Transcript
Page 1: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM PhysicsTOTEM Physics tot

elastic scattering diffraction (together with

CMS) Karsten Eggert

CERN, PH Department

on behalf of the

TOTEM Collaborationhttp://totem.web.cern.ch/Totem/

Politecnico di Bari and Sezione INFNBari, ItalyCase Western Reserve UniversityCleveland, Ohio,USA

Institut für Luft- und Kältetechnik, Dresden, Germany

CERN, Geneva, Switzerland

Università di Genova and Sezione INFN Genova, Italy

University of Helsinki and HIP, Helsinki, Finland Academy of Sciences,Praha, Czech Republic

Penn State UniversityUniversity Park, USA

Brunel University, Uxbridge, UK

TOTEM TDR is fully approved by the LHCC and the Research Board

Page 2: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM Physics

Total cross-section with a precision of 1%

Elastic pp scattering in the range 10 -3 < t = (p )2 < 10 GeV2

Particle and energy flow in the forward direction

Measurement of leading particles

Diffractive phenomena with high cross-sections

Different running scenarios (* = 1540, 170, 18, 0.5 m)

Page 3: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Page 4: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM Experiment

Page 5: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

• Current models predictions: 90-130 mb

• Aim of TOTEM: ~1% accuracy

Total p-p Cross-SectionTotal p-p Cross-Section

mb 1.41.2 2.1 5.111 +

−±=totLHC:

COMPETE Collaboration fits all available hadronic data and predicts:

[PRL 89 201801 (2002)]

Page 6: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

02

2

116L

=

×+

=t

tot dtdN

ρπ

inelasticelastictot NN +=L inelel

ttot NN

dtdN+

×+

= =02

)/(

116ρπ

Optical Theorem

T1:3.1 << 4.7

T2: 5.3 < < 6.5

Experimental apparatus

Page 7: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering Cross-SectionElastic Scattering Cross-Section

diffractive structure

Photon - Pomeron interference ρ

pQCD

* = 1540 mL = 1.6 x 1028 cm-2 s-

1

(1)

*=18 mL = 3.6 x 1032 cm-2 s-1

(2)

pp 14 TeVBSW model

Multigluon (“Pomeron”) exchange e– B |t|

-t [GeV2]

t p2 2

d/d

t [m

b / G

eV2 ]

~1 day(1) (2)

wide range of predictions

104 per binof 10-3 GeV2

Page 8: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering at low-t

(1/L) dNel/dt = d/dt =

[4π2(c)2G4(t)]/|t|2 + {[(ρ-)totG2(t)]/|t|}exp(-B|t|/2)

+ [tot2 (1 + ρ2)/16π(c)2] exp(-B’|t|)

Coulomb scattering

Coulomb-Nuclear interference - how to calculate? (Kundrat et al.)

Nuclear scattering

L = integrated luminositydNel/dt = observed elastic events = fine structure constant = relative Coulomb-nuclear phase: = ln(0.08|t|-1 – 0.577) (see: West & Yennie, PR172(1968)1413.G(t) = nucleon em form factor: = (1 + |t|/0.71)-2

Page 9: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Extrapolation uncertainty due to Coulomb interference

Change of the slope B

Extrapolation to t=0 model dependent

Error < 0.5 % d/dt ~ exp( -Bt)

Coulomb interference

Coulomb scattering

Nuclear scattering

Coulomb-Nuclear

interferenceρ = Re/Im f(pp)

Page 10: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering: ρ = Re f(s,0)/Im f(s,0)

TOTEM

ρ Ref+(s,0)/Imf+

(s,0)

(analyticity of thescattering amplitude via dispersion relations)

constant/lns with s

Page 11: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering- From ISR to TevatronElastic Scattering- From ISR to Tevatron

~1.5 GeV2

Page 12: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering- Models (e.g. Islam et al.)

Observations:

• fwd diffraction cross section increases, diffractive peak shrinks interference dip moves to smaller t

• at –t 1 GeV2

d/dt 1/t8 , little s dependence (Donnachie & Landshoff)

1/t8

large impact parameters-defines the region whereinelastic diffraction occurs”Reggeon” & ”soft Pomeron”

single gluon exchange between valence quarks 1/t8

Page 13: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering-large t

1-gluon exchange between the three valence quarks:each with a contribution 1/t2 1/t8!

Possible effect of a hard Pomeron

Page 14: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering- el/tot

0.375

Rel = el(s)/tot(s) Rdiff = [el(s) + SD(s) + DD(s)]/tot(s)

0.30

el 30% of tot at the LHC ? SD + DD 10% of tot (= 100-150mb) at the LHC ?

Page 15: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

T1:3.1 << 4.7

T2: 5.3 < < 6.5

T1 T2 CASTOR (CMS)

RP1 (147 m) RP2 (180 m) RP3 (220 m)

Experimental apparatus

Page 16: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

T1 telescopeT1 telescope 5 planes with measurement of three 5 planes with measurement of three

coordinates per plane.coordinates per plane. 3 degrees rotation and overlap 3 degrees rotation and overlap

between adjacent planesbetween adjacent planes Primary vertex reconstructionPrimary vertex reconstruction Trigger with CSC wiresTrigger with CSC wires

Support1 arm

Page 17: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

T2GEM Telescope: 8 planes

13500 mm from IP

Castor Calorimeter

(CMS)

Vacuum Chamber

1800 mm

400 mm

Bellow

T2 Telescope5.3< ll < 6.5

Page 18: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

T2: telescopeT2: telescope

54() x 22()= 1536 padsPads: x = 0.06 x 0.018π ~2x2 mm2 __ ~7x7 mm2

Strips: 256 (width: 80 m,pitch: 400 m)

Analog r/o circular strips

Digital r/o pads

8 triple-GEM planes, to cope with high particle fluxes5.3<||<6.6

Technology used in COMPASS

pads

strips

Page 19: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

GEM for the T2 TelescopeGEM for the T2 Telescope

pads

strips

Totem GEM Final Design 2005TOTEM GEM Prototype 2004

Full Telescope Mock up

Page 20: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Prototypes of all three detectors Prototypes of all three detectors tested in X5 test beam in 2004tested in X5 test beam in 2004

Page 21: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Planar with 3D edgesPlanar with 3D edges

13keV 6 mm X-ray beam

Insensitive edge = 5 + 2 m

Leakage current = 6 nA at 200V

TRADITIONAL PLANAR DETECTOR + DEEP ETCHED EDGE FILLED WITH POLYSILICON

E-fieldp + Al

n + Aln + Al

Page 22: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Planar technology: Testbeam 40 m dead area

Detector 1Detector 1 Detector 2Detector 2

Edgeless Silicon Detectors for the RPsEdgeless Silicon Detectors for the RPs

active edges(“planar/3D”)

planar technology CTS(Curr. Termin. Struct.)

50

m d

ead

area

10

m d

ead

area

66 m pitch

Add here photo of RP

Active edges: X-ray measurement

10m

Sign

al [a

.u.]

5m deadarea

Strip 1 Strip 2

Page 23: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM ROMAN POT IN CERN SPS BEAM

Page 24: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Roman Pot unit (Final Design) :

-Vertical and horizontal pots mounted as close as possible-BPM fixed to the structure gives precise position of the beam-Final prototype at the end of 2005

BPMBPM

Roman PotRoman Pot

0reconstructed track

Tracks

Assembly of Silicon Detectorsfor the SPS test beam

Page 25: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

functions at the LHC for *=0.5 m

Page 26: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM Optics ConditionsTOTEM Optics Conditions

High- optics for precise measurement of the scattering angle (*) = / * ~ 0.3 rad

As a consequence large beam size * = * ~ 0.4 mm

Reduced number of bunches ( 43 and 156 ) to avoid interactions further downstream

Parallel-to-point focusing ( v=0) :

Trajectories of proton scattered at the same angle but at different vertex locations

LTOTEM ~ 1028 cm-2 s –1

TOTEM needs special/independent short runs at high-**((1540m1540m))and and lowlowScattering angles of a few rad

y = Ly y*+ vy y* L = ()1/2 sin (s)

x = Lx x *+vx x*+Dx v = (/)1/2 cos (s)Maximize L and minimize v

Page 27: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

v= (/)1/2 cos (s)

L = ()1/2 sin (s)

High optics ( 1540 m ): lattice functions

DxvLx

yvLy

xxx

yy y

++=

+=**

**

L (m)

v

Parallel to point focusing in both projections

Page 28: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering* = 1540 m

acceptance

Page 29: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Scattering: ResolutionElastic Scattering: Resolutiont-resolution (2-arm measurement) -resolution (1-arm measurement)

Test collinearity of particles in the 2 arms Background reduction.

correlation in DPE

Page 30: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Elastic Cross section (t=0)

Uncertainty Fit error

Beam divergence 10% -0.05%Energy offset 0.1% -0.25% 0.05% -0.1%Beam/ detector offset 100m -0.32/-0.41 % 20m -0.06/-0.08 %Crossing angle 0.2rad -0.08/-0.1%

Theoretical uncertainty (model dependent) ~ 0.5%Beam offset (20 m)

Energy offset (0.1%)

Beam offset (100 m)

Statistical error

L dt=4 1032 cm-2

tmax = 0.1 GeV2

Page 31: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Accuracy of tot (inel.~80mb, el.~30mb)

(mb)(mb) Double Double armarm

Single armSingle arm After ExtrapolationAfter Extrapolation

Minimum biasMinimum bias 5858 0.30.3 0.060.06 0.060.06

Single diffractiveSingle diffractive 1414 -- 2.52.5 0.60.6

Double diffractiveDouble diffractive 77 2.82.8 0.30.3 0.10.1

Double PomeronDouble Pomeron 11 -- -- 0.020.02

Elastic ScatteringElastic Scattering 3030 -- -- 0.10.1

Trigger Losses (mb)

Acceptance

Vertex extrapolation

01.0005.00.008 22 ≈+≈

tot

tot

simulated

extrapolated

detected

Inelastic error t=0 extrapol. error

Page 32: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Try to reach the Coulomb region and measure interference:

• move the detectors closer to the beam than 10 + 0.5 mm• run at lower energy √s < 14 TeV

Possibilities of Possibilities of ρρ measurement measurement

Page 33: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

90% (65%) of all diffractive protons are detected for * = 1540 (90) m

largest acceptance detector ever built at a hadron collider

Rom

an Pots

TOTEM+CMS

T1,T2 T1,T2

Rom

an Pots

Charged particles

Energyflux

CMS + TOTEM: AcceptanceCMS + TOTEM: AcceptancedNdN

chch/d/d

dE/d

dE/d

Total TOTEM/CMS acceptance

CMScentral

T1

HCal T2 CASTOR

=90m=90m

RPs

=1540m=1540m

ZDC

Pseudorapidity: = ln tg /2

Page 34: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Running ScenariosRunning Scenarios

ScenarioScenarioPhysics:Physics:

11low |t| elastic,low |t| elastic,

tot tot ,,min. bias, min. bias,

soft diffractionsoft diffraction

22

Semi-hard Semi-hard diffractiondiffraction

33hard hard

diffractiondiffractionlarge |t| elasticlarge |t| elastic(under study)(under study)

** [m] [m] 15401540 15401540 9090

N of bunchesN of bunches 4343 156156 936936

N of part. per bunchN of part. per bunch 0.3 x 100.3 x 101111 1.15 x 101.15 x 101111 1.15 x 101.15 x 101111

Half crossing angleHalf crossing angle[[rad]rad]

00 00 100100

Transv. norm. emitt. Transv. norm. emitt. [[m rad]m rad]

11 3.753.75 3.753.75

RMS beam size at IP RMS beam size at IP [[m]m]

450450 880880 200200

RMS beam divergence RMS beam divergence [[rad]rad]

0.290.29 0.570.57 2.42.4

Peak luminosityPeak luminosity[cm[cm-2-2 s s-1-1]]

1.6 x 101.6 x 102828 2 x 102 x 102929 ~ 2 x 10~ 2 x 103131

Page 35: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM

log()

log(-t)

Diffractive protons are observed in a large -t range> 90% are detected

-t > 2.5 10 -3 GeV2

10-8 < < 0.1

resolution ~ few ‰

Diffractive protons at *=1540 m

Page 36: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Diffractive proton detection at =0.5 m> 2.5 %

mm

log

log -t

420

(mm)

(mm)(mm)

(mm)

log -t

log

Page 37: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

New optics =0m

• Ly large (~270 m) tmin = 3 x 10-2 GeV2

• Lx ~ 0 independent

• Vertex measured by CMS

determination with a precision of few 10 -4

To optimize diffractive proton detection at L=1031 in the “warm” region at 220m

Lyy Lxx+vxx*+D

=0 -210m (CMS)

30mm

~ 65% of all diffractive protons are seen

10 beam

Page 38: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Particle elongation (x) for Lx=0 and different -values

Lx = 0

x(m)x(m)

s(m) s(m)

Example at =0.007 and different emission angles

Lx=0

Lx

Page 39: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

X22

0-x 2

16 (

m)

(x220+x216)/2 (mm)

2

2

=172 m: resolution ~ 4 10-4 (preliminary)

TOTEM

Prelim

inary

= 10-3 2 10-3

Page 40: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Diffractive protons at =172 m

Log() vs Log(-t (GeV2))

TOTEM

Prel

iminar

y

Log() vs Log(-t)

TOTEM

Prelim

inary

420

Page 41: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

CMS/TOTEM PhysicsCMS/TOTEM Physics

CMS / TOTEM detector ideal for study of diffractive and forward physics:CMS / TOTEM detector ideal for study of diffractive and forward physics:

almost complete rapidity coverage combined with excellent proton measurementalmost complete rapidity coverage combined with excellent proton measurement

Hard diffractive structure in Single and Double Pomeron ExchangeHard diffractive structure in Single and Double Pomeron Exchange

Production of jets, W, J/, heavy flavours, hard photons

Double Pomeron exchange as a gluon factoryDouble Pomeron exchange as a gluon factory

Production of low mass systems (SUSY, ,D-Y,jet-jet, …) Glue balls, … Higgs production ??? (Susy Higgs)

Low - x dynamicsLow - x dynamics

Proton structure and multi-parton scattering

Color transparency

Parton saturation

Forward physicsForward physics

particle and energy flow (relevant for cosmic ray interpretation)

New forward phenomena: Centauros, DCC,

physicsphysics

Page 42: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

TOTEM+CMS Physics: Diffractive EventsTOTEM+CMS Physics: Diffractive Events

X

XDoublePomeronExchange

-Triggered by leading proton and seen in CMS-Central production of states X: X = c, b, Higgs, dijets, SUSY particles, ...

Measure > 90% of leading protons with RPs and diffractive system ‘X’ with T1, T2 and CMS.

Page 43: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

DiffractionDiffraction

Exchange of colour singlets (“Pomerons”) rapidity gaps Most cases: leading proton(s) with momentum loss p / p

clean case to study gluon-gluon interactionsgluon - gluon collider

P() = e-ρ, ρ = dn/d

p

p

g, qg, q

Exchange of colour triplets or octets:Gaps filled by colour exchange in hadronisation

Exponential suppression of rapidity gaps:

Unlike minimum bias events:

Example:

1

2

M

Page 44: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Diffractive Deep Inelastic Scattering

xIP = fraction of proton’s momentum taken by Pomeron = inFermilab jargon= Bjorken’s variable for the Pomeron = fraction of Pomeron’s momentum carried by struck quark = x/xIP

Flux of Pomerons

),,,()1(2

14 2)4(2)4(

2

4

2

2

4

txQFRyy

QdtdxdQdd

IPD

DIP

π

⎭⎬⎫

⎩⎨⎧ +

+−=

“Pomeron structure function”

F2D(4) fIP (xIP,t) F2

IP (,Q2)Naively, if IP were particle:

[Ingelman, Schlein]

xIP IP

Q2

t

*

e

e’

p p’

Page 45: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

jet

jet

hard scattering

IPLRG

Test factorisation in pp events

Normalisation discrepancy (x10)(depends on s [CDF, D0])

Hard scattering factorisation violated in pp(lots more evidence available)

FDJJ

(= F

2D)

?

(=xIP)

Factorisation of diffractive PDFs not expected to hold for pp, pp scattering – indeed it does not:

Page 46: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Example ProcessesExample Processes

2

22 'ppp −

=

P

p1

p2p2’

X d/dproton:p2’

diffractive system Xrapidity gap =–ln

min 0ln(2pL/pT) max

Measure leading proton ( ) and rapidity gap ( test gap survival).

Single Diffraction:

2=– ln 2 1=– ln 1

p1

p2 p2’

p1’

PMX

2 = 12s

PX

diffractive system Xproton:p2’proton:p1’

rapidity gaprapidity gap

min max

Double Pomeron Exchange:

Measure leading protons ( 1, 2) and compare with MX, 1, 2

MX2 = s

Page 47: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Hard Diffractive EventsHard Diffractive Events

Diffractive events with high pT particles produced

M

M

hard

hard

DoublePomeronExchange

hard

ET > 10 GeV Rates at L = 2 1029 cm-2 s-1

incl ~1 b 720/h

excl ~ 7 nb 5/h

M ( j1,j2) = 120 GeV Rates at L = 2 1031 cm-2 s-1

excl ~ 18 pb / M=10 GeV 30/day

Probing the hard structure

of the Pomeron

Page 48: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Particle production in Double Pomeron ExchangeParticle production in Double Pomeron Exchange

Use the LHC as a clean gluon-gluon colliderUse the LHC as a clean gluon-gluon collider

Quantum numbers are defined for exclusive particle production

Gluonic states c , b , Higgs, supersymmetric Higgs,…..

Clean gluon-gluon interactions

Page 49: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Exclusive Production by DPE: ExamplesExclusive Production by DPE: Examples

Advantage: Selection rules: JP = 0+, 2+, 4+; C = +1 reduced background, determination of quantum numbers.Good resolution in TOTEM: determine parity: P = (-1)J+1 d/d~ 1 +– cos 2

ParticleParticle exclexcl Decay channelDecay channel BRBR Rate at Rate at 22xx10102929 cm cm-2-2 s s-1-1

Rate at Rate at 10103131 cm cm-2-2 s s-1-1

(no acceptance / analysis cuts)(no acceptance / analysis cuts)

c0c0

(3.4 GeV)(3.4 GeV) 3 3 b b [KMRS][KMRS] J/J/ ++––

ππ+ + ππ– – KK+ + KK––

6 x 106 x 10-4-4

0.0180.0181.5 / h1.5 / h46 / h46 / h

62 / h62 / h1900 / h1900 / h

b0b0

(9.9 GeV)(9.9 GeV) 4 nb 4 nb [KMRS][KMRS] ++–– < 10< 10-3-3 0.07 / d0.07 / d 3 / d3 / d

HH(120 GeV)(120 GeV)

0.1 0.1 100 fb 100 fbassume 3 fbassume 3 fb bbbb 0.680.68 0.02 / y0.02 / y 1 / y1 / y

Higgs needs L ~ 1033 cm-2 s-1, i.e. a running scenario for = 0.5 m:• trigger problems in the presence of overlapping events• install additional Roman Pots in cold LHC region at a later stage

Page 50: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

H

b jets : MH = 120 GeV s = 2 fb (uncertainty factor ~ 2.5)

MH = 140 GeV s = 0.7 fb

MH = 120 GeV : 11 signal / O(10) background in 30 fb-1 for dm=3 GeV

WW* : MH = 120 GeV s = 0.4 fb

MH = 140 GeV s = 1 fb

MH = 140 GeV : 8 signal / O(3) background in 30 fb-1

Standard Model Higgs

•The b jet channel is possible, with a good understanding of detectors and clever level 1 trigger (need trigger from the central detector at Level-1)

•The WW* (ZZ*) channel is extremely promising : no trigger problems, better mass resolution at higher masses (even in leptonic / semi-leptonic channel)

•If we see SM Higgs + tags - the quantum numbers are 0++

Exclusive Higgs productionExclusive Higgs production

Phenomenology moving on fast See e.g. J. Forshaw HERA/LHC workshop

Page 51: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

ExHume

Phojet

log -t

log -t

log

log

input

and t distributions for 120 GeV Higgs (=90 m)

Proton acceptance 68%

Proton acceptance 63%

Detected protons at 220 m

Uncertain predictions !

Page 52: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

ExHume

Phojet

Mass Acceptance in DPE (preliminary)

= 90 m

=0.5 m

220 m

420 m

420 + 220 m

ExHume

PhojetTotem

Prelim

inary

Page 53: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

y = – ln

ymax = 6.5

Trigger via Roman Pots > 2.5 x 10-2

Trigger via rapidity gap < 2.5 x 10-2

* = 1540 m: ~ 0.5% L 2.4 x 1029 cm-2 s-1

* = 90 m: ~ 4 10 -4 L ~ 0.2 1032 cm-2 s-1

* = 0.5 m ~ 0.2-0.6 ‰ L < 1033 cm-2 s-1

Detection Prospects for Double Pomeron EventsDetection Prospects for Double Pomeron Events

dN/dy

– ln 2– ln 1

y

pp

CMS

CMS + TOTEM

p1

p2 p2’

p1’

PM2 = 12s

P* = 0.5 m

Page 54: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Effect of adding the ‘loosest’ RP condition in either 220m pot, on the total QCD dijet rate.

Reduction in rate of around 370 at 40GeV.

Caveat: 75 nsec bunch spacing at the LHC start

Integrated QCD rate for events with at least two jets

Integrated QCD rate for events with at least two jets and which satisfy the ‘loose’ RP condition

LuminosityLuminosity Events / bxEvents / bx25 nsec25 nsec

Rate at 40GeV Rate at 40GeV (kHz)(kHz)

Reduction at Reduction at 40 GeV40 GeV

1x10^321x10^32 00 2.6 | 7e-32.6 | 7e-3 371371

1x10^331x10^33 3.53.5 26 | 426 | 4 6.56.5

2x10^332x10^33 77 52 | 14.552 | 14.5 3.63.6

5x10^335x10^33 17.617.6 130 | 73130 | 73 1.81.8

Rate (kHz) at L= 10 32

R. Croft

Roman Pot trigger

Page 55: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

420m PHOJETAsym. 420+215 m420m EXHUME

Mass resolution at 420 m and 420+220m

Note:beam position accuracy 10 m

Page 56: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

MSSM Higgs is the hopeMSSM Higgs is the hope

tan tan = 30 = 30 tan tan = 50 = 50

mmAA

x BR (Ax BR (A bb) bb)130 GeV130 GeV0.07 fb0.07 fb

130 GeV130 GeV0.2 fb0.2 fb

mmhh

x BR (hx BR (h bb) bb)122.7 GeV122.7 GeV5.6 fb5.6 fb

124.4 GeV124.4 GeV13 fb13 fb

mmHH

x BR (Hx BR (H bb) bb)134.2 GeV134.2 GeV8.7 fb8.7 fb

133.5 GeV133.5 GeV23 fb23 fb

Examples:1. mA = 130 GeV

2. mA = 100 GeVtan tan = 30 = 30 tan tan = 50 = 50

mmAA

x BR (Ax BR (A bb) bb)100 GeV100 GeV0.4 fb0.4 fb

100 GeV100 GeV1.1 fb1.1 fb

mmhh

x BR (hx BR (h bb) bb)98 GeV98 GeV70 fb70 fb

99 GeV99 GeV200 fb200 fb

mmHH

x BR (Hx BR (H bb) bb)133 GeV133 GeV8 fb8 fb

131 GeV131 GeV15 fb15 fb

[from A. Martin]

Comparison:SM with mH = 120 GeV: x BR (H bb) = 2 fb

Page 57: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

For rapidities above 5 and masses below 10 GeV For rapidities above 5 and masses below 10 GeV x down to 10x down to 10-6 -6 ÷ ÷ 1010-7-7

Possible with T2 in TOTEM (calorimeter, tracker):Possible with T2 in TOTEM (calorimeter, tracker):5 5 < < < < 6.76.7

Proton structure at low-x:Parton saturation effects?

( ) 222 , RQxgx

Qs πα >

Saturation or growing proton?

spxx t

2

214

>

Proton structure at low x

Page 58: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Page 59: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Colour TransparencyColour Transparency

Parton localisation?

p

pjet 1 (pT 1)jet 2 (pT 2)jet 3 (pT 3)p

gg

u

du

Single diffraction: pp p + 3j

( )nb 10010GeV 58

3 ÷⎟⎟⎠

⎞⎜⎜⎝

⎛≈

minTjets p

σ

Estimated cross-section

, where one of the jets has pT > pT min

1 day at L = 2 x 1031 cm-2 s-1 with pT min = 10 GeV: 80 800 events

Example: 3 jets at 10 GeVpolar jet angle ~ 4.3 mrad ~ 6.1jet separation ~ 7 mrad 10 cm in T2jet width ~ 0.3 3 mrad 0.4 4 cm in T2

10 GeV

10 GeV10 GeV

j1

j2 j3

pT plane:

Page 60: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Integral flux of high energy cosmic rays

Measurements of the very forward energy flux (including diffraction) and of the total cross section are essential for the understanding of cosmic ray events

At LHC pp energy:

104 cosmic events km-2 year-1

> 107 events at the LHC in one day

Page 61: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

High Energy Cosmic RaysHigh Energy Cosmic Rays

Interpreting cosmic ray data dependson hadronic simulation programsForward region poorly know/constrainedModels differ by factor 2 or moreNeed forward particle/energy measurements e.g. dE/d…

Cosmic ray showers:Dynamics of thehigh energy particle spectrum is crucial

Page 62: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Model Predictions: proton-proton at the LHCModel Predictions: proton-proton at the LHC

Predictions in the forward region within the CMS/TOTEM acceptance

Page 63: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Photon - photon physics

Page 64: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

ConclusionsConclusionsMeasure Measure total cross-section total cross-section tot tot with a precision of with a precision of 1 % 1 % LL = ~10 = ~1028 28 cmcm-2-2 s s-1-1 with with * * = 1540 m= 1540 m

Measure Measure elastic scatteringelastic scattering in the range in the range 10 10 -3-3 < t < 8 GeV < t < 8 GeV 22

With the same dataWith the same data study of study of soft diffraction and forward physicssoft diffraction and forward physics::~ 10~ 1077 single diffractivesingle diffractive events events~ 10~ 1066 double Pomerondouble Pomeron events events

With With * * = 1540 m optics at = 1540 m optics at LL = 2 = 2 10 1029 29 cmcm-2-2 s s-1-1 : :semi-hard diffraction (psemi-hard diffraction (pTT > 10 GeV) > 10 GeV)

With With * * = 90 m optics (under study) at = 90 m optics (under study) at LL ~ 0.2 10 ~ 0.2 1032 32 cmcm-2-2 s s-1-1::hard diffraction and DPEhard diffraction and DPE

Study of rare events (Higgs, Supersymmetry,…) with Study of rare events (Higgs, Supersymmetry,…) with * = 0.5 m* = 0.5 musing eventually detectors in the cold region (420m)using eventually detectors in the cold region (420m)

Detailed study of the structure of the proton and the parton interactionsDetailed study of the structure of the proton and the parton interactions

Page 65: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Page 66: TOTEM Physics s tot TOTEM Collaboration elastic scattering

K.Eggert/CERN

Exclusive Central DiffractionThe Pomeron has the internal quantum numbers of vacuum.

PP: C = +, I=0,...

P: JP = 0+, 2+, 4+,...

PP: JPC = 0++

Gap GapJet+Jet

0

p1

p2p2’

p1’

P

P

diffractive systemproton:p2’ proton:p1’

rapidity gaprapidity gap

min max

min max

Signature:2 Leading Protons &2 Rapidity Gaps

Exclusive physics Gluon factory Threshold scan for New Physics

Large mass objects O(1TeV)

c: 10 6-7 events before decay

b: 10 3-4 events before decay

- a precursor to DPE Higgs, SUSY


Recommended