30
Department of Engineering Physics, Faculty of Engineering, Gadjah Mada University (Study Programs of Engineering Physics & Nuclear Engineering) Jl. Grafika 2, Yogyakarta 55281, (+62 274) 580882, http://www.tf.ugm.ac.id/ Nuclear Fission 2011

Arn 01-0-nuclear fission

Embed Size (px)

DESCRIPTION

Mata kuliah Analisis Reaktor Nuklir , bahan ajar Dr-Ing Sihana

Citation preview

Page 1: Arn 01-0-nuclear fission

Department of Engineering Physics, Faculty of Engineering, Gadjah Mada University (Study Programs of Engineering Physics & Nuclear Engineering)

Jl. Grafika 2, Yogyakarta 55281, (+62 274) 580882, http://www.tf.ugm.ac.id/

Nuclear Fission

2011

Page 2: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Fission Reactions

Spontaneous Fissiono Most heavy nuclei decay by -emission.o Some can also spontaneously fission:

• 252Cf (2.638 y; fission prob. 3.09%).• 250Cm (6900 y; fission prob. 61.0%).

Neutron Induced Fissiono Neutron can induce fission:

• Produce a COMPOUND NUCLEUS.• Highly Excited State• One of the decay modes is FISSION.

2

1 2350 92

235 192 0

235 192

236 *9

0

23

2

H y 1

692

2

n + U

U + n elastic scatter

U + n´+ inelasticscatter

U + radiativecaptu

U

Y + Y + y + y + fissio

re

n

Possible neutron Interactions with U-235

Page 3: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Fission Reactions

Neutrons are released in Fission Reactionso The fission products are “neutron rich”.o Some of the subatomic particles emitted (y1,y2,…) are neutrons: chain reaction.o Self sustaining fission reaction releases fission energy.

Fission depends on Neutron Energy:o Fission at very low energy (thermal ~0.025 eV): FISSILE NUCLEI.

• 235U, 233U, 239Pu.

o Fission at higher energies (MeV): FISSIONABLE NUCLEI.• 238U, 240Pu.

Conversion to Fissile Nuclei (BREEDING):o Nuclei can be converted to fissile nuclei by absorbing slow neutrons.

3

232 233233 *90

239 *92

10 22 m 290 91 92

92 93

233

238 239

7 d

10 24 m 56 h 9

2 94

3

Th + n Pa UTh

U + n Np PuU

232Th and 238Uare FERTILE nuclides

232Th and 238Uare FERTILE nuclides

Page 4: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Characteristics of the Fission ReactionScission Explained by the “Liquid Drop”

Model• Compound Nucleus Highly Excited.• Large oscillations of shape of “Nuclear

Fluid”.• Elongated shape breaks in two (10-20s):

Primary Fission Products YH, YL

• Highly Excited States.• Neutrons “evaporate” from surface (10-17

s): PROMPT NEUTRONS p.• Reduce excitation by emission (~10-14

s): PROMPT GAMMAS p.

Fission Fragments Transfer Kinetic Energy to the surrounding medium in ~10-12 s.

4

Coulomb Repulsion >> Nuclear ForcesCoulomb Repulsion >> Nuclear Forces

14

20

-17

-14

1 2350 92 10 s

** **

10 s

Prompt Neutrons** *

235 *92

* * *

10 s

Prompt Gammas* *

10 s

10

n + U SCISSION

SCISSION (Y ) +(Y ) +( )

(Y ) +(Y ) (Y ) +(Y )

(Y ) +(Y ) Y + Y +

Y

(

U

n)

n mH L

n m n mH L H L

n m np

mH L H L

nH

p

n m e

-12

KETrans

10

fer

s+ Y +( ) Y + Ym

L H Ln m e

Page 5: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Fission Products

Fission Product Decay Chainso Several Hundred different nuclides can be

producedo They are all neutron rich and decay by -

emission until a stable nuclide is reached: DECAY CHAIN.

Important Decay Chains

5

- - - -140 140 14054 55 58

16 s 66 s 18.8 d 4

140 14056 7

0 h5Ba LXe Cs Ce(stable)a

Hahn and Strassman discovered fission

- -147 1160 1 2

11d 2.

147 14761 62

6 yPm SmNd (T =10 y)

Characterization of Promethium and production of Samarium. Very effective thermal neutron absorbers

- - - - -

-

99 99 99 99 9938 39 40 41 42

0.27 s 1.5 s 2.2 s 15 s 2.

9

75 d

9944

6.01 h 0.21 M

994

93 3

*

y4

Sr Y Zr Nb Mo

Ru (stabl )T Tc ecm

Discovery and Production of Technetium for medical applications

- - - - -13554

135 135 135 135 13551 52 53 55 56

1.7 s 19 s 6.57 h 9.10 h 2.6 MyXeSb Te I Cs Ba (stable)

Production of Xe-135, largest low energy neutron absorption X-section

- - -

-

1 2

stab

X X X

X ( l )e

A A AZ

n

Z Z

AZ

23592

1.2 1.4

for U( )

to for stable Fission Pro

1.57

ducts

A Z

Z

Page 6: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Fission Products

Mass Distribution of Fission Products

o The mass of fission fragments ranges from 70 to ~170.

o 100 different fission chains (with constant A) are formed.

o Fission Chain Yield y(A):Probability a fission fragment is a nuclide with

mass number A.

o The fission yield curve is ASYMETRIC• It depends on the fissioned nuclide.• It depends on the Neutron Energy: higher energy,

less asymmetry.6

Compound NucleusH L pA A A

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 7: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Fission Products

Initial Energy of Fission Fragmentso The kinetic energy of the two fission

fragments must equal: • The kinetic energy of the neutron and

• The Q-value of the fission reaction.

o For a fission induced by a thermal neutron:• Conservation of Momentum

• The sharing of Kinetic Energy is:

7

or L LL L H H

H H

v mm v m v

v m

212

212

L LL

H H

H

H L

m v

m v

E m

E m

Page 8: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Neutron Emission in Fission

• Prompt Neutrons:• Released within 10-14 s.

• Number p can vary from 0 to 8.

• The average number is for thermal fission depends on nuclide and neutron energy.

• Delayed Neutrons:• Small fraction (1% Thermal) of neutrons are

emitted as delayed neutrons.

• The come from the Decay of Fission Products.

• The time is from some seconds to minutes.

• The average number depends strongly on:Fissioning nucleus.Energy of the inducing neutron.

8

2.5p Average Number of PROMPT Neutrons

DELAYED Neutron Fraction d

p d Average TOTAL Number of Neutrons

DELAYED Neutrons are ESSENTIAL to control the

Nuclear Reaction

DELAYED Neutrons are ESSENTIAL to control the

Nuclear Reaction

Page 9: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Delayed Neutron Emission

9Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 10: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Neutron Emission in Fission

10

( )

2

4( ) sinh

w wE E Tw

ww w

E EeE

TE T

The neutron energy distribution is a continuous Maxwellian Distribution which depends on:

•Material (Tw and Ew)•Neutron Energy: E

The AVERAGE energy is ~ 2 MeV

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 11: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Prompt Energy Released

• The amount of energy per fission can be estimated by using the BINDING energy per NUCLEON.

• Energy is released in TWO TIME SCALES:

• Prompt (10-12 s): Kinetic Energy.Prompt Neutrons.Prompt Gammas

• Delayed (s to minutes): Decay of fission Products.

11

235 1 140 * 96 *92 0 54 38

after 140 96 154 38 0

1s

U + n Xe + Sr

Xe + Sr + 2( n) +7( )

235 139 95 292 54 38( U) ( Xe) ( Sr) 2p n nE M m M M m c

[235.043923 1.008665 138.918787

94.919358 2(1.0086659)]uma 931.5MeV/uma

pE

183.6MeVpE

183.6MeV -5.2MeV -6.7 MeV 171. MeV= 7KE

6.7 MeV

5.2 MeV

Page 12: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Energy from Fission Productso Most Fission Products decay in a

few years.o Some others have much larger

half-lives.o The Decay Heat is of concern for:

• Nuclear Safety: Removal of Decay Heat.

• Management of Spent Fuel.o Calculations based on Empirical

Models:

12

1.2 1 1

1.2 1 1

5

( ) 1.4 MeV s fission

( ) 1.26 MeV s fission

in s after fission (10 s < < 10 s)

F t t

F t t

t t

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 13: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Delayed Energy Released

13

139 13995 9538 42

0 01 154 57Xe L+ 7( ) + +7(a ) +7( )Sr Moe

[138.918787 94.919358 138.906348 94.905842 93]uma 1.5MeV/umadE

139 95 139 95 254 38 57 42( Xe) ( Sr) ( La) ( Mo)dE M M M M c

24.2MeVdE

Anti-neutrinoDecay Chains

Energy = Mass Defect c2

Delayed Fission Energy Released

Page 14: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Energy Released in Fission

14Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 15: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Energy Released in Fission• How Much U-235 has to fission to generate 1 MWd ?

15

013

11 11W =1 J/s

1.602 10 J/MeV 2003.1

M10 fissio

eV/fissin/s

on

216

3

2351MW = fission/s 86400s/d g/atom-fissioned =1.05g/d

6.3.1

023 1010

23592

With only 85% of captures ending up in

1.24 g of

fission

1 MWd U cons= umed.

Page 16: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Nuclear Fission Chain ReactionA Fissile atom (e.g 235U) absorbs a neutron, and:

• fissions in two new atoms (fission fragments),

• releasing three new neutrons

• and energy.

The neutrons can be• Absorbed by an atom of 238U (or other absorber),

and does not continue the reaction: ABSORPTION.

• Lost and does not collide with anything: LEAKAGE.

• Collide with a fissile atom (e.g 235U) which then fissions and releases additional neutrons: CHAIN REACTION.

16

Leakage

2nd generation

3rd generation

1st generation

Non-FissionAbsorption

Page 17: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Neutron Cycle in a Thermal Reactor

17Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 18: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

1. The FAST Fission Factor o Most fast fissions take place in 238U (En > 1 MeV)o Natural or slightly enriched U cores: between 1.02 and 1.o8.

2. Resonance Escape Probability po Accounts for FAST neutron absorption during MODERATION.o p depends on the cross-sections in the resonance absorption region o For U fuelled reactors p varies depending on the moderator to fuel ratio:

higher ratio increases p (most absorptions take place in U-238.)

18

Total Neutrons Produced by FAST and THERMAL fissions

Neutrons by THERMAL fission

Probability that a Fast Neutron Slows down without being absorbed.p

Page 19: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

3. Fast Non-Leakage Probabilityo Probability that a FAST neutron does not leak from the core during

moderation.o For a non-reflected core:

Leakage probabilities depend on:o Materials used in the Reactor: L (D, a), . L, increase Leakage increases.

o Geometry of the reactor: Buckling. Buckling increases Leakage increases

o Reactor Homogenous or Heterogeneous.

o Use of a REFLECTOR of NEUTRONS: Decreases Leakage.

19

fNLP

2cBf

NLP e is the Fermi age.

Page 20: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

4. Thermal non-Leakage Probabilityo Probability that a thermal neutron does not leak out (escape) of the core

before it is absorbed.

• L is the thermal diffusion length: one-half of the average distance difussed by a thermal neutron before it is absorbed.

• Bc2 is the “Critical Buckling”: Related to the Geometry of the Reactor.

20

thNLP

2 2

1

1th

NLc

PL B

2aL D

Thermal Diffusion

Coefficient

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 21: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

5. The Thermal Utilization fo Not all thermal neutrons are absorbed by the fuel.o f is the Probability that the neutrons are absorbed by the fuel.

6. Thermal Fission Factor o Number of FAST neutrons produced per absorbed neutron in fuel.

21

F F Fa VNF NF NFa V

( ) ( )

NF NF NF

NF F NF

F F Fa

F F Fa

F

a

NFa

Fa

Fa

V

Vf

V

V V

Fuel Absorption rate

Non-Fuel Absorption rate

Ff

Fa

MUST be > 1 for a self sustaining chain reaction

Page 22: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

22

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 23: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

Effective Multiplication Factor

Infinite Multiplication Factoro In an infinite medium there is no leakage.

23

no. neutrons at some point in the cycle

no. of neutrons at the same point in the previous cycleeffk

th fNL NL

eff

n p f P Pnk

n n

th feff NL NLk p f P P

1

1

1

eff

ef

f

f

ef

k Supercritical n n

k Sub

k Critical n

critical n n

n

k p f k∞ depends only on

the MATERIAL in the core

Page 24: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Core Design Estimates

What fuel to use for a Thermal Reactor ?o Only Natural Uranium ?

• With 0.72 atom-% of 235U and ~99.3% of 238U.• The probability of resonace absorption is very high• p , the probability of escaping the resonance is very low.

• k∞ << 1.0.

o Reactor design solutions: • Increase p : Use an EFFECTIVE MODERATOR.• Increase f : Use more fissile material.• Increase : use a fuel with more neutrons per fission and low

24

f

th feff NL NLk p f P P

k p f

Page 25: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Core Design Estimates

25

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Increasing

But, there is no U-233 in Nature, one must “make” it.

Page 26: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Core Design Estimates

Ifo There is too little moderator , is small, p is very small and

o There is too much moderator, is large, f is small and

o There is an optimal that gives a maximum for

26

Moderator

Fuel

N

N1.0k

Moderator

Fuel

N

N1.0k

Moderator

Fuel

opt

N

N

k

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Only Heavy Water as a Moderator can be used for an homogeneous natural uranium reactor

Page 27: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Quantification of the Thermal Cycle

27Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

Page 28: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Core Design Estimates

So, how can we build a nuclear reactor with Uranium without Heavy Water as Moderator ?.

o Increase f• Increasing 235U content from 0.72 % to > ~ 2.5% : ENRICHMENT

• More fissile fuel will increase more chance of absorption by fuel.

AND/OR

o Increase p• Construct an HETEROGENEOUS core by separating fuel and moderator.

• More Fast neutrons escape the fuel

• They are thermalized away from 238U resonances more probability of escaping the resonances.

• Heterogeneous reactors also have a higher (more fast fissions in 238U).

28

Page 29: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Core Design Estimates

29

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002

HETEROGENEOUS CORE

Fuel

Moderator

Neutron moderation

fast

thermal

More Heterogeneous: f decreasesMore heterogeneous: p increasesThere´s an optimum for k∞ max

Page 30: Arn 01-0-nuclear fission

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Core Design Estimates

Finally, we have to take care of the LEAKAGE

o Increase • We surround the core with a material with a HIGH scattering-to-absorption cross section:

REFLECTOR.

30

th fNL N effLPk P k

andth fNL NLP P

Reflectors reduce LeakageReflectors reduce Leakage

Reflectors reduce Peak-to-average powerReflectors reduce Peak-to-average power

Reflectors reduce Fast Neutron Flux outside the core

Reflectors reduce Fast Neutron Flux outside the core

neutr

ons/

cm2 s

center

Source: J.K. Shultis and R.E. Faw, “Fundamentals of Nuclear Engineering”, Marcel Dekker, 2002