33
Vasicek Single Factor Model Vasicek Single Factor Model Alexandra Kochend¨ orfer 7. Februar 2011 1 / 33

Vasicheck prezentation

Embed Size (px)

Citation preview

Page 1: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Alexandra Kochendorfer

7. Februar 2011

1 / 33

Page 2: Vasicheck prezentation

Vasicek Single Factor Model

Problem Setting

I Consider portfolio with N different credits of equal size 1.

I Each obligor has an individual default probability.

I In case of default of the n’th obligor we lose the whole n’thposition in portfolio.

I What can we say about the loss distribution?

2 / 33

Page 3: Vasicheck prezentation

Vasicek Single Factor Model

Contents

Default CorrelationDefinitionWhy is default correlation importantIndependent/perfectly dependent defaults

Modelling Default CorrelationData sourcesDefault triggered by firm’s value

Vasicek Single Factor ModelLoss distribution in finite portfolioLarge Homogeneous Portfolio Approximation

Conclusion

3 / 33

Page 4: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Definition

Definition Default correlation is the phenomenon that thelikelihood of one obligor defaulting on its debt is affected bywhether or not another obligor has defaulted on its debts.

I Positive correlation: one firm is the creditor of another

I Negative correlation: the firms are competitors

Drivers of Default Correlation

I State of the general economyI Industry-specific factors

I Oil industry: 22 companies defaulted over 1982-1986.I Thrifts: 19 defaults over 1990-1992.I Casinos/hotel chains: 10 defaults over 1990-1992.

4 / 33

Page 5: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Definition

U.S. Corporate Default Rates Since 1920

5 / 33

Page 6: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Why is default correlation important

Why is default correlation important?

Consider, for two default events A and B

I default probabilities pA and pB

I joint default probability pAB

I conditional default probability pA|BI correlation ρAB between default events

These quantities are connected by

pA|B =pAB

pB

6 / 33

Page 7: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Why is default correlation important

ρAB =Cov(A,B)√

Var(A)√

Var(B)=

pAB − pApB√pA(1− pA)pB(1− pB)

The default probabilities are usually very small pA = pB = p � 1

pAB = pApB + ρAB

√pA(1− pA)pB(1− pB) ≈ p2 + ρAB · p ≈ ρAB · p

pA|B = pA +ρAB

pB

√pA(1− pA)pB(1− pB) ≈ ρAB

The joint default probability and conditional default probability aredominated by the correlation coefficient.

7 / 33

Page 8: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Independent/perfectly dependent defaults

Independent DefaultsConsider N independent default events D1, . . . ,DN withpD1 = · · · = pDN

= p ⇒ Number of defaults ∼ B(p,N).ForN = 100, p = 0.05

p (%) 1 2 3 4 5 6 7 8 9 10

99.9(%) VaR 5 7 9 11 13 14 16 17 19 208 / 33

Page 9: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Independent/perfectly dependent defaults

Perfectly dependent defaults

Consinder default correlation ρij = 1 for all pairs ij .

1 =pD1D2 − pD1pD2√

pD1(1− pD1)pD2(1− pD2)=

pD1D2 − p2

p(1− p)

⇒ pD1D2 = pD1 = pD2 = p i.e. D1 ∩ D2 = D1 = D2 a.s.

⇒ pD1D2D3 = pD2D3 = p ⇒ D1 ∩ D2 ∩ D3 = D1 a.s. . . .

⇒ D1 ∩ · · · ∩ DN = D1 a.s.⇒ pD1...DN= p

All loans in the portfolio defaults with probability p, none withprobability 1− p.

9 / 33

Page 10: Vasicheck prezentation

Vasicek Single Factor Model

Default Correlation

Independent/perfectly dependent defaults

Perfectly dependent defaults

10 / 33

Page 11: Vasicheck prezentation

Vasicek Single Factor Model

Modelling Default Correlation

Data sources

Data Sources

I Actual Rating and Default Events.+ Objective and direct.– Joint defaults are rare events, sparse data sets.

I Credit Spread.+ Incorporate information on markets, observable.– No theoretical link between credit spread correlation and

default correlation.

I Equity correlation.+ Data easily available, good quality.– Connection to credit risk not obvious, needs a lot of

assumptions.

11 / 33

Page 12: Vasicheck prezentation

Vasicek Single Factor Model

Modelling Default Correlation

Default triggered by firm’s value

Default triggered by Firm’s Value

The firm value (An,t)0≤t≤1 of each obligor n ∈ {1, . . . ,N} ismodelled as in Black-Scholes model, hence at terminal time t = 1with An,1 = An we have

An = An,0 exp

{(µn −

σ2n

2

)+ σnBn

}with some standard normal variable Bn.

The r.v. (B1, . . . ,BN) are jointly normally distributed withcovariance matrix Σ = (ρij)ij , where ρij denotes the assetcorrelation between assets i and j .

12 / 33

Page 13: Vasicheck prezentation

Vasicek Single Factor Model

Modelling Default Correlation

Default triggered by firm’s value

The obligor n defaults if the asset value falls below aperspecified barrier Cn (debts)

Dn = 11{An<Cn}

The default probability of the n’s debtor is

pDn = P(Dn = 1) = P(An < Cn) = P(Bn < cn) = Φ(cn)

with default barrier

cn =log Cn

An,0− µn

σn

We can assume the individual default probabilities pDn as givenand compute cn = Φ−1(pDn) and vice versa.

13 / 33

Page 14: Vasicheck prezentation

Vasicek Single Factor Model

Modelling Default Correlation

Default triggered by firm’s value

The joint distribution of Bi determines the dependencystructure of default variables uniquely

P(D1 = 1, . . . ,DN = 1) = P(B1 < c1, . . . ,BN < cN)

= ΦN(Φ−1(pD1), . . . ,Φ−1(pDn); Σ)

In case with two assets with correlation ρ1,2 = ρ2,1, the defaultcorrelation can be computed via

ρ =P(D1 = 1,D2 = 1)− pD1pD2√

pD1(1− pD1)pD2(1− pD2)

=Φ2(Φ−1(pD1),Φ−1(pD2); ρ1,2)− pD1pD2√

pD1(1− pD1)pD2(1− pD2)

14 / 33

Page 15: Vasicheck prezentation

Vasicek Single Factor Model

Modelling Default Correlation

Default triggered by firm’s value

We need

I N(N − 1)/2 asset correlations of Σ

I N individual default probabilities

I Additional assumptions on the structure of Bi to reduce thenumber of parameters.

15 / 33

Page 16: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Vasicek Single Factor ModelAssume, that the logarithmic return Bn can be written as

Bn =√ρ · Y +

√1− ρ · εn

with some constant ρ ∈ [0, 1] and N + 1 independent standardnormally distributed r.v. Y , ε1, . . . , εN .

Interpretation

I Y is a common systematic risk factor affecting all firms (stateof economy)

I εn are idiosyncratic factors independent across firms(management, innovations)

I Corr(Bi ,Bj) = ρ controls the proportions between systematicand idiosyncratic factors, empirically around 10%.

16 / 33

Page 17: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Conditional on the realisation of the systematic factor Y

I the logarithmic returns Bn are independent ( for a constant yvariables

√ρ · y +

√1− ρ · εn are independent)

I default variables Dn = 11{Bn<cn} are independent as functionof Bn

The only effect of Y is to move Bn closer or further away frombarrier cn.

17 / 33

Page 18: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Loss distribution in finite portfolio

TheoremFor ρ ∈ (0, 1) and same default probabilities p = pD1 = · · · = pDN

the conditional default probability is given by

p(y) := P[Bn < c | Y = y ] = Φ

(Φ−1(p)−√ρ · y√

1− ρ

).

The number of defaults L =∑N

i=1 Di has the followingdistribution

P(L ≤ m) =m∑

k=0

(N

k

)·∫ ∞−∞

p(y)k · (1− p(y))N−k · φ(y)dy

18 / 33

Page 19: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Loss distribution in finite portfolio

ProofThe probability of k defaults is

P(L = k) = E(P({L = k} | Y )) =

∫ ∞−∞

P(L = k | Y = y)φ(y)dy ,

where φ is density of Y . The defaults Dn are independentconditional on Y , hence

P(L = k | Y = y) =

(N

k

)· p(y)k · (1− p(y))N−k

Thus, for m ∈ {1, . . . ,N} we have

P(L ≤ m) =m∑

k=0

(N

k

)·∫ ∞−∞

p(y)k · (1− p(y))N−k · φ(y)dy

19 / 33

Page 20: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Loss distribution in finite portfolio

Loss Distibutions for different ρ

20 / 33

Page 21: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Loss distribution in finite portfolio

VaR Levels for different ρ with N = 100 and p = 5%

ρ(%) 99.9(%)VaR 99.(%)VaR

0 13 111 14 12

10 27 1930 55 3550 80 53

Independent defaults

p (%) 1 2 3 4 5 6 7 8 9 10

99.9(%) VaR 5 7 9 11 13 14 16 17 19 20

21 / 33

Page 22: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

Large Homogeneous Portfolio Approximation

Definition (Large Homogeneous Portfolio LHP)

I pD1 = · · · = pDN= p

I portfolio is weighted with ω(N)1 , . . . , ω

(N)N ,

∑Nn=1 ω

(N)n = 1,

such that

limN→∞

N∑n=1

(ω(N)n )2 = 0

The portfolio is not dominated by few loans much larger then therest.

22 / 33

Page 23: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

Definition (Loss Rate)

The portfolio loss rate is defined by

L(N) =N∑

n=1

ω(N)n Dn ∈ [0, 1]

LemmaFollowing holds for the LHP

E(L(N) | Y ) = p(Y ) = Φ

(Φ−1(p)−√ρ · Y

√1− ρ

)Var(L(N) | Y ) =

N∑n=1

(ω(N)n )2 · p(Y ) · (1− p(Y ))

23 / 33

Page 24: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

ProofLinearity of conditional expectation yields

E(L(N) | Y ) =N∑

n=1

ω(N)n E(Dn | Y )

=N∑

n=1

ω(N)n P(Dn | Y ) = p(Y )

N∑n=1

ω(N)n = p(Y )

Dn are independent conditional on Y , thus

Var(L(N) | Y ) =N∑

n=1

(ω(N)n )2Var(Dn | Y )

=N∑

n=1

(ω(N)n )2 · p(Y ) · (1− p(Y ))

24 / 33

Page 25: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

TheoremThe portfolio loss rate in LHP converges in probability for N →∞.

L(N) P→ p(Y ) = Φ

(Φ−1(p)−√ρ · Y

√1− ρ

)

ProofFor the large portfolio the variation of loss rate given Y tends to 0

Var(L(N) | Y ) =N∑

n=1

(ω(N)n )2 · p(Y ) · (1− p(Y ))

≤ 1

4

N∑n=1

(ω(N)n )2 −−−−→

N→∞0

25 / 33

Page 26: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

This provides convergence in L2:

E((L(N) − p(Y ))2) = E((L(N) − E(L(N) | Y ))2)

= E(E((L(N) − E(L(N) | Y ))2 | Y ))

= E(Var(L(N) | Y )) −−−−→N→∞

0

Convergence in L2 implies convergence in probability i.e. for allε > 0:

limN→∞

P(∣∣∣L(N) − p(Y )

∣∣∣ > ε)

= 0

The law of L(N) converges weakly to the law of p(Y ), i.e.

P(L(N) ≤ x) −−−−→N→∞

P(p(Y ) ≤ x)

for all x , where the distribution function of p(Y ) is continuous.26 / 33

Page 27: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

Theorem (Approximative Distribution of Loss Rate in LHP)

P(p(Y ) ≤ x) = Φ

(√1− ρ · Φ−1(x)− Φ−1(p)

√ρ

), x ∈ [0, 1]

Proof

P(p(Y ) ≤ x) = P

(Φ−1(p)−√ρ · Y

√1− ρ

)≤ x

)= P

(Y ≤

√1− ρ · Φ−1(x)− Φ−1(p)

√ρ

)= Φ

(√1− ρ · Φ−1(x)− Φ−1(p)

√ρ

)27 / 33

Page 28: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

Approximative density of loss rate with p = 2%, ρ = 10%

28 / 33

Page 29: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

Properties of Loss Rate Distribution

E(p(Y )) = limN→∞

E(L(N)) = limN→∞

N∑n=1

ω(N)n p = p

Because of convergence we can easily compute α-Quantiles of lossrate distribution for large N

P(L(N) ≤ α) ≈ Φ

(√1− ρ · Φ−1(α)− Φ−1(p)

√ρ

)

29 / 33

Page 30: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

I When ρ→ 1

P(L(∞) ≤ α) = 1− p = P(L(∞) = 0) for all α ∈ (0, 1)

P(L(∞) = 1) = p

All loans default with prob. p, none with 1− p.

I When ρ→ 0

P(L(∞) ≤ α) = 0 for α < p

P(L(∞) ≤ α) = 1 for α ≥ p ⇒ P(L(∞) = p) = 1

With the Law of Large Numbers the loss in Binomial model tendsalmost surly to

1

N

N∑i=1

Di → p

30 / 33

Page 31: Vasicheck prezentation

Vasicek Single Factor Model

Vasicek Single Factor Model

Large Homogeneous Portfolio Approximation

Simulated Loss Distibution

31 / 33

Page 32: Vasicheck prezentation

Vasicek Single Factor Model

Conclusion

Conclusion

The Vasicek Single Factor Model provides a closed form Loss RateDistribution

limN→∞

P(L(N) ≤ x) = Φ

(√1− ρ · Φ−1(x)− Φ−1(p)

√ρ

)

for a Large Homogeneous Portfolio, which depends only on twoparameters p and ρ and gives a good fit to market data.

32 / 33

Page 33: Vasicheck prezentation

Vasicek Single Factor Model

Conclusion

Bibliography

Vasicek : The Distribution of Loan Portfolio Value, Risk(2002).

Martin, Reitz, Wehn : Kredit und Kreditrisikomkodelle,Vieweg, (2006).

Schonbucher : Faktor Models: Portfolio Credit Risks WhenDefaults are Correlated, Journal of Risk Finance (2001).

Elizalde : Credit Risk Models IV: Understanding and pricingCDOs, discussion paper (2005).

33 / 33