14
METHODS TO FIND ROOTS OF EQUATION FIXED POINT, NEWTON RAPHSON, SECANTE JONATHAN PEREZ UIS

Close methods

Embed Size (px)

Citation preview

Page 1: Close methods

METHODS TO FIND

ROOTS OF EQUATION

FIXED POINT, NEWTON – RAPHSON, SECANTE

JONATHAN PEREZ UIS

Page 2: Close methods

CLOSE METHODS

BISECCION

Page 3: Close methods

1. BISECCION

Raíz

xsf(xs) xi

)(xf

x

+

-

y=f(x)

Biseccion

Page 4: Close methods

Biseccion

Page 5: Close methods

Raíz

xsf(xs) xi

)(xf

x

+

-

y=f(x)

Biseccion

Page 6: Close methods

Biseccion

Page 7: Close methods

ERROR FOR THE NEW

RESULT

Biseccion

Page 8: Close methods

iter xi xs xm fxi fxs fxm fxi*fxm fxs*fxr Ea

0 12 16 14 6.06694996 -2.26875421 1.56870973 9.51728341 -3.55901679

1 14 16 15 1.56870973 -2.26875421 -0.42483189 -0.66643791 0.96383913 6.66666667

2 14 15 14.5 1.56870973 -0.42483189 0.55232821 0.86644263 -0.23464663 3.44827586

3 14.5 15 14.75 0.55232821 -0.42483189 0.05896283 0.03256684 -0.02504929 1.69491525

4 14.75 15 14.875 0.05896283 -0.42483189 -0.18411653 -0.01085603 0.07821857 0.84033613

5 14.75 14.875 14.8125 0.05896283 -0.18411653 -0.06287413 -0.00370724 0.01157617 0.42194093

6 14.75 14.8125 14.78125 0.05896283 -0.06287413 -0.00203019 -0.00011971 0.00012765 0.21141649

7 14.75 14.78125 14.765625 0.05896283 -0.00203019 0.02844766 0.00167735 -5.7754E-05 0.10582011

Biseccion-Example

In the table, we can see that the value in the 7th iteration is 14. 76, which is

approximate to the real values whith an error of 0.1058

Page 9: Close methods

CLOSE METHODS

FALSE POSITION

Page 10: Close methods

FALSE POSITION If we cosider this grafic:

sx

)( ixf

ix rx

xRaíz

Falsa

)( sxf

Raíz

Verdad

era

)(xf

if instead of considering the midpoint of the interval,

we take the point where this line crosses the axis, we come close

faster root-this is in itself, the central idea of the rule method

false and this is really the only difference with the method of bisection, as in all other respects

the two methods are practically identical.

Page 11: Close methods

FALSE POSITION

sr

s

ir

i

xx

xf

xx

xf )()(

)()(

)(

si

sissr

xfxf

xxxfxx

sx

)( ixf

ix rx

xRaíz

Falsa

)( sxf

Raíz

Verdad

era

)(xf

Page 12: Close methods

EXAMPLE

FALSE POSITION

Page 13: Close methods

iter xi xs xm fxi fxs fxm fxi*fxm fxs*fxm error

0 1 2 1.26315789 -5 14 -1.60227438 8.01137192 -22.4318414

1 1.26315789 2 1.33882784 -1.60227438 14 -0.43036475 0.68956241 -6.02510647 5.65195478

2 1.33882784 2 1.35854634 -0.43036475 14 -0.11000879 0.0473439 -1.54012304 1.45144132

3 1.35854634 2 1.36354744 -0.11000879 14 -0.02776209 0.00305407 -0.38866927 0.36677112

4 1.36354744 2 1.36480703 -0.02776209 14 -0.00698342 0.00019387 -0.09776782 0.09229083

5 1.36480703 2 1.36512372 -0.00698342 14 -0.00175521 1.2257E-05 -0.02457293 0.02319834

6 1.36512372 2 1.3652033 -0.00175521 14 -0.00044106 7.7416E-07 -0.00617488 0.00582959

In the table, we can see that the value in the 6th iteration is 1.3652, which is

approximate to the real values whith an error of 0.005829

FALSE POSITION

Page 14: Close methods

REFERENCES AND

BIBLIOGRAPHY

• http://noosfera.indivia.net/metodos.html

• METODOS NUMERICOS PhD EDUARDO CARRILLO –

UNIVERSIDAD INDUSTRIAL DE SANTANDER 2010

• CHAPRA, Steven C. “Métodos Numéricos para Ingenieros”. Edit.

McGraw Hil.