.Temperaturesgotdownto14°F(-10°C)duringseveralofthesenights.Weevaluatedthevarietiesthroughoutthewinterforfrostdamage.Severalvarietiesweredamagedtothepointwhereplantsdiedorwherethedamageseverelyreducedtheyieldofsproutsinspring.Fiveofthetenvariet-ieswerefoundtosurvivethecoldathigherratesthantheothers.Ofthosefive,onlytwovarietieshadmanyoftherequiredqualitycharacteristics,includinglargesproutsize,deeppurplecoloredflorets,andgoodstemlength.

Inthespringof2011,approximately25plantsfromeachofthetwobestperformingvarieties

Page 32: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org32

wereselectedasparentstomakeastraincross.Alloftheotherplantsfromthesetwovarietieswereremovedfromthefield,asweretheothervarieties.These50selectedplantswereallowedtocross-pollinateandsetseed.Duringflowering,eightadditionalplantswereeliminatedbasedonpoorfloweringcharacteristics.Inthesummerof2011,seedwasharvestedfromeachplantandsavedseparately,representing42half-sibfamilies.Afterharvest,twoofthefamilieswereeliminatedbasedonpoorseedset.

Inthesummerof2012,seedfromeachofthese40familieswereplantedasfamilyrowsintwoloca-tions:PortTownsend,Washington,andAshland,Oregon.Eachlocationhad40familyrows,with30plantsineachfamily.Eachofthefamilieswasevaluatedinthewinterandspringof2012and2013atbothlocationsbasedonsproutcharacter-

istics,uprightgrowth,yield,vigorandcold-hardi-ness.Familiesneededtohavearateofgoodplantsgreaterthan60%tobeconsideredacceptable.Eightofthe40familieswerefoundtobesuperioratboththeWashingtonandOregonlocations.Theother32familieswereeliminatedfromthefield,aswereupto40%oftheinferiorplantswithintheeightselectedfamilies.Theselectedplantsintheeightselectedfamilieswerethenallowedtointer-mate.Seedwassavedseparatelyfromeachoftheeightfamilies.

Asofthewritingofthispublication,theeightse-lectedfamiliesarebeinggrownasseparatefamilyrowsinbothWashingtonandOregon.Selectionwilloccurinthewinterandspringof2013and2014.Weanticipateafinishedvarietywillbereadyforreleasein2015.

Page 33: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org33

Additive genetic effect:thelinearphenotypicchangeinatraitthatoccursfromthesubstitutionofonealleleforanotheratagivenlocus.

Allele:oneofanumberofpossiblegenesthatcouldoccupyagivenlocus.

Anther:thepollenbearingmalereproductivestructureinaflower.

Artificial selection:(seeSelection)

Breeding value:theexpectedaveragevalueoftheoffspringofagivenplantforagiventrait.

Broad adaptation: (seeWide adaptation)

Chromosome:asingle,organizedpieceofDNAthatcontainsmanygenes,aswellasnon-geneticelements.

Cross-pollination: thepollination(and,asagener-alrule,fertilization)ofanovuleofoneplantbythespermofanotherplant.Cross-pollinatingplantsrelyoncross-pollinationforasignificantamountoftheirmating.

Crossing over: theexchangeofsegmentsbetweenchromosomesduringmeiosis.

Crossover interaction:atypeofgenotypebyenvironmentinteractionwherecertainvarietiesaresuperiortoothervarietiesinoneenvironmentwhilebeinginferiortothosesamevarietiesinan-otherenvironment.

Dioecious plants: specieswhereafraction(gener-allyhalf)oftheplantsinthepopulationwillhaveonlymaleflowers,whiletheotherswillhaveonlyfemaleflowers.

Dominant allele:anallelethatproducesagivenphenotyperegardlessofwhetheritispresentasaheterozygoteorahomozygote(oneortwocopiesatalocus).Dominantalleles,ifpresentasahetero-zygote,maskthepresenceofrecessivealleles.

Dominance effect: thedifferenceinthegeneticperformanceofaheterozygotefromwhatwouldbeexpectedfromtheaveragevalueofthehomo-zygousparents(theadditiveeffects).Heterosisisatypeofdominanceeffect.

Drift:(seeGenetic drift)

Environment:theexternal,non-geneticconditionsthataffectthephenotypeofanorganism.Inagivenlocation,thesecanincludefixedconditionssuchassoiltypeanddaylength,aswellasvariablecondi-tionssuchasavailablewater,fertility,cultivationpractices,andpestanddiseasepressure.

Experimental design: theprocessofplanningastudywiththegoalofmeetingspecificobjectivesinanefficientmanner.F1 (F2, etc.): abbreviationforfirstfilialgenera-tion,i.e.thefirstgenerationofplantstocomefromacross.

Family:agroupofgeneticallyrelatedplants.Oftenthenatureoftherelationshipisspecified.Asex-amples,seehalf-sibfamilies,full-sibfamilies,andS1families.

Family selection: selectingplantsorfamiliesbasedontheoverallperformanceofafamily.

Fertilization:fertilizationistheprocessbywhichspermcellstravelthroughthepollentubetotheovary.Fertilizationiscompletewhenthespermfuseswithanovule,eventuallyleadingtothefor-mationofaseed.

Full-sib family:afamilystructurewheretheplantsinthefamilysharethesamemotherandthesamefather.

Gamate:spermoreggcellsresultingfrommeiosis,containinghalfthenumberofchromosomesastheparentalplant.

Gene:aunitofinheritancethatcontrols,inwholeorinpart,agiventrait.Genesarelocatedatfixedlociinaseriesofalternativeformscalledalleles.

Glossary and Index

Page 34: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org3�

Gene pool:thesetofgeneticinformationsharedbyapopulation.

General adaptation:(SeeWide adaptation)

Genetic drift:therandom(non-intentional)changeinthefrequencyofgenesinthepopulationasitreproducesovergenerations.

Genetic variability:therangeanddistributionofallelesthatarecontainedinapopulation.Geneticvariabilityisimportantbecauseitdeterminestheabilityofthepopulationtobeimprovedandtoadapttovariableenvironments.Geneticvariabil-itycanexistinapopulationasheterozygosityandasheterogeneity.

Genetically Modified Organisms (GMOs): Or-ganismswithhumanmediatedgeneticalterationresultingfromthedirectuptake,incorporationandexpressionofforeigngeneticmaterial.

Genotype: thegeneticmakeupofanorganism.

Genotype by environment interaction (GxE): thevariabilityinphenotypesthatoccurswhengeno-typesperformdifferentlyindifferentenvironments.

Germplasm:acollectionofgeneticresourcesinaspecies.

Half-sib family:afamilystructurewheretheplantsinthefamilysharethesamemother.

Heirloom: forthepurposesofthistext,pre-WorldWarIIopen-pollinatedvarietiesthatwereselected,adapted,andmaintainedovergenerationswithinfamiliesoragriculturalcommunities.

Heritability:theproportionofobservedvariabilitythatisheritable.

Heterosis:theincreasedperformanceofhybridbeyondthatpredictedbasedonparentalperfor-mance(alsoknownashybridvigor).

Heterozygous:havingnon-identicalallelesatoneormoreloci.

Homozygous:havingidenticalallelesatoneormoreloci.

Hybrid: theproductofacrossbetweengeneticallydistinctparents.

Ideotype:forthepurposesofthistext,animag-inedcropvarietyrepresentingtheidealtobereachedthroughabreedingproject.

Inbreeding: matingbetweenrelatedindividuals.

Inbreeding depression:thedecreaseinvarietalfitnessduetoinbreeding.

Intermate: cross-pollinationbetweenindividualplants.

Isolation distance: therequireddistancetoisolateseedcropsfromothercropsofthesamespeciesthatmaybeasourceofpollenorseedcontamination.

Landrace:ageneticallyandphysicallydiverseva-rietythathasdevelopedovertimebyadaptationtothenaturalandculturalenvironmentinwhichitexists.

Line:anearlycompletelyhomozygousvarietyorbreedingparentproducedbycontinuedinbreeding.

Linkage:thetendencyofgenesthatarelocatedneareachotheronachromosometobeinheritedtogether.

Linkage disequilibrium:theoccurrenceofcombi-nationsoflinkedallelesinapopulationinfrequen-ciesdifferencefromwhatwouldbeexpectedbasedonrandomassortment.

Locus:thepositionoccupiedbyageneonachromosome.

Mass selection:aformofselectionwhereindi-vidualplantsareselectedbasedontheirindi-vidualperformance.

Meiosis:theprocessofcelldivisionthatproducesspermandeggcells.

Monoecious plants:atypeofplantthathassta-mensandpistilsindifferentfloralstructureonthesameplant.

Page 35: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org3�

Monogenic:atraitthatiscontrolledbyasinglegene.

Multiline:avarietyformedbythecombinationoftwoormorelines.

Natural selection:theprocessbywhichpopula-tionschangeduetoindividualswithinthepopula-tionthatarebetteradaptedtotheirenvironmenttendingtosurviveandproducemoreoffspring.

Negative selection: selectionagainstundesiredtraits,typicallyremovingonlyasmallfractionofthepopulation.

Nursery:afielddesignatedforrearingandtest-ingbreedingstock,performingcrossesandotherbreedingactivities.

Open-pollinated:morenarrowly,across-pol-linatedcropallowedtointermatefreelyduringseedproduction;or,morebroadly,anon-hybridcropvariety.

Ovule:thestructurethatcontainstheeggs.

Perfect flowers: aflowerhavingbothmaleandfemaleorgans.

Phenotype:theappearanceofanindividual,ascontrastedwithitsgeneticmakeuporgenotype.

Pistil:acompletefemaleorganwithinaflower,containingastigma,style,andovary.

Pollen:thestructurethatcontainsandconveysthespermcellsduringpollination.

Polygenic:traitsthatarecontrolledbymanygenes.

Population:acommunityofindividualswithinaspeciesthatcanintermate.Apopulationsharesacommongenepool.

Positive selection: selectionforbeneficialtraits,typicallyremovingamajorityofthepopulation.

Randomization:theprocessbywhichvarieties,families,etceteraarerandomlyassignedtoloca-tionswithinafield.

Recessive allele:anallelethatproducesagivenphenotypeonlywhenitispresentasahomozygote(twocopiesatalocus).

Recombination: formationofnewcombinationsofgenesduetocrossesbetweengeneticallydis-tinctparents.

Rogue:removalofasmallfractionofundesirableindividualsfromapopulation.

S1 (etc):symboldesignatingthefirstgenerationafteraself-pollination.

S1 family:afamilystructurewheretheplantsinthefamilyallresultedfromthesameself-pollination.

Selection:theprocessofdeterminingwhichindi-vidualsinapopulationwillgeneticallycontributetothenextgeneration.

Self-incompatibility:ageneralnameforseveralgeneticmechanismsthatpreventself-fertilization.Self-incompatibilitycanalsolimitcross-fertiliza-tionbetweencloselyrelatedplants.

Selection intensity:thedifferencebetweentheaverageoftheoriginalpopulationandtheaverageoftheselectedpopulation.

Self-pollination:thepollination(and,asagen-eralrule,fertilization)ofanovuleofoneplantbythespermofthesameplant.Self-pollinatingplantsrelyonself-pollinationforasignificantamountoftheirmating.

Space plant nursery:anurserywhereplantsarewidelyspacedsothattheymaybeeasilyevaluatedasindividuals.

Specific adaptation:theabilityofagivengenotypeorpopulationtobesuperiorinaspecificenvironments.

Stigma:theupperpartofthepistilthatreceivesthepollen.

Stock seed:seedusedbyaseedgrowerorseedcompanytoproducetheseedthatisgrownforcommercialsaleanddistribution.

Page 36: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org36

Strain cross:atechniquetoproducesmultiplecrossesbetweentwoormorepopulations,whereinthepopulationsareallowedtoopenlypollinate.Style:isthepartofthepistilthatconnectsthestigmaandtheovary.

Target population of environments (TPE):isthesetofenvironments(farmsandfutureseasons)inwhichthevarietiesproducedbyabreedingpro-gramwillbegrown.

Trial: asystemiccomparisonofasetofvarietiesorfamilies.

Unisexual flower: flowersthatcontaineitherallmaleorallfemaleparts.

Variety:anamedgroupofplantsofthesamespe-ciesthatsharesasetoftraitsthatdifferentiatesitfromothervarieties.

Wide adaptation:theabilityofagivengenotypeorpopulationtoperforminastablefashionacrossmanydifferentenvironments.

Plant breeding publicationsAllard,R.W.1964.PrinciplesofPlantBreeding.JohnWileyandSons,NewYork,NY.

Bassett,M.J.1986.Breedingvegetablecrops.AVIPub.Co.,Westport,Conn.

Briggs,F.N.,andP.F.Knowles.1967.IntroductiontoPlantBreeding.ReinholdPublishingCorporation.

Ceccarelli,S.2010.ParticipatoryPlantBreeding(TrainingManual)[Online].Availableathttp://cec-carelli.files.wordpress.com/2010/01/ppb-manual.doc(verified20Apr.2012).

Deppe,C.1993.BreedYourOwnVegetableVariet-ies.ChelseaGreen,WhiteRiverJunction,VT.

Fehr,W.R.1987.Principlesofcultivardevelopment.

Webber,H.J.1908.PlantBreedingforFarmers.NabuPress,Charleston,SC.

White,R.,andB.Connolly.2011.BreedingOrganicVegetables:AstepbyStepGuideforGrowers[On-line].Availableathttp://www.nofany.org/sites/de-fault/files/BreedingOrganicVegetables-2011.pdf(verified20Apr.2012).NOFA–NY,Rochester,NY.

Zystro,J.,A.Shelton,andS.Snapp.2012.Participa-toryPlantBreedingToolkit.OrganicSeedAlliance,PortTownsend,WA.

Seed saving publicationsAdam,K.2005.SeedProductionandVarietyDe-velopmentforOrganicSystems[Online].Availableat:https://attra.ncat.org/attra-pub/download.php?id=70(verified30Apr.2012).ATTRA/NCAT.Butte,MT.

Ashworth,S.1991.SeedtoSeed.SeedSaversPubli-cations,Decorah,IA.

Colley,M.,J.NavazioandL.DiPietro.2010.ASeedSavingGuideforGardenersandFarmers[Online].Availableathttp://www.seedalliance.org/down-load-form-1/(verified20Apr.2012).OrganicSeed

References and Resources

Page 37: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org37

Alliance,PortTownsend,WA.

Colley,M.,A.Stone,L.Brewer,B.Baker.2010.Or-ganicSeedResourceGuide[Online].Availableathttp://www.extension.org/article/18340(verified20Apr.2012).eXtensionInitiative,Lincoln,NE.George,R.1999.VegetableSeedProduction.CABIPublishing,NewYork,NY.

Hawthorn,L.,andL.Pollard.1954.VegetableandFlowerSeedProduction.BlackistonCo.,NewYork,NY.

McCormack,J.2010.BeanSeedProduction[On-line].Availableathttp://www.savingourseeds.org/pub_bean_seed_production.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

McCormack,J.2010.BrassicaSeedProduction[Online].Availableathttp://www.savingourseeds.org/pub_brassica_seed_production.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

McCormack,J.2010.CucurbitSeedProduction[Online].Availableathttp://www.savingourseeds.org/pub_cucurbit_seed_production.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

McCormack,J.2010.IsolationDistances[Online].Availableathttp://www.savingourseeds.org/pub_isolation_distance.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

McCormack,J.2010.PepperSeedProduction[Online].Availableathttp://www.savingourseeds.org/pub_pepper_seed_production.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

McCormack,J.2010.SeedProcessingandStorage[Online].Availableathttp://www.savingourseeds.org/pub_seed_processing_storage.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

McCormack,J.2010.TomatoSeedProduction[Online].Availableathttp://www.savingourseeds.org/pub_tomato_seed_production.html(verified20Apr.2012).SavingOurSeeds,Charlottesville,VA.

Navazio,J.,M.Colley,andM.Dillon.2007.Princi-plesandPracticesofOrganicBeanSeedProduction[Online].Availableathttp://www.seedalliance.org/

download-form-4/(verified20Apr.2012).OrganicSeedAlliance,PortTownsend,WA.

Navazio,J.,M.Colley,andM.Dillon.2007.PrinciplesandPracticesofOrganicRadishSeedProduction[Online].Availableathttp://www.seedalliance.org/download-form-8/(verified20Apr.2012).OrganicSeedAlliance,PortTownsend,WA.

Navazio,J.,M.Colley,andJ.Reiten.2010.PrinciplesandPracticesofOrganicCarrotSeedProduction[Online].Availableathttp://www.seedalliance.org/download-form-6/(verified20Apr.2012).OrganicSeedAlliance,PortTownsend,WA.

Navazio,J.,M.Colley,andJ.Zyskowski.2010.Prin-ciplesandPracticesofOrganicBeetSeedProduc-tion[Online].Availableathttp://www.seedalliance.org/download-form-5/(verified20Apr.2012).OrganicSeedAlliance,PortTownsend,WA.

Whealy,K.2000.GardenSeedInventory:AnIn-ventoryofSeedCatalogsListingAllNon-HybridVegetableSeedsAvailableintheUnitedStatesandCanada.SeedSaverPublications,Decorah,IA.

Zyskowski,J.,J.Navazio,F.Morton,andM.Colley.2010.PrinciplesandPracticesofOrganicLettuceSeedProduction[Online].Availableathttp://www.seedalliance.org/download-form-7/(veri-fied20Apr.2012).OrganicSeedAlliance,PortTownsend,WA.

On-farm researchAnderson,D.,M.Honeyman,J.LunaandV.Berton.1999.HowtoConductResearchonYourFarmorRanchSustainableAgricultureNetwork[Online].Availableathttp://www.sare.org/publications/re-search/research.pdf(verified20Apr.2012).SARE/USDA,CollegePark,MD.

Colley,M.,andJ.Myers.2007.On-farmVarietyTri-als:AGuideforOrganicVegetable,HerbandFlowerProducers[Online].Availableathttp://www.seedal-liance.org/download-form-3/pdf(verified20Apr.2012).OrganicSeedAlliance,PortTownsend,WA.

Miller,B.,E.Adams,P.Peterson,andR.Karow.1992.On-farmTesting:AGrower’sGuide[Online].Availableathttp://pnwsteep.wsu.edu/onfarmtest-

Page 38: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org38

ing/EB1706.pdf(verified20Apr.2012).Washing-tonStateUniversityCooperativeExtension,Pull-man,WA.

Germplasm and information resourcesNationalPlantGermplasmSystem.AsearchablelistingoftheUSDAplantgermplasmcollections.Muchofthematerialisavailableinsmallquantitiesforresearchpurposes.http://www.ars-grin.gov/npgs/index.html

SeedSaver’sExchange.Amembershiporganizationthatfacilitatesgardener-to-gardenerexchangeofopen-pollinatedseeds.http://www.seedsavers.org/

OrganicSeedFinder.Asearchablelistingoforganicvegetableandfieldcropseedfromawidearrayofvendors.http://www.organicseedfinder.org/

OrganicVarietyTrialDatabase.Acollectionofre-portsfromorganicvarietytrialsconductedaroundthenation.http://varietytrials.eorganic.info/Facciola,Stephen.1998.CornucopiaII:Asourcebookofedibleplants.KampongPublications,Vista,CA.

Whealy,Kent.2005.GardenSeedInventory,6thEdition.SeedSaversExchange,Decorah,IA.

Selected Organizations and University Programs Involved in Organic BreedingMandaaminInstitute.http://www.mandaamin.org/

MichaelFieldsAgriculturalInstitute.http://mi-chaelfields.org/

NorthernPlainsSustainableAgricultureSocietyFarmerBreederClub.http://npsas.org/about-us/farm-breeding-club.html

OrganicSeedAlliance.http://seedalliance.org

CornellDepartmentofPlantBreedingandGenetics.http://plbrgen.cals.cornell.edu/

NorthCarolinaStateUniversityPlantBreedingPro-gram.http://cuke.hort.ncsu.edu/breeding/

OregonStateUniversityPlantBreedingandPlantGe-neticsProgram.http://plantbreeding.oregonstate.edu/

TexasA&MDepartmentofSoilandCropSciences.https://soilcrop.tamu.edu/programs/research-programs/plant-biotechnology/plant-breeding/

UniversityofIowaPlantBreedingProgram.http://www.plantbreeding.iastate.edu/

UniversityofMinnesotaPlantBreeding/MolecularGeneticsProgram.http://www.appliedplantscienc-es.umn.edu/PlantBreedingMolecularGenetics/

UniversityofNebraskaPlantBreeding,GeneticsandMolecularPhysiologyProgram.http://agrono-my.unl.edu/pg-plantbreed

UniversityofWisconsinPlantBreedingandPlantGeneticsProgram.http://plantbreeding.wisc.edu/

WashingtonStateDepartmentofCropandSoilSciences.http://css.wsu.edu/research/crop_genet-ics/breeding/

Page 39: Introduction to On-farm Organic Plant · PDF fileIntroduction to On-farm Organic Plant Breeding Introduction to On-farm Organic Plant Breeding Organic Seed Alliance ... The principles

Introduction to On-farm Organic Plant Breeding www.seedalliance.org39

AuthorsCompleted 20��John Navazio and Jared Zystro, Organic Seed AlliancePictures courtesy of Micaela Colley (OSA) and Jared Zystro (OSA) unless otherwise noted

Producer-Professional ReviewedAs an institutional standard, all OSA publications are reviewed by both scientific researchers and profes-sional producers.

Educational Materials

This publication is protected under Creative Commons licenses: Attribution, Non-Commercial & Share Alike.

We believe in protecting intellectual property (IP) in a manner that promotes creativity and innovation in the interest of the public good. We encourage you to learn more about the Creative Commons, the Open Source movement, and other alternative IP models. Regarding this material, Organic Seed Alliance is the original author and license holder. You are free to copy, distribute, display, and perform the work, and to make derivative works under the following conditions:

Attribution. You must give the original author credit.

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

For PDF versions of this and other seed publications, please visit us at www.seedalliance.org Organic Seed Alliance • 20��

••


Recommended