36
Data mining with caret package Kai Xiao and Vivian Zhang @Supstat Inc.

Data mining with caret package

Embed Size (px)

Citation preview

Page 1: Data mining with caret package

Data mining with caret packageKai Xiao and Vivian Zhang @Supstat Inc.

Page 2: Data mining with caret package

OutlineIntroduction of data mining and caret

before model training

building model

advance topic

exercise

·

·

visualization

pre-processing

Data slitting

-

-

-

·

Model training and Tuning

Model performance

variable importance

-

-

-

·

feature selection

parallel processing

-

-

·

/

Page 3: Data mining with caret package

cross-industry standard process for data mining

/

Page 4: Data mining with caret package

Introduction of caretThe caret package (short for Classification And REgression Training) is a set of functions thatattempt to streamline the process for creating predictive models. The package contains tools for:

data splitting

pre-processing

feature selection

model tuning using resampling

variable importance estimation

·

·

·

·

·

/

Page 5: Data mining with caret package

A very simple examplelibrary(caret) str(iris) set.seed(1) # preprocess process <- preProcess(iris[,-5],method=c('center','scale')) dataScaled <- predict(process,iris[,-5]) # data splitting inTrain <- createDataPartition(iris$Species,p=0.75)[[1]] length(inTrain) trainData <- dataScaled[inTrain, ] trainClass <- iris[inTrain,5] testData <- dataScaled[-inTrain, ] testClass <- iris[-inTrain,5]

/

Page 6: Data mining with caret package

A very simple example# model tuning set.seed(1) fitControl <- trainControl(method = "cv", number = 10) tunedf <- data.frame(.cp=c(0.01,0.05,0.1,0.3,0.5)) treemodel <- train(x = trainData, y = trainClass, method='rpart', trControl = fitControl, tuneGrid = tunedf) print(treemodel) plot(treemodel) # prediction and performance assessment treePred <- predict(treemodel,testData) confusionMatrix(treePred, testClass)

/

Page 7: Data mining with caret package

visualizationsThe featurePlot function is a wrapper for different lattice plots to visualize the data.

Scatterplot Matrix

boxplot

featurePlot(x = iris[, 1:4], y = iris$Species, plot = "pairs", ## Add a key at the top auto.key = list(columns = 3))

featurePlot(x = iris[, 1:4], y = iris$Species, plot = "box", ## Add a key at the top auto.key = list(columns = 3))

/

Page 8: Data mining with caret package

pre-processingCreating Dummy Variables

when <- data.frame(time = c("afternoon", "night", "afternoon", "morning", "morning", "morning", "morning", "afternoon", "afternoon")) when levels(when$time) <- c("morning", "afternoon", "night") mainEffects <- dummyVars(~ time, data = when) predict(mainEffects, when)

/

Page 9: Data mining with caret package

pre-processingZero- and Near Zero-Variance Predictors

data <- data.frame(x1=rnorm(100), x2=runif(100), x3=rep(c(0,1),times=c(2,98)), x4=rep(3,length=100)) nzv <- nearZeroVar(data, saveMetrics = TRUE) nzv nzv <- nearZeroVar(data) dataFilted <- data[,-nzv] head(dataFilted)

/

Page 10: Data mining with caret package

pre-processingIdentifying Correlated Predictors

set.seed(1) x1 <- rnorm(100) x2 <- x1 + rnorm(100,0.1,0.1) x3 <- x1 + rnorm(100,1,1) data <- data.frame(x1,x2,x3) corrmatrix <- cor(data) highlyCor <- findCorrelation(corrmatrix, cutoff = 0.75) dataFilted <- data[,-highlyCor] head(dataFilted)

/

Page 11: Data mining with caret package

pre-processingIdentifying Linear Dependencies Predictors

set.seed(1) x1 <- rnorm(100) x2 <- x1 + rnorm(100,0.1,0.1) x3 <- x1 + rnorm(100,1,1) x4 <- x2 + x3 data <- data.frame(x1,x2,x3,x4) comboInfo <- findLinearCombos(data) dataFilted <- data[,-comboInfo$remove] head(dataFilted)

/

Page 12: Data mining with caret package

pre-processingCentering and Scaling

set.seed(1) x1 <- rnorm(100) x2 <- 3 + 3*x1 + rnorm(100) x3 <- 2 + 2*x1 + rnorm(100) data <- data.frame(x1,x2,x3) summary(data) preProc <- preProcess(data, method = c("center", "scale")) dataProced <- predict(preProc, data) summary(dataProced)

/

Page 13: Data mining with caret package

pre-processingImputation:bagImpute/knnImpute/

data <- iris[,-5] data[1,2] <- NA data[2,1] <- NA impu <- preProcess(data,method='knnImpute') dataProced <- predict(impu,data)

/

Page 14: Data mining with caret package

pre-processingtransformation: BoxCox/PCA

data <- iris[,-5] pcaProc <- preProcess(data,method='pca') dataProced <- predict(pcaProc,data) head(dataProced)

/

Page 15: Data mining with caret package

data splittingcreate balanced splits of the data

set.seed(1) trainIndex <- createDataPartition(iris$Species, p = 0.8, list = FALSE, times = 1) head(trainIndex) irisTrain <- iris[trainIndex, ] irisTest <- iris[-trainIndex, ] summary(irisTest$Species)

createResample can be used to make simple bootstrap samples

createFolds can be used to generate balanced cross–validation groupings from a set of data.

·

·

/

Page 16: Data mining with caret package

Model Training and Parameter TuningThe train function can be used to

evaluate, using resampling, the effect of model tuning parameters on performance

choose the "optimal" model across these parameters

estimate model performance from a training set

·

·

·

/

Page 17: Data mining with caret package

Model Training and Parameter Tuningprepare data

data(PimaIndiansDiabetes2,package='mlbench') data <- PimaIndiansDiabetes2 library(caret) # scale and center preProcValues <- preProcess(data[,-9], method = c("center", "scale")) scaleddata <- predict(preProcValues,data[,-9]) # YeoJohnson transformation preProcbox <- preProcess(scaleddata, method = c("YeoJohnson")) boxdata <- predict(preProcbox , scaleddata)

/

Page 18: Data mining with caret package

Model Training and Parameter Tuningprepare data

# bagimpute preProcimp <- preProcess(boxdata,method="bagImpute") procdata <- predict(preProcimp,boxdata) procdata$class <- data[,9] # data splitting inTrain <- createDataPartition(procdata$class,p=0.75)[[1]] length(inTrain) trainData <- procdata[inTrain, 1:8] trainClass <- procdata[inTrain, 9] testData <- procdata[-inTrain, 1:8] testClass <- procdata[-inTrain, 9]

/

Page 19: Data mining with caret package

Model Training and Parameter Tuningdefine sets of model parameter values to evaluate

tunedf <- data.frame(.cp=seq(0.001,0.2,length.out=10))

/

Page 20: Data mining with caret package

Model Training and Parameter Tuningdefine the type of resampling method

k-fold cross-validation (once or repeated)

leave-one-out cross-validation

bootstrap (simple estimation or the 632 rule)

·

·

·

fitControl <- trainControl(method = "repeatedcv", # 10-fold cross validation number = 10, # repeated 3 times repeats = 3)

/

Page 21: Data mining with caret package

Model Training and Parameter Tuningstart training

treemodel <- train(x = trainData, y = trainClass, method='rpart', trControl = fitControl, tuneGrid = tunedf)

/

Page 22: Data mining with caret package

Model Training and Parameter Tuninglook at the final result

treemodel plot(treemodel)

/

Page 23: Data mining with caret package

The trainControl Functionmethod: The resampling method

number and repeats: number controls with the number of folds in K-fold cross-validation ornumber of resampling iterations for bootstrapping and leave-group-out cross-validation.

verboseIter: A logical for printing a training log.

returnData: A logical for saving the data into a slot called trainingData.

classProbs: a logical value determining whether class probabilities should be computed for held-out samples during resample.

summaryFunction: a function to compute alternate performance summaries.

selectionFunction: a function to choose the optimal tuning parameters.

returnResamp: a character string containing one of the following values: "all", "final" or "none".This specifies how much of the resampled performance measures to save.

·

·

·

·

·

·

·

·

/

Page 24: Data mining with caret package

Alternate Performance MetricsPerformance Metrics:

Another built-in function, twoClassSummary, will compute the sensitivity, specificity and area underthe ROC curve

regression: RMSE and R2

classification: accuracy and Kappa

·

·

fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 3, classProbs = TRUE, summaryFunction = twoClassSummary) treemodel <- train(x = trainData, y = trainClass, method='rpart', trControl = fitControl, tuneGrid = tunedf, metric="ROC") treemodel

/

Page 25: Data mining with caret package

Extracting PredictionsPredictions can be made from these objects as usual.

pre <- predict(treemodel,testData) pre <- predict(treemodel,testData,type="prob")

/

Page 26: Data mining with caret package

Evaluating Test Setscaret also contains several functions that can be used to describe the performance of classificationmodels

testPred <- predict(treemodel, testData) testPred.prob <- predict(treemodel, testData,type='prob') postResample(testPred, testClass) confusionMatrix(testPred, testClass)

/

Page 27: Data mining with caret package

Exploring and Comparing ResamplingDistributions

Within-Model Comparing·

densityplot(treemodel, pch = "|")

/

Page 28: Data mining with caret package

Exploring and Comparing ResamplingDistributions

Between-Models Comparing

let's build a nnet model, and compare these two model performance

·

·

tunedf <- expand.grid(.decay=0.1, .size=1:8, .bag=T) nnetmodel <- train(x = trainData, y = trainClass, method='avNNet', trControl = fitControl, trace=F, linout=F, metric="ROC", tuneGrid = tunedf) nnetmodel

/

Page 29: Data mining with caret package

Exploring and Comparing ResamplingDistributionsGiven these models, can we make statistical statements about their performance differences? To dothis, we first collect the resampling results using resamples.

We can compute the differences, then use a simple t-test to evaluate the null hypothesis that there isno difference between models.

resamps <- resamples(list(tree = treemodel, nnet = nnetmodel)) bwplot(resamps) densityplot(resamps,metric='ROC')

difValues <- diff(resamps) summary(difValues)

/

Page 30: Data mining with caret package

Variable importance evaluationVariable importance evaluation functions can be separated into two groups:

model-based approach

Model Independent approach

·

·

For classification, ROC curve analysis is conducted on each predictor.

For regression, the relationship between each predictor and the outcome is evaluated

-

-

# model-based approach treeimp <- varImp(treemodel) plot(treeimp)

# Model Independent approach RocImp <- varImp(treemodel,useModel = FALSE) plot(RocImp) # or RocImp <- filterVarImp(x = trainData, y = trainClass) plot(RocImp)

/

Page 31: Data mining with caret package

feature selectionMany models do not necessarily use all the predictors

Feature Selection Using Search Algorithms("wrapper" approach)

Feature Selection Using Univariate Filters('filter' approach)

·

·

·

/

Page 32: Data mining with caret package

feature selection: wrapper approach

/

Page 33: Data mining with caret package

feature selection: wrapper approachfeature selection based on random forest model

pre-defined sets of functions: linear regression(lmFuncs), random forests (rfFuncs), naive Bayes(nbFuncs), bagged trees (treebagFuncs)

ctrl <- rfeControl(functions = rfFuncs, method = "repeatedcv", number = 10, repeats = 3, verbose = FALSE, returnResamp = "final") Profile <- rfe(x = trainData, y = trainClass, sizes = 1:8, rfeControl = ctrl) Profile

/

Page 34: Data mining with caret package

feature selection: wrapper approachfeature selection based on custom model

tunedf <- data.frame(.cp=seq(0.001,0.2,length.out=5)) fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 3, classProbs = TRUE, summaryFunction = twoClassSummary) customFuncs <- caretFuncs customFuncs$summary <- twoClassSummary ctrl <- rfeControl(functions = customFuncs, method = "repeatedcv", number = 10, repeats = 3, verbose = FALSE, returnResamp = "final") Profile <- rfe(x = trainData, y = trainClass, sizes = 1:8, method = 'rpart', rfeControl = ctrl, /

Page 35: Data mining with caret package

parallel processingsystem.time({ library(doParallel) registerDoParallel(cores = 2) nnetmodel.para <- train(x = trainData, y = trainClass, method='avNNet', trControl = fitControl, trace=F, linout=F, metric="ROC", tuneGrid = tunedf) }) nnetmodel$times nnetmodel.para$times

/

Page 36: Data mining with caret package

exercise-1use knn method to train model

library(caret) fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 3) tunedf <- data.frame(.k=seq(3,20,by=2)) knnmodel <- train(x = trainData, y = trainClass, method='knn', trControl = fitControl, tuneGrid = tunedf) plot(knnmodel)

/