91
Adriano Alberto 1 ENG285 4ª Unidade Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I = . Para seção triangular reta: I = . Semi-círculo: = Momento estático (Q) Q = A . (distância do centróide à L.N.) = - . ; = . = - . . Módulo de resistência (W) = á => W req = á W = ||

Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Embed Size (px)

Citation preview

Page 1: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

1 ENG285 4ª Unidade

Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

Momento de Inércia (I)

Para seção retangular:

I = �.����

Para seção triangular reta:

I = �.����

Semi-círculo:

= ���

Momento estático (Q)

Q = A . (distância do centróide à L.N.)

�� = - ��.�� ; � =

��.���

�� = - �.��.�

Módulo de resistência (W)

������� = ����� => Wreq =

���������

W = ��||

Page 2: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

2

PROBLEMAS ENVOLVENDO FLEXÃO

Nas questões abaixo, de acordo com as respostas da lista, não são calculadas as tensões máximas. Para isso, seria necessário calcular também as tensões cisalhantes e, a partir do estado de tensão resultante, calcular as tensões máximas, que podem ou não coincidir com os resultados das questões abaixo.

1) A viga carregada como mostrado tem a seção transversal da figura. Determine a tensão longitudinal: (a) num ponto a 4,5 m a contar da extremidade esquerda e 125 mm acima da superfície neutra; (b) num ponto 75 mm abaixo da superfície neutra numa seção a 1,2 m do extremo direito

RA + RD = 30 + 15 + 30 = 75 kN

∑�# = 0 => - 30 . 1,5 - 15 . 4 + 5 . RD – 6 . 30 = 0 => RD = 57 kN

RA = 18 kN

Para 0 ≤ x < 3:

V(x) = - 10x + 18

Para V(x) = 0 => x = 1,8 m

Diagrama:

Page 3: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

a)

M(4,5) = ?

Para 4 ≤ x < 5:

V(x) = - 27 kN

M(x) = - 27x + C

M(4) = - 3 kN.m = - 27 . 4 + C =>

M (x) = - 27x + 105 => M(4,5) =

Cálculo da Posição da Linha Neutra (L.N.)

Obs: não era preciso calcular para esse caso, devido a simetria da seção.

AT = 200.50.3 = 30 000 mm²

A1 = 200.50= 10 000 mm²

A2 = 200.50= 10 000 mm²

A3 = 200.50= 10 000 mm²

� = 275 mm

� = 150 mm

� = 25 mm

27 . 4 + C => C = 105

27x + 105 => M(4,5) = - 27 . 4,5 + 105 => M(4,5) = - 16,5 kN.m

Cálculo da Posição da Linha Neutra (L.N.)

Obs: não era preciso calcular para esse caso, devido a simetria da seção.

000 mm²

²

Adriano Alberto

3

Page 4: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

4 yi =

#�.�)#�.�)#�.�#* =

+,,,,.�-./)+/,)-/�0,,,, = 150 mm

ys = 300 – 150 = 150 mm

Cálculo do momento de inércia

I z = ��� + ��� + ��� ���=

��.�1����� + A1 . �� −3�� =

-,,.�/,�4+- + 10 000 . �275 − 150�- = 158 333 333,3.�78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = /,.�-,,�4

+- + 10 000 .�150 − 150�- = 33 333 333,33.�78�� m4

��� = ��.�1���

�� + A3 . �� −3�� = -,,.�/,�4

+- + 10 000 . �25 − 150�- = 158 333 333,3 .�78�� m4

=> I z = 350 000 000 . �78�� m4

�� = - ��.�� => 9: = -

;8+<,/.+,4>.+-/.+,?40/,,,,,,,.+,?@A = 5 892 857,143 Pa

b)

x = 7 – 1,2 = 5,8 m

M(5,8) = ?

Para 5 ≤ x < 7:

V(x) = - 15x + C

V(5) = 30 = - 15 . 5 + C => C = 105 => V(x) = - 15x + 105

M(x) = - 7,5 . x² + 105 . x + C

M(5) = - 30 kN.m = - 7,5 . 25 + 105 . 5 + C => C = - 367,5

M(x) = - 7,5 . x² + 105 . x - 367,5 => M(5,8) = - 7,5 . (5,8)² + 105 . 5,8 - 367,5 =>

M(5,8) = - 10,8 kN.m

�� = - ��.�� => 9: = -

;8+,,B.+,4>.�8./�.+,?40/,,,,,,,.+,?@A = - 2 314 285,714 Pa

Page 5: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

2) (a) Determine a tensão longitudinal em um ponto 100 mm abaixo da superfície neutra numa seção a 1,3 m do extremo direito da viga carregada da figura; (b) determine a máxima tensão longitudinal numa seção a 1 m do

∑C = 0 => RA + RB = 39 000 N

∑�# = 0 => 9 000 – 30 000 . 1,5 + 3 . R

RA = 27 000 N

Para 1,5 ≤ x D 3,5:

V(x) = - 15 000 . x + C

V(1,5) = 18 000 = - 15 000 . 1,5

V(x) = - 15 000 . x + 40 500

Para V(x) = 0 => x = 2,7 m

Diagrama:

2) (a) Determine a tensão longitudinal em um ponto 100 mm abaixo da superfície neutra xtremo direito da viga carregada da figura; (b) determine a

máxima tensão longitudinal numa seção a 1 m do extremo esquerdo.

= 39 000 N

30 000 . 1,5 + 3 . RB = 0 => RB = 12 000 N

15 000 . 1,5 + C => C = 40 500

Adriano Alberto

5

2) (a) Determine a tensão longitudinal em um ponto 100 mm abaixo da superfície neutra xtremo direito da viga carregada da figura; (b) determine a

Page 6: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

6

Cálculo da Posição da Linha Neutra (L.N.)

AT = 150.50 + 150.50 = 15 000 mm²

A1 = 150.50= 7 500 mm²

A2 = 150.50= 7 500 mm²

� = 175 mm

� = 75 mm

yi = #�.�)#�.�

#* = ./,,.+./)./,,../

+/,,, = 125 mm

ys = 200 – 125 = 75 mm

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

+/,.�/,�4+- + 7 500 . �175 − 125�- = 20 312 500 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = /,.�+/,�4

+- + 7 500 . �75 − 125�- = 32 812 500 . �78�� m4

=> I z = 53 125 000 . �78�� m4

a)

x = 4 – 1,3 = 2,7 m

M(2,7) = 10,8 kN.m

�� = - ��.�� => 9: = -

;+,,B.+,4>.�8+,,�.+,?4/0+-/,,,.+,?@A = 20 329 411,76 Pa

b) M(1) = - 9 kN.m

Cálculo das tensões acima da L.N.:

Page 7: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

7 �� = -

��.F�� => 9: = -

;8G.+,4>../.+,?4/0+-/,,,.+,?@A = 12 705 882,35 Pa

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 9: = -

;8G.+,4>.�8+-/�.+,?4/0+-/,,,.+,?@A = - 21 176 470,59 Pa = ��,�á�

3) Uma barra de aço de 200 mm de diâmetro é carregada e apoiada como mostrado na figura. Determine a máxima tensão longitudinal numa seção a 1,5 m a partir da parede.

R = 12 kN

12 . 3 + M = 0 => M = - 36 kN.m

M(3) = - 18 kN.m

Iz = HIJK =

H�,,+,,�JK

A = LM- = L�0,100�- yi = ys = = 100 mm

Page 8: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

8 �� = -

��.F�� = -

;8+B.+,4>.�±+,,�.+,?4O�P,@PP�J

J = ± 22 918 311,81 Pa

4) Para a viga mostrada, as tensões longitudinais admissíveis na seção sob a carga são de 42 MPa T e 70 MPa C. Determine a máxima carga admissível P.

RA + RC = P (I) ∑QR = 0 => - 1 . P + 3,5 . RC = 0=> RC =

S�,T (II)

Substituíndo em (I):

RA + S�,T = P => RA =

�,T.S�,T

RA = 2,5 . RC

Para o trecho 0 ≤ x < 1: V(0) = V(1) = RA

M(x) = RA . x + C M(0) = 0 => C = 0 => M(x) = RA . x

M(1) = RA

Para o trecho 1 ≤ x < 3,5:

V(1) = V(3,5) = RA – P M(x) = (RA - P). x + C M(1) = RA = (RA - P). 1 + C => C = P => M(x) = (RA - P). x + P

M(3,5) = (RA - P). 3,5 + P = 3,5 . RA – 3,5 . P + P = 3,5 . RA – 2,5 . P = 3,5 . -,/.U0,/ – 2,5 . P = 0

Para x = 3,5: V(3,5) = RA – P + RC = RA – P + P – RA = 0

Page 9: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

9

M(3,5) = 0 Mmáx = RA =

�,T.S�,T

Cálculo da Posição da Linha Neutra (L.N.)

AT = 200.25 + 100.25 = 7 500 mm²

A1 = 200.25= 5 000 mm²

A2 = 100.25= 2 500 mm²

� = 125 mm

� = 12,5 mm

yi = #�.�)#�.�

#* = /,,,.+-/)-/,,.+-,/

./,, = 87,5 mm

ys = 225 – 87,5 = 37,5 mm

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

-/.�-,,�4+- + 5 000 . �125 − 87,5�- = 23 697 916,67.�78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = +,,.�-/�4

+- + 2 500 . �12,5 − 87,5�- = 14 192 708,33.�78�� m4

=> I z = 37 890 625 . �78�� m4

Para o trecho AB:

Mmáx = �,T.S�,T

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => - 70 . 106 = -

WA,X.Y4,X Z.0.,/.+,?40.BG,<-/.+,?@A => P = 99 020,83334 N

Page 10: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

10

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 42 . 106 = -

WA,X.Y4,X Z.�8B.,/�.+,?40.BG,<-/.+,?@A => P = 25 462,5 N = Padm

5) e 6) Se o momento mostrado atua no plano vertical, determinar a tensão no: (a) ponto A; (b) ponto B.

5)

a)

Como o ponto A vai ser comprimido, �� será negativo.

M z = 15 kN.m yi = ys = 60 mm Cálculo do momento de inércia

Como a seção é simétrica, e a área interna é concêntrica com a área externa, Iz = ��[- ��3: ��[- ��3=

B,.�+-,�4+- -

K,.�B,�4+- = 9 813 333,333 . �78�� m4

�� = - ��.�� = -

;+/.+,4>.K,.+,?4GB+0000,000.+,?@A = - 61 141 304,35 Pa

b)

Como o ponto B vai ser tracionado, �� será positivo.

M z = 15 kN.m

�� = - ��.3�� = -

;+/.+,4>.�8<,�.+,?4GB+0000,000.+,?@A = 91 711 956,52 Pa

Page 11: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

11

*** 6)

a)

Como o ponto A vai ser comprimido, �� será negativo.

M z = 2,8 kN.m yi = ys = 30 mm Cálculo do momento de inércia

I z = ��[- 2 . ��3 = +-,.�<,�4

+- - 2 . H.�-,�J

K = 1 908 672,588 . �78�� m4

�� = - ��.�� = -

;-,B.+,4>.0,.+,?4+G,B<.-,/BB.+,?@A = - 44 009 643,42 Pa

b)

Como o ponto B vai ser tracionado, �� será positivo.

M z = 2,8 kN.m

�� = - ��.�� = -

;-,B.+,4>.�8-,�.+,?4+G,B<.-,/BB.+,?@A = 29 339 762,28 Pa

Resposta da lista:

6) σa = 44,1 MPa C σb = 29,3 MPa T

7) A viga mostrada é feita de aço com tensão de escoamento igual a 250 MPa. Determinar o maior momento que pode ser aplicado à viga quando ela encurva em torno do eixo z, considerando um coeficiente de segurança de 2,5.

Page 12: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

12

Posição da Linha Neutra (L.N.)

yi = 130 mm

Cálculo do momento de inércia

A1 = 200.16= 3 200 mm²

A2 = 228.10= 2 280 mm²

A3 = 200.16= 3 200 mm²

� = 252 mm

� = 130 mm

� = 8 mm

I z = ��� + ��� + ��� ��� = ��� ��� =

��.�1����� + A1 . �� −3�� =

-,,.�+<�4+- + 3 200 . �252 − 130�- = 47 697 066,67 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = +,.�--B�4

+- + 2 280 . �130 − 130�- = 9 876 960 . �78�� m4

��� = ��.�1���

�� + A3 . �� −3�� = -,,.�+<�4

+- + 3 200 . �8 − 130�- = 47 697 066,67 . �78�� m4

=> I z = 105 271 093,3 . �78�� m4

�� = ��.3�� =>

-/,.+,]-,/ =

^_.+0,.+,?4+,/-.+,G0,0.+,?@A => �� = 80 977,76408 N.m

8) Sabendo-se que uma viga de seção transversal, como mostrado, é encurvada em torno de um eixo horizontal e está submetida a um momento fletor de 5,7 kN.m, determinar a intensidade total da força atuando: (a) na aba superior; (b) na porção sombreada da alma.

Page 13: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

13

Posição da Linha Neutra (L.N.)

yi = 87,5 mm

Cálculo do momento de inércia

A1 = 150.37,5= 5 625 mm²

A2 = 50.100= 5 000 mm²

A3 = 150.37,5= 5 625 mm²

� = 156,25 mm

� = 87,5 mm

� = 18,75 mm

I z = ��� + ��� + ��� ��� = ��� ��� =

��.�1����� + A1 . �� −3�� =

+/,.�0.,/�4+- + 5 625 . �156,25 − 87,5�- = 27 246 093,75.�78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = /,.�+,,�4

+- + 5 000 . �87,5 − 87,5�- = 4 166 666,667 . �78�� m4

=> I z = 58 658 854,17 . �78�� m4

a)

Page 14: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

14

Para y = 68,75 mm (distância da L.N. ao centróide da figura)

�� = - ��.3�� = -

/,..+,4.<B,./.+,?4/B</BB/K,+..+,?@A => �� = - 6 680 577,136 Pa

F = �� . A1 => F = - 6 680 577,136 . 5 625 . 10-6 m² => F = - 37 578,24639 N

b)

Para y = - 25 mm (distância da L.N. ao centróide da figura)

�� = - ��.�� = -

/,..+,4.�8-/�.+,?4/B</BB/K,+..+,?@A => �� = 2 429 300,777 Pa

F = �� . A => F = 2 429 300,777 . 50 . 50 . 10-6 m² => F = 6 073,251943 N

*** 9) Duas forças verticais são aplicadas a uma viga de seção transversal mostrada. Determinar as máximas tensões de tração e compressão numa seção transversal na porção BC da viga.

RA + RD = 20 kN

RA = RD = 10 kN

M z = 1,5 kN.m

Page 15: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

15

Cálculo da Posição da Linha Neutra (L.N.)

AT = 10.50 + 10.30 + 10.50 = 1 300 mm²

A1 = 10.50= 500 mm²

A2 = 10.30= 300 mm²

A3 = 10.50= 500 mm²

� = 35 mm

� = 5 mm

� = 35 mm

yi = #�.�)#�.�)#�.�

#* = /,,.0/)0,,./)/,,.0/

+0,, = 28,07692308 mm

ys = 60 - 28,07692308 = 31,92307692 mm

Cálculo do momento de inércia

I z = ��� + ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

+,.�/,�4+- + 500 . �35 − 28,07692308�- = 128 131,1637 .�78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = 0,.�+,�4

+- + 300 . �5 − 28,07692308�- = 162 263,3137. �78�� m4

��� = ���

=> I z = 418 525,6411 . �78�� m4

Cálculo acima da L.N.

�� = - ��.F�� = -

+,/.+,4.0+,G-0,.<G-.+,?4K+B/-/,<K++.+,?@A = - 114 412 620,6 Pa

Cálculo abaixo da L.N.

Page 16: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

16

�� = - ��.3�� = -

+,/.+,4.�8-B,,.<G-0,B�.+,?4K+B/-/,<K++.+,?@A = 100 627 967,5 Pa

A resposta da lista deu diferente, mas acredito que meus cálculos estão certos.

9) 73,2 MPa T 102,4 MPa C

10) Sabendo-se que uma viga de seção transversal mostrada é encurvada sobre um eixo horizontal, e que está submetida a um momento fletor de 4 kN.m, determinar a intensidade total da força que atua na porção sombreada da viga.

yi = ys = 44 mm

A1 = 12.88= 1 056 mm²

A2 = 40.40= 1 600 mm²

A3 = 12.88= 1 056 mm²

� = 44 mm

� = 44 mm

� = 44 mm

Cálculo do momento de inércia

��� = ��� I z = 2 . ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

+-.�BB�4+- = 681 472 .�78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = K,.�K,�4

+- = 213 333,3333 . �78�� m4

Page 17: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

17

=> I z = 1 576 277,333 . �78�� m4

Cálculo do centróide da figura

AT = 12.44 + 20.20= 928 mm²

A1 = 12.44= 528 mm²

A2 = 20.20= 400 mm²

A3 = 10.50= 500 mm²

� = 22 mm

� = 10 mm

= #�.�)#�.�

#* = /-B.--)K,,.+,

G-B = 16,82758621 mm = y

�� = - ��.�� = -

K.+,4.+<,B-./B<-+.+,?4+/.<-..,000.+,?@A = - 42 702 095,26 Pa

F = �� . A => F = - 42 702 095,26 . 928 . 10-6 = - 39 627,5444 N

11) Para a viga com seção transversal mostrada, determine a tensão longitudinal máxima entre as seções A e C, e localize onde ela ocorre.

Aproveitando os cálculos da questão 6 da Lista 1:

Page 18: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

18

Para 0 ≤ x D 2:

V(x) = bc. de + C1 => V(x) = b�3�. de + C1 => V(x) = 3x + C1

V(0) = 0 => 3 . 0 + C1 = 0 => C1 = 0

=> V(x) = 3x

V(0) = 0

V(2) = 3 . 2 = 6 kN

M(x) = bf�e�. de + C2 => M(x) = b�3x�. de + C2 => M(x) = 1,5 x² + C2

M(0) = - 12 => 1,5 (0)² + C2 = - 12 => C2 = - 12 => M(x) = 1,5 x² - 12

M(0) = - 12 kN.m

M(2) = 1,5 . (2)² - 12 => M(2) = - 6 kN.m

Para 2 ≤ x D 5:

V(x) = - bc. de + C3 => V(x) = - b�5�. de + C3 => V(x) = - 5x + C3

V(2) = 6 + 5,5 = 11,5 kN => - 5 . 2 + C3 = 11,5 => C3 = 21,5

=> V(x) = - 5x + 21,5 (OK)

V(2) = 11,5 kN

V(5) = - 5 . 5 + 21,5 => V(5) = - 3,5 kN

Para V(x) = 0 => - 5x + 21,5 = 0 => x = 4,3 m

M(x) = bf�e�. de + C4 => M(x) = b�−5x + 21,5�. de + C4

=> M(x) = - 2,5 x² + 21,5 . x + C4

M(2) = - 6 kN.m => - 2,5 (2)² + 21,5 . 2 + C4 = - 6 => C4 = - 39

=> M(x) = - 2,5 x² + 21,5 . x – 39

Page 19: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

19

M(2) = - 6 kN.m

M(5) = - 2,5 (5)² + 21,5 . 5 - 39 => M(5) = 6 kN.m

M f,máx = M(4,3) = - 2,5 . (4,3)² + 21,5 . 4,3 - 39 => M f,máx = 7,225 kN.m

Para 5 ≤ x D 7:

3 . 2 + 5,5 – 5 . 3 - 3 - V(x) = 0 => V(x) = - 6,5 kN

M(x) = bf�e�. de + C5 => M(x) = b�−6,5�. de + C5

=> M(x) = - 6,5x + C5

M(5) = 6 kN.m => - 6,5 . 5 + C5 = 6 => C5 = 38,5

=> M(x) = - 6,5x + 38,5

M(5) = 6 kN.m

M(7) = - 6,5 . 7 + 38,5 => M(7) = - 7 kN.m

Diagrama:

Page 20: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Cálculo da Posição da Linha Neutra (L.N.)

AT = 100.25 + 40.100 =

A1 = 100.25= 2 500 mm²

A2 = 100.40= 4 000 mm²

� = 112,5 mm

� = 50 mm

yi = #�.�)#�.�

#* = -/,,.++-

<ys = 125 - 74,03846154 = 50,961538

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3

Linha Neutra (L.N.)

= 6 500 mm²

++-,/)K,,,./,</,, = 74,03846154 mm

96153846 mm

Cálculo do momento de inércia

3��

Adriano Alberto

20

Page 21: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

21 ��� =

��.�1����� + A2 . �� −3��

hi@ = +,,.�-/�4

+- + 2 500 . �112,5 − 74,03846154�- = 3 828 433,185 . �78�� m4

hiA = K,.�+,,�4

+- + 4 000 . �50 − 74,03846154�- = 5 644 723,866 . �78�� m4

=> I z = 9 473 157,051 . �78�� m4

Para o trecho AB:

Mmáx = - 12 . 10³ N.m

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => 9: = -

;8+-.+,4>./,,G<+/0BK<.+,?4GK.0+/.,,/+.+,?@A = 64 554 874,18 Pa

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 9: = -

;8+-.+,4>.�8.K,,0BK<+/K�.+,?4GK.0+/.,,/+.+,?@A = - 93 787 270,04 Pa

Para o trecho BC:

Mmáx = 7,225 . 10³ N.m

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => 9: = -

;.,--/.+,4>./,,G<+/0BK<.+,?4GK.0+/.,,/+.+,?@A = - 38 867 413,83 Pa

Cálculo das tensões abaixo da L.N.:

Page 22: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

22 �� = -

��.3�� => 9: = -

;.,--/.+,4>.�8.K,,0BK<+/K�.+,?4GK.0+/.,,/+.+,?@A = 56 467 752,17 Pa

12) e 13) Para a viga com seção transversal mostrada, determine: (a) a tensão trativa máxima longitudinal na viga e onde ela ocorre; (b) a tensão compressiva máxima na viga e onde ela ocorre. 12)

30 + RC = 37,5 kN => RC = 7,5 kN ∑Qj = 0 => 7,5 . 1 . 0,5 – 7,5 . 4 . 2 + 7,5 . 4 + M = 0 => M = 26,25 kN.m Para o trecho 0 ≤ x < 1: V(x) = - 7,5 . x + C V(0) = 0 = - 7,5 . 0 + C => C = 0 => V(x) = - 7,5 . x V(1) = - 7,5 kN

M(x) = - .,/.:A

- + C

M(0) = 0 = 0 + C => M(x) = - .,/.:A

-

M(1) = - 3,75 kN.m

Para o trecho 1 ≤ x < 5: V(x) = - 7,5 . x + C V(1) = - 7,5 + 30 = 22,5 kN = - 7,5 . 1 + C => C = 30 => V(x) = - 7,5 . x + 30 Para V(x) = 0 => x = 4 m

M(x) = - .,/.:A

- + 30x + C

Page 23: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

23 M(1) = - 3,75 kN.m = -

.,/.+- + 30 . 1 + C => C = - 30

M(x) = - k,T.��

� + 30x – 30 M(4) = -

.,/.+<- + 30 . 4 – 30 = 30 kN.m

M(5) = -

.,/.-/- + 30 . 5 – 30 = 26,25 kN.m

Para x = 5: M(5) = 26,25 – M = 0 Cálculo da Posição da Linha Neutra (L.N.)

AT = 100.50 + 100.50 = 10 000 mm²

A1 = 100.50= 5 000 mm²

A2 = 100.50= 5 000 mm²

� = 125 mm

� = 50 mm

yi = #�.�)#�.�

#* = /,,,.+-/)/,,,./,

+,,,, = 87,5 mm

ys = 150 – 87,5 = 62,5 mm

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

+,,.�/,�4+- + 5 000 . �125 − 87,5�- = 8 072 916,667 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = /,.�+,,�4

+- + 5 000 . �50 − 87,5�- = 11 197 916,67 . �78�� m4

=> I z = 19 270 833,33 . �78�� m4

Para o trecho AB:

Mmáx = - 3,75 kN.m

Page 24: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

24

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => 9: = -

;80,./.+,4>.<-,/.+,?4+G-.,B00,00.+,?@A = 12 162 162,16 Pa

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 9: = -

;80,./.+,4>.�8B.,/�.+,?4+G-.,B00,00.+,?@A = - 17 027 027,03 Pa

Para o trecho BC:

Mmáx = 30 . 10³ N.m

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => 9: = -

;0,.+,4>.<-,/.+,?4+G-.,B00,00.+,?@A = - 97 297 297,31 Pa

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 9: = -

;0,.+,4>.�8B.,/�.+,?4+G-.,B00,00.+,?@A = 136 216 216,2 Pa

Logo:

a) ;��,�á�>* = 136 216 216,2 Pa (no trecho BC, abaixo da L.N.)

b) ;��,�á�>l = - 97 297 297,31 Pa (no trecho BC, acima da L.N.)

13)

Page 25: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

25

Utilizando os cálculos da questão 13 da lista 1

RA – 7 . 2 – 7 – 14 . 2 + RD – 7 . 2 = 0 => RA + RD = 63 kN (I) ∑QR = 0 => 25 – 7 . 2 . 1 – 7 . 2 – 14 . 2 . 3 – 11 + 7 . RD – 7 . 2 . 8 = 0

=> RD = -+,. = 30 kN

Substituíndo em (I): RA + 30 = 63 => RA = 33 kN Para 2 ≤ x D 4:

V(x) = 33 – 7 . 2 – 7 – 14(x – 2) => V(x) = - 14x + 40

Para V(x) = 0 => x = 2,857142857 m

Cálculo do momento fletor à partir da área do diagrama do esforço cortante:

(- 25) + (14 + 38) + (0,857142857 . +-- ) – (1,142857143 .

+<- ) + (11) – (16 . 3) + (14) = 0 (OK)

Diagrama:

Page 26: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Cálculo da Posição da Linha Neutra (L.N.)

AT = 120.30 + 240.30 =

A1 = 120.30= 3 600 mm²

A2 = 240.30= 7 200 mm²

� = 255 mm

� = 120 mm

yi = #�.�)#�.�

#* = 0<,,.-//

+,ys = 270 - 165 = 105 mm

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3

��� = ��.�1���

�� + A2 . �� −3

=> I z = 78 570 000 . �78�� m

Cálculo da Posição da Linha Neutra (L.N.)

= 10 800 mm²

-//).-,,.+-,+,B,, = 165 mm

Cálculo do momento de inércia

3�� = +-,.�0,�4

+- + 3 600 . �255 − 165�- = 29 430 000

3�� = 0,.�-K,�4

+- + 7 200 . �120 − 165�- = 49 140 000

m4

Adriano Alberto

26

29 430 000 . �78�� m4

49 140 000 . �78�� m4

Page 27: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

27

Para o trecho AB:

Mmáx = - 25 . 10³ N.m

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => 9: = -

;8-/.+,4>.+,/.+,?4.B/.,,,,.+,?@A = 33 409 698,36 Pa

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 9: = -

;8-/.+,4>.�8+</�.+,?4.B/.,,,,.+,?@A = - 52 500 954,56 Pa

Para o trecho CD:

Mmáx = 34 . 10³ N.m

Cálculo das tensões acima da L.N.:

�� = - ��.F�� => 9: = -

;0K.+,4>.+,/.+,?4.B/.,,,,.+,?@A = - 45 437 189,77 Pa

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 9: = -

;0K.+,4>.�8+</�.+,?4.B/.,,,,.+,?@A = 71 401 298,21 Pa

Logo:

a) ;��,�á�>* = 71 401 298,21 Pa (no trecho CD, abaixo da L.N.)

b) ;��,�á�>l = - 52 500 954,56 Pa (no trecho AB, abaixo da L.N.)

Page 28: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

28

PROBLEMAS ENVOLVENDO FLEXÃO DE SEÇÃO HETEROGÊNEA

14) Duas barras de latão são unidas firmemente a duas barras de alumínio, formando a seção composta mostrada. Determinar o maior momento fletor permissível, quando a viga é encurvada em torno de um eixo horizontal. Dados: Ealum = 70 GPa ; Elat = 105 GPa ; ������mn�� = 100 MPa ; �����m�o� = 160 MPa

Posição da L.N.:

yi = �p.#.��mn�)�p.#.�m�o�p.#��mn�)�p.#�m�o =

= .,.+,q.B,,.+,?].0,.+,?4)+,/.+,q.K,,.+,?]./.+,?4)+,/.+,q.K,,.+,?].//.+,?4

.,.+,q.B,,.+,?])+,/.+,q.B,,.+,?] => yi = 30 mm (OK) Cálculo do momento de inércia

��mn� = 2 . r��.�1����� + s�. �� −3��t = 2 . r+,.�K,�4+- + 400. �30 − 30�-t = ��7777

� . �78�� m4

�m�o = 2 . r��.�1����� + s�. �� −3��t = 2 . rK,.�+,�4+- + 400. �55 − 30�-t = �T�7777

� . �78�� m4

����mn�� = - ��.�p.��mn��p.���mn�)�p.��m�o

9uvw�uxyw� = ± 100 . 106 = - ^_.70.109.�±20�.10−3

70.109.4APPPP4 .10−12)105.109.@XAPPPP4 .10−12 => M z = ��777

� N.m

���m�o� = - ��.�p.�m�o�p.���mn�)�p.��m�o

Page 29: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

29 9uvw�xuz� = ± 160 . 106 = -

^_.105.109.�±30�.10−370.109.4APPPP4 .10−12)105.109.@XAPPPP4 .10−12 =>

=> M z = 3 081,481481 N.m (resposta) Obs: se as diferentes partes do latão e/ou do alumínio estivessem em posições diferentes em relação à L.N, seria necessário calcular as tensões correspondentes em cada parte (sendo que quanto mais distante o ponto estiver da L.N., maior será a tensão). No presente problema, devido à simetria de ambos em relação à L.N, as tensões acima e abaixo da L.N. são iguais em módulo (tração e compressão). 15) Uma barra de aço e uma de alumínio são unidas firmemente, para formar a viga composta mostrada. O módulo de elasticidade para o alumínio é de 70 GPa e para o aço é de 200 GPa. Sabendo-se que a viga é curvada em torno de um eixo horizontal por um momento M = 1500 N.m, determinar a máxima tensão no: (a) alumínio; (b) aço.

Page 30: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

30

Figura: Slide do Prof. Alberto B. Vieira Jr.

Page 31: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

31

Figura: Slide do Prof. Alberto B. Vieira Jr.

15) a) 66,2 MPa T b) 112,4 MPa C

*** 16) Uma viga de concreto é reforçada por três barras de aço, colocadas como indicado. Os módulos de elasticidade são de 20 GPa para o concreto e de 200 GPa para o aço. Usando uma tensão admissível de 10 MPa para o concreto e de 150 MPa para o aço, determinar o maior momento fletor que pode ser aplicado à viga.

Econc = 20 GPa ; Eaço = 200 GPa ; �����{|}{� = 10 MPa ; ������ç|� = 150 MPa

Aaço = 3 . . �7, 7���� m²

Aconc = 0,225 . 0,500 - 3 . L . �0,012�- = 0,1125 - 3 . . �7, 7���� m²

Page 32: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

32

Posição da L.N.:

yi = �p.#.�{|}{)�p.#.��ç|

�p.#�{|}{)�p.#��ç| =

= -,.+,q.r0,1125−3.L.�0,012�2t.-/,.+,?4)-,,.+,q.3.L.�0,012�2./,.+,?4

-,.+,q.r0,1125−3.L.�0,012�2t)-,,.+,q.3.L.�0,012�2

=> yi = 228,2356038 mm ys = 500 - 228,2356038 = 271,7643962 mm Cálculo do momento de inércia

I aço = 3 . r .��� +s�ç�. W��ç| − 3Z�t = 3.rH.�+-�JK + L. �12�-. �50 − 228,2356038�-t =

= 43 163 277,54 . �78�� m4

�� = ��.�1����� + s�. �� −3�� = --/.�K,,�4+- + 225.400. �300 − 228,2356038�- = 1 663 511 571.�78�� m4

I 2 = ��.�1���

�� +s�. �� −3�� - I aço = --/.�+,,�4

+- +100.225. �50 − 228,2356038�- - 43 163 277,54

=> I2 = 690 365 157,9 . �78�� m4

I conc = I1 + I2 = 2 353 876 729 . �78�� m4

���{|}{� = - ��.�p.�{|}{�p.��{|}{)�p.���ç|

9uvw������ = ± 10 . 106 = - ^_.-,.+,q.-.+,.<K0G<-.+,?4

-,.+,q.-0/0B.<.-G.+,?@A)-,,.+,q.K0+<0-..,/K.+,?@A =>

=> M z = ± 102 497,2198 N.m (resposta)

����ç|� = - ��.�p.��ç|

�p.��{|}{)�p.���ç|

Page 33: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

33 9uvw�uç�� = ± 150 . 106 = -

^_.-,,.+,q.�8�--B,-0/<,0B80B��.+,?4-,.+,q.-0/0B.<.-G.+,?@A)-,,.+,q.K0+<0-..,/K.+,?@A =>

=> M z = ± 219 636,2917 N.m (não serve) Obs: a resposta da lista deu 79,1 kN.m, mas acredito que meus cálculos estão corretos. Conferir com o método da homogeneização.

PROBLEMAS ENVOLVENDO CARGA EXCÊNTRICA

17) Duas forças de 10 kN são aplicadas a uma barra de seção retangular de 20 mm x 60 mm, como mostrado. Determinar a tensão no ponto A, quando: (a) b = 0; (b) b = 15 mm; (c) b = 25 mm.

N = 10 + 10 = 20 kN

Posição da L.N.:

yi = ys = 0,03 m

�� = �# -

����

�� = -,.�<,�4

+- = 360 000 . �78�� m4

a)

b = 0

Mz = 10 000 . 0,025 = 250 N.m

9: = -,,,,

,,,-,.,,,<, - -/,.,,,0

0<,,,,.+,?@A = - 4 166 666,667 Pa

b)

b = 15 mm

Mz = 10 000 . 0,025 – 10 000 . 0,015 = 100 N.m

Page 34: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

34

9: = -,,,,

,,,-,.,,,<, - +,,.,,,0

0<,,,,.+,?@A = 8 333 333,333 Pa

c)

b = 25 mm

Mz = 10 000 . 0,025 – 10 000 . 0,025 = 0

9: = -,,,,

,,,-,.,,,<, - ,.,,,0

0<,,,,.+,?@A = 16 666 666,67 Pa

18) Uma pequena coluna de 120 mm x 180 mm suporta três cargas axiais mostradas. Sabendo-se que a seção ABD é suficientemente afastada das cargas, para que permaneça plana, determinar a tensão no: (a) canto A; (b) canto B.

Figura: Slide do Prof. Alberto B. Vieira Jr.

18) a) 926 kPa T b) 14,81 MPa C 19) Sabendo-se que a tensão admissível é 90 MPa, determinar a maior força P que pode ser aplicada ao elemento de máquina mostrado.

Page 35: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

35

N = P = ?

�� = S# -

����

Cálculo da Posição da Linha Neutra (L.N.)

yi = #�.�)#�.�

#* = KK.-,..,)<,.+B.0,

KK.-,)<,.+B = 47,95918367 mm

ys = 80 - 47,95918367 = 32,04081633 mm

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

KK.�-,�4+- + 44.20 . �70 − 47,95918367�- = 456 835,2077 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = +B.�<,�4

+- + 18.60 . �30 − 47,95918367�- = 672 334,8603 . �78�� m4

=> I z = 1 129 170,068 . �78�� m4

M z = ?

Considerando o eixo x passando pela L.N.:

M z = P . (47,95918367 – 40)

90 . 106 = U

,,,KK.,,,-,),,,<,.,,,+B - �.;K.,G/G+B0<.–K,>.+,?4.�8K.,G/G+B0<.�.+,?4

++-G+.,,,<B.+,?@A =>

Page 36: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

36 => 90 . 106 =

U,,,,+G< + 338,0500089 . P => 176 400 = P + 0,662578017 . P =>

=> P = 106 100,2841 N

20) A força axial excêntrica P atua no ponto D, que está localizado a 30 mm abaixo da borda superior da barra de aço mostrada. Para P = 90 kN, determinar: (a) a largura d da barra para que a tensão no ponto A seja máxima; (b) o correspondente valor da tensão no ponto A.

N = P = 90 kN

Posição da L.N.:

yi = ys = ��

�� = �# -

����

�� = ,,,/,.�v�4

+-

a)

Mz = - 90 000 . Wv- − 0,030Z

9: = G,,,,,,,/,.v -

8G,,,,.W�A–,,,0,Z.�AP,PXP.���4

@A

G,,,,,,,/,.v =

G,,,,.W�A–,,,0,Z.�AP,PXP.���4

@A => 1 =

W�A–,,,0,Z.�A���A@A

= Wv- – 0,030Z.<v=>

=> 1 = 3 – ,,+Bv =>

,,+Bv = 2 => d = 0,09 m = 90 mm

b)

9: = G,,,,

,,,/,.,,,G - 8G,,,,.WP,PqA –,,,0,Z.P,PqA

P,PXP.�P,Pq�4@A

= 40 MPa

Page 37: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

PROBLEMAS ENVOLVENDO FLEXÃO ASSIMÉTRICA

21) e 22) A viga com uma seção transversal mostrada está submetida a um momento fletorM aplicado no plano a – a. Determine: (a) a inteorientação do eixo neutro, mostre o 21) M = 1.200 N.m

tg� = 0K => � = arctg(0,75)

M y = - 1 200 . sen[arctg(0,75)]

M z = 1 200 . cos[arctg(0,75)]

Iz = 2 . r+-,.�0,�4+- + 120.30Iy = 2 . r0,.�+-,�4+- t +

+-,.�0,+-

tg� = �.����.� =

8+-,,.���������+-,,.���������

tg� = ��� . tg�

A e B são os pontos mais distantes da L.N.

PROBLEMAS ENVOLVENDO FLEXÃO ASSIMÉTRICA

21) e 22) A viga com uma seção transversal mostrada está submetida a um momento fletor. Determine: (a) a intensidade da máxima tensão de flexão; (b) a

orientação do eixo neutro, mostre o resultado num esboço.

arctg(0,75)]

[arctg(0,75)]

30. �165 − 90�-t + 0,.�+-,�4

+- = 45 360 000 . �70,�4

= 8 910 000 . �78�� m4

������,,./��.K/0<,,,,.+,?@A������,,./��.BG+,,,,.+,?@A => � = - 75,32360686

A e B são os pontos mais distantes da L.N.

Adriano Alberto

37

PROBLEMAS ENVOLVENDO FLEXÃO ASSIMÉTRICA

21) e 22) A viga com uma seção transversal mostrada está submetida a um momento fletor nsidade da máxima tensão de flexão; (b) a

�78�� m4

°

Page 38: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

38

Para o ponto A:

�� = - ��.�� +

�.�� = -

+-,,.����������,,./��.,,,G,K/0<,,,,.+,?@A +

8+-,,.����������,,./��.,,,<,BG+,,,,.+,?@A =

= - 6 753 246,753 Pa

Para o ponto B:

9: = - +-,,.����������,,./��.�8,,,G,�

K/0<,,,,.+,?@A + 8+-,,.����������,,./��.�8,,,<,�

BG+,,,,.+,?@A =

= 6 753 246,753 Pa

22) M = 20 kN.m

M y = 20 000 . sen(10°)

M z = 20 000 . cos(10°)

Iz = G,.�<,�4+- + 90.60. �210 − 150�- + 0,.�+B,�4

+- +180.30. �90 − 150�- = 55 080 000 . �78�� m4

Iy = <,.�G,�4

+- + +B,.�0,�4

+- = 4 050 000 . �78�� m4

tg� = �.����.� =

-,,,,.����+,°�.55080000.10−12-,,,,.����+,°�.K,/,,,,.+,?@A => � = 67,36356998 °

tg� = ��� . tg�

Page 39: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

39

A e B são os pontos mais distantes da L.N.

Para o ponto A:

�� = - ��.�� +

�.�� = -

-,,,,.����+,°�.,,,G,55080000.10−12 +

-,,,,.����+,°�.�8,,,K/�K,/,,,,.+,?@A =

= - 70 771 743,83 Pa (resposta)

Para o ponto B:

9: = - -,,,,.����+,°�.�8,,+/,�

55080000.10−12 + -,,,,.����+,°�.,,,+/

K,/,,,,.+,?@A = 66 501 594,48 Pa

*** 23) Uma cantoneira de 200 x 200 x 24 mm é usada numa viga que suporta um momento fletor de + 10.000 N.m aplicado no plano yx. Os momentos de inércia obtidos em um manual de aço estrutural são Iz = Iy = 33,3 x 106 mm4, e Iyz = + 19,5 x 106 mm4. Determine: (a) a tensão de flexão no ponto A; (b) a máxima tensão de flexão e sua localização na seção transversal; (c) a orientação do eixo neutro, mostre a localização num esboço.

Page 40: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

40 �� = �� . �8�.)��.��.��8;��>�� + � . � ��.�8��.�.��8;��>��

Ou

�� = - ���.�)�.���.��8;��>� � . y + ��.��)��.��

�.��8;��>� � . z

��= #. y . z

tg� = �.��)��.����.�)�.��

a)

M y = 0 ; Mz = 10 000 N.m

�� = - � ��.��.��8;��>�� . y + � ��.��

�.��8;��>�� . z

ou

�� = �� . �8�.)��.��.��8;��>�� = 10 000 . r–00,0.+,].+,?@A./B,K.+,?4)+G,/.+,].+,?@A.�8/B,K.+,?4�00,0.+,].+,[email protected],0.+,].+,?@A8�+G,/.+,].+,?@A�A t =

= - 42 318 840,58 Pa

c)

tg� = ��� =

19,5.106.10−1233,3.106.10−12 => � = 30,35262473°

Page 41: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

41

b) A maior distância à L.N. é em relação ao ponto B, onde ocorre a maior tensão.

�� = 10 000 . r–00,0.+,].+,?@A.�8+K+,<�.+,?4)+G,/.+,].+,?@A.�8/B,K�.+,?4�00,0.+,].+,[email protected],0.+,].+,?@A8�+G,/.+,].+,?@A�A t = 49 084 321,48 Pa

Acredito que a resposta da lista esteja errada:

23) a) 42,3 MPa T b) 55,8 MPa C c) 75,4 a partir do eixo z � 24) Uma viga com uma seção cantoneira está carregada com um momento fletor de + 20 kN.m aplicado num plano yx. Determine: (a) a tensão de flexão no ponto A; (b) a orientação do eixo neutro, mostre a localização num esboço.

Iz = <,.�+B,�4+- + 180.60. �90 − 75�- + <,.�<,�4

+- +60.60. �30 − 75�- = 39 960 000 . �78�� m4

Iy = +B,.�<,�4+- + 180.60. �30 − 45�- + <,.�<,�4

+- +60.60. �90 − 45�- = 14 040 000 . �78�� m4

��= #. y . z

h�i= 60.180 . 15 . 15 + 60 . 60 . 45 . 45 = 9 720 000 . �78�� m4

M y = 0 ; Mz = 20 000 N.m

Page 42: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

42

a)

�� = �� . �8�.)��.��.��8;��>�� = 20 000 . r–+K,,K.+,].+,?@A.�8+,/�.+,?4)G,.-.+,].+,?@A.+/.+,?4+K,,K.+,].+,[email protected],G<.+,].+,?@A–�G,.-.+,].+,?@A�A t =

= 69 444 444,44 Pa

b)

tg� = ��� =

9,72.106.10−1214,04.106.10−12 => � = 34,69515353°

25), 26) e 27) O momento M é aplicado a uma viga de seção transversal mostrada, em um plano formando um ângulo β com a vertical. Determinar: (a) a tensão no ponto A; (b) o ângulo que a linha neutra forma com o plano horizontal. 25)

M y = 2 800 . sen(20°)

M z = 2 800 . cos(20°)

Iz = +,,.�-,,�4

+- = �77777777

� . �78�� m4

Iy = -,,.�+,,�4

+- = T7777777

� . �78�� m4

a)

Para o ponto A:

Page 43: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

43 �� = -

��.�� +

�.�� = -

-B,,.����-,°�.,,+,,APPPPPPPP

4 .+,?@A + -B,,.����-,°�.,,,/,

XPPPPPPP4 .+,?@A = - 1 073 739,803 Pa

Para o ponto B:

9: = - -B,,.����-,°�.�8,,+,,�

APPPPPPPP4 .+,?@A +

-B,,.����-,°�.,,,/,XPPPPPPP

4 .+,?@A = 6 819 678,211 Pa

b)

tg� = ��� . tg� =

APPPPPPPP4 .+,?@AXPPPPPPP4 .+,?@A . tg�20°� => � = 75,96375653°

26)

M y = 10 000 . sen(55°)

M z = - 10 000 . cos(55°)

Iz = 2 . r160.�10�312 + 160.10. �175 − 90�2t + 10.�160�312 = 26 560 000 . �78�� m4

Page 44: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

44 Iy = 2 . r10.�160�312 t + 160.�10�312 = 6 840 000 . �78�� m4

a)

Para o ponto A:

9: = - 8+,,,,.����//°�.,,,G,

-</<,,,,.+,?@A + +,,,,.����//°�.,,,B,

<BK,,,,.+,?@A = 115 243 205,2 Pa

Para o ponto B:

�� = - ��.�� +

�.�� = -

8+,,,,.����//°�.,,,G,-</<,,,,.+,?@A +

+,,,,.����//°�.�8,,,B,�<BK,,,,.+,?@A = - 76 371 308,12 Pa

b)

tg� = ��� . tg� =

-</<,,,,.+,?@A<BK,,,,.+,?@A . tg�55°� => � = 79,77801655°

27)

M y = 25 000 . sen(15°)

M z = 25 000 . cos(15°)

Iz = G,.�B,�4+- + 90.80. �120 − 100�- + 0,.�B,�4+- + 30.80.�40 − 100�- = 16 640 000 . �78�� m4

Page 45: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

45 Iy = B,.�G,�4+- + B,.�0,�4+- = 5 040 000 . �78�� m4

a)

Para o ponto A:

�� = - ��.�� +

�.�� = -

-/,,,.����+/°�.,,,<,+<<K,,,,.+,?@A +

-/,,,.����+/°�.,,,K//,K,,,,.+,?@A = - 29 300 532,31 Pa

Para o ponto B:

9: = - -/,,,.����+/°�.,,,<,

+<<K,,,,.+,?@A + -/,,,.����+/°�.�8,,,K/�

/,K,,,,.+,?@A = - 144 844 748,9 Pa

b)

tg� = ��� . tg� =

+<<K,,,,.+,?@A/,K,,,,.+,?@A . tg�15°� => � = 41,49782689°

*** 28) Uma carga axial P é aplicada como mostrado a curto perfil estrutural em forma de T. Determinar: (a) a maior distância a para que a tensão máxima de compressão não exceda a 120 MPa; (b) o ponto correspondente onde a linha neutra intercepta a linha AB. Dados: A = 4450 mm2, Iy = 9,16 x 106 mm4, Iz = 6,00 x 106 mm4

� = 135 000 . a

Qi= 135 000 . 0,024 = 3 240 N.m

Page 46: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

46

a)

�� = �# -

��.�� +

�.��

- 120 . 106 = 8+0/,,,KK/,.+,?] -

0-K,.,,,-.<.+,].+,?@A +

+0/,,,.u.�8,,+,-�G,+<.+,].+,?@A =>

=> - 75 082 921,35 = - 1 503 275 109 . a => a = 49,946228 mm

b)

Q� = 135 000 . 0,049946228 = 6 742,740781 N.m

tg� = �.����.� =

<.K-,.K,.B+.<.+,].+,?@A0-K,.G,+<.+,].+,?@A => � = 53,73664016°

tg(53,73664016°) = -.ww

i => z = 19,80690113 mm

PROBLEMAS ENVOLVENDO CISALHAMENTO NA FLEXÃO

Nas questões abaixo, de acordo com as respostas da lista, não são calculadas as tensões máximas. Para isso, seria necessário calcular também as tensões longitudinais e, a partir do estado de tensão resultante, calcular as tensões máximas, que podem ou não coincidir com os resultados das questões abaixo.

29) O cortante vertical em certa seção de uma viga cuja forma é mostrada na figura é 18 kN. Determinar: (a) a tensão tangencial horizontal máxima, e indique onde ela ocorre dentro da seção transversal; (b) a tensão tangencial vertical 80 mm abaixo do topo.

Page 47: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

47

Figura: Slide do Prof. Alberto B. Vieira Jr.

Page 48: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

48

Figura: Slide do Prof. Alberto B. Vieira Jr.

a) 822 kPa no eixo neutro b) 707 kPa

30) Uma viga com 6 m de comprimento está simplesmente apoiada em suas extremidades e tem uma seção transversal como mostrado. A viga suporta uma carga uniformemente distribuída de 5 kN/m em todo o seu comprimento. Determine: (a) a tensão transversal vertical em um ponto 0,5 m a partir do extremo direito e 100 mm abaixo da superfície do topo da viga; (b) as tensões tangenciais máximas horizontal e vertical, e mostre onde cada uma ocorre.

RA + RB = 30 kN RA = RB = 15 kN V(x) = - 5x + 15

Page 49: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

49

Cálculo da Posição da Linha Neutra (L.N.)

AT = 60.200 + 60.160 + 60.200 = 33 600 mm²

A1 = 60.200= 12 000 mm²

A2 = 60.160= 9 600 mm²

A3 = 60.200= 12 000 mm²

� = 100 mm

� = 30 mm

� = 100 mm

yi = #�.�)#�.�)#�.�

#* = +-,,,.+,,)G<,,.0,)+-,,,.+,,

00<,, = 80 mm

ys = 200 - 80 = 120 mm

Cálculo do momento de inércia

I z = ��� + ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

<,.�-,,�4+- + 12 000 . �100 − 80�- = 44 800 000 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = +<,.�<,�4

+- + 9 600 . �30 − 80�- = 26 880 000 . �78�� m4

��� = ��.�1���

�� + A3 . �� −3�� = <,.�-,,�4

+- + 12 000 . �100 − 80�- = 44 800 000 . �78�� m4

��� = ���

=> I z = 116 480 000 . �78�� m4

a) x = 6 – 0,5 = 5,5 m V(5,5) = - 5 . 5,5 + 15 = - 12,5 kN

Page 50: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

50

�� = - �.��.�

Q = Q1 + Q2

Q1 = Q2 => Q = 2 . Q2

Q1 = A1 . |� −3| Q2 = A2 . |� −3| = 60 . 100 . |150 − 80| = 420 000 . �78  m³ Q = 840 000 . �78  m³ b = 2 . 60 = 120 mm = 0,120 m

¡:� = - ;8+-,/.+,4>.BK,,,,.+,?q++<KB,,,,.+,?@A.,,+-, = 751 201,9231 Pa

b)

�� = - �.��.�

V = ± 15 kN

Page 51: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

51

Acima da L.N.:

Q = Q1 + Q2

Q1 = Q2 => Q = 2 . Q2

Q1 = A1 . |� −3| Q2 = A2 . |� −3| = 60 . 120 . |140 − 80| = 432 000 . �78  m³ Q = 864 000 . �78  m³ b = 2 . 60 = 120 mm = 0,120 m

¡:� = - ;±+/.+,4>.B<K,,,.+,?q++<KB,,,,.+,?@A.,,+-, = ± 927 197,8022 Pa

Abaixo da L.N.: Q = Q1 + Q2 + Q3

Q1 = A1 . |� −3| = 80 . 60 . |40 − 80| = 192 000 . �78  m³ Q2 = A2 . |� −3| = 160 . 60 . |30 − 80| = 480 000 . �78  m³ Q3 = A3 . |� −3| = 80 . 60 . |40 − 80| = 192 000 . �78  m³ Q1 = Q3

Q = 864 000 . �78  m³ b = 2 . 60 = 120 mm = 0,120 m

¡:� = - ;±+/.+,4>.B<K,,,.+,?q++<KB,,,,.+,?@A.,,+-, = ± 927 197,8022 Pa

30) a) 751 kPa b) 927 kPa na superfície neutra dos apoios

*** 31) Uma viga com 4 m de comprimento tem a seção transversal mostrada na figura. Ela é simplesmente apoiada nos extremos e suporta uma carga uniformemente distribuída de 4 kN/m sobre todo seu comprimento. Em um ponto a 500 mm da extremidade esquerda e 40 mm abaixo da superfície neutra, determine: (a) a tensão longitudinal (b) a tensão tangencial horizontal; (c) a tensão tangencial vertical.

Page 52: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

52

RA + RB = 16 kN RA = RB = 8 kN V(x) = - 4x + 8 x = 0,5 m V(0,5) = - 4 . 0,5 + 8 = 6 kN M(x) = - 2x² + 8x + C M(0) = 0 = - 2 . 0 + 8 . 0 + C => C = 0 => M(x) = - 2x² + 8x M(0,5) = - 2(0,5)² + 8 . 0,5 = 3,5 kN.m Posição da Linha Neutra (L.N.)

yi = 100 mm

Cálculo do momento de inércia

A1 = 40.180= 7 200 mm²

A2 = 40.120= 4 800 mm²

A3 = 40.180= 7 200 mm²

� = 180 mm

� = 100 mm

� = 20 mm

Page 53: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

53

I z = ��� + ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

+B,.�K,�4+- + 7 200 . �180 − 100�- = 47 040 000 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = K,.�+-,�4

+- + 4 800 . �100 − 100�- = 5 760 000 . �78�� m4

��� = ��.�1���

�� + A3 . �� −3�� = +B,.�K,�4

+- + 7 200 . �20 − 100�- = 47 040 000 . �78�� m4

��� = ���

=> I z = 99 840 000 . �78�� m4

a)

�� = - ��.3�� => 9: = -

;0,/.+,4>.�8K,�.+,?4GGBK,,,,.+,?@A = 1 402 243,59 Pa

b)

Cálculo abaixo da L.N. para a área abaixo de y = 40 mm

�� = - �.��.�

Q = Q1 + Q2

Q1 = A1 . |� −3| = 20 . 40 . |50 − 100| = 40 000 . �78  m³ Q2 = A2 . |� −3| = 180 . 40 . |20 − 100| = 576 000 . �78  m³ Q = 616 000 . �78  m³

Page 54: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

b = 40 mm = 0,040 m

¡:� = - ;<.+,4>.<+<,,,.+,?qGGBK,,,,.+,?@A.,,,K,

c) �� = 925 480,7692 Pa ??????? Qual a diferença entre tensão tangencial horizontal e tensão tangencial vertical? 31) a) 1,402 MPa T b) 0,925 MPa c) 0,925 MPa

32) Para a viga mostrada, a reação esquetensão longitudinal máxima da viga; (b) a tensão tangencial horizontal máxima.

RA = 5,36 kN

5,36 + RC = 12 kN => RC = 6,64 kN

∑QR = 0 => - 6 – 6 . 1,5 + 3 .

Diagrama:

q,K, = - 925 480,7692 Pa

???????

Qual a diferença entre tensão tangencial horizontal e tensão tangencial vertical?

31) a) 1,402 MPa T b) 0,925 MPa c) 0,925 MPa

32) Para a viga mostrada, a reação esquerda é de 5,36 kN para cima. Determine: (a) a máxima da viga; (b) a tensão tangencial horizontal máxima.

= 6,64 kN

3 . 6,64 + M = 0 => M = - 4,92 kN.m

Adriano Alberto

54

Qual a diferença entre tensão tangencial horizontal e tensão tangencial vertical?

kN para cima. Determine: (a) a máxima da viga; (b) a tensão tangencial horizontal máxima.

Page 55: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

55

Posição da Linha Neutra (L.N.)

yi = 100 mm

Cálculo do momento de inércia

A1 = 50.100= 5 000 mm²

A2 = 50.100= 5 000 mm²

A3 = 50.100= 5 000 mm²

� = 175 mm

� = 100 mm

� = 25 mm

I z = ��� + ��� + ��� ��� =

��.�1����� + A1 . �� −3�� =

+,,.�/,�4+- + 5 000 . �175 − 100�- = 29 166 666,67 . �78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = /,.�+,,�4

+- + 5 000 . �100 − 100�- = 4 166 666,667 . �78�� m4

��� = ��.�1���

�� + A3 . �� −3�� = +,,.�/,�4

+- + 5 000 . �25 − 100�- = 29 166 666,67 . �78�� m4

��� = ���

=> I z = 62 500 000,01 . �78�� m4

a) yi = ys

Para o trecho 0≤ x <1: Mmáx = 4,36 kN.m

�� = - ��.3�� => 9: = -

;K,0<.+,4>.�±+,,�.+,?4<-/,,,,,,,+.+,?@A = ± 6 975 999,999 Pa

Page 56: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

56

Para o trecho 1≤ x <3: Mmáx = - 4,92 kN.m

�� = - ��.3�� => 9: = -

;8K,G-.+,4>.�±+,,�.+,?4<-/,,,,,,,+.+,?@A = ± 7 871 999,999 Pa (resposta)

b) Vmáx = - 6,64 kN

�� = - �.��.�

Q = Q1 + Q2

Q1 = A1 . |� −3| = 100 . 50 . |175 − 100| = 375 000 . �78  m³ Q2 = A2 . |� −3| = 50 . 50 . |125 − 100| = 62 500 . �78  m³ Q = 437 500 . �78  m³ b = 50 mm = 0,050 m

¡:� = - ;8<,<K.+,4>.K0./,,.+,?q<-/,,,,,,,+.+,?@A.,,,/, = 929 599,9999 Pa

33) Uma viga T com 5 m de comprimento é simplesmente apoiada em suas extremidades e tem a seção transversal mostrada na figura. É especificado que a tensão longitudinal de tração não pode exceder 12 MPa e que a tensão tangencial horizontal não ultrapasse 0,7 MPa. Determine a carga concentrada para baixo máxima que pode ser aplicada a 3 m da extremidade direita.

Page 57: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

RA + RB = P - 2P + 5 . RB = 0 => RB = 0,4 . P RA = 0,6 . P Cálculo da Posição da Linha Neutra (L.N.)

AT = 200.75 + 200.50 =

A1 = 200.75= 15 000 mm²

A2 = 200.50= 10 000 mm²

� = 150 mm

� = 25 mm

yi = #�.�)#�.�

#* = +/,,,.+/,

-/ys = 250 – 100 = 150 mm

Cálculo do momento de inércia

I z = ��� + ��� ��� =

��.�1����� + A1 . �� −3

��� = ��.�1���

�� + A2 . �� −3�

= 0,4 . P

Cálculo da Posição da Linha Neutra (L.N.)

= 25 000 mm²

²

+/,)+,,,,.-/-/,,, = 100 mm

Cálculo do momento de inércia

3�� = ./.�-,,�4

+- + 15 000 . �150 − 100�- = 87 500 000

�� = -,,.�/,�4

+- + 10 000 . �25 − 100�- = 58 333 333,33

Adriano Alberto

57

87 500 000.�78�� m4

58 333 333,33.�78�� m4

Page 58: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

58

=> I z = 145 833 333,3 . �78�� m4

Cálculo das tensões abaixo da L.N.:

�� = - ��.3�� => 12 . 106 = -

�+,-.U�.�8+,,�.+,?4+K/B00000,0.+,?@A => P = 14 583,33333 N

Vmáx = 0,6 . P

�� = - �.��.�

Cálculo acima da L.N.

Q = A . | −3| = 150 . 75 . |175 − 100| = 843 750 . �78  m³ b = 75 mm = 0,075 m

0,7 . 106 = - �,,<.U�.BK0./,.+,?q

+K/B00000,0.+,?@A.,,,./ => P = 15 123,45679 N

Cálculo abaixo da L.N. Q = Q1 + Q2

Q1 = A1 . |� −3| = 50 . 75 . |75 − 100| = 93 750 . �78  m³ Q2 = A2 . |� −3| = 200 . 50 . |25 − 100| = 750 000 . �78  m³ Q = 843 750 . �78  m³ b = 50 mm = 0,075 m

0,7 . 106 = - �,,<.U�.BK0./,.+,?q

+K/B00000,0.+,?@A.,,,./ => P = 15 123,45679 N

Logo, Pmáx = 14 583,33333 N

Page 59: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

59

34) e 35) Para a viga com carregamento indicado, considerar a seção n–n e determinar: (a) a maior tensão normal, e indicar onde ela ocorre; (b) a tensão de cisalhamento no ponto A; (c) a maior tensão de cisalhamento e indicar onde ela ocorre 34)

RA = 36 kN - 36 . 0,760 + M = 0 => M = 27,36 kN.m M z = - 0,600 . 36 = - 21,6 kN.m yi = ys = 75 mm A1 = 100.8= 800 mm²

A2 = 134.8= 1 072 mm²

A3 = 134.8= 1 072 mm²

A4 = 100.8= 800 mm²

� = 146 mm

� = 75 mm

� = 75 mm

� = 4 mm

Cálculo do momento de inércia

I z = ��� + ��� + ��� + ��� ��� = ��� ��� = ���

��� = ��.�1���

�� + A1 . �� −3�� = +,,.�B�4

+- + 800 . �146 − 75�- = 4 037 066,667.�78�� m4

��� = ��.�1���

�� + A2 . �� −3�� = B.�+0K�4

+- + 1 072 . �75 − 75�- = 1 604 069,333.�78�� m4

Page 60: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

60

=> I z = 11 282 272 . �78�� m4

Como a seção é simétrica, e a área interna é concêntrica com a área externa, este cálculo apresentaria o mesmo resultado subtraíndo-se ��[ - ��3: +,,.�+/,�4

+- - BK.�+0K�4

+- = 11 282 272 . �78�� m4

�� = - ��.3�� = -

;8-+,<.+,4>.�±./�.+,?4++-B--.-.+,?@A = ± 143 588 100 Pa (no topo ou na base da seção)

b)

V(0,160) = 36 kN

�� = - �.��.�

Q = A . | −3| = 100 . 8 . |146 − 75| = 56 800 . �78  m³ b = 2 . 8 mm = 0,016 m

¡:� = - 0<.+,4./<B,,.+,?q++-B--.-.+,?@A.,,,+< = 11 327 505,67 Pa

c) Cálculo acima da L.N. Q = Q1 + Q2 + Q3

Q1 = A1 . |� −3| = 8 . 100 . |146 − 75| = 56 800 . �78  m³ Q2 = A2 . |� −3| = 8 . 67 . |108,5 − 75| = 17 956 . �78  m³ Q3 = Q2 = 17 956 . �78  m³ Q = 92 712 . �78  m³

Page 61: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

61

Como a seção é simétrica, e a área interna é concêntrica com a área externa, este cálculo apresentaria o mesmo resultado subtraíndo-se �[ - �3: 75 . 100 . |112,5 − 75| - 84 . 67 . |108,5 − 75| = 92 712 . �78  m³ b = 2 . 8 mm = 0,016 m

¡:� = - 0<.+,4.G-.+-.+,?q

++-B--.-.+,?@A.,,,+< = 18 489 361,01 Pa (ocorre na L.N.)

35) RA = RB = 80 kN

Para 0 ≤ x < 0,9:

V(x) = 80 kN

M(x) = 80x

Mz = M(0,6) = 80 . 0,6 = 48 kN.m yi = ys = 130 mm A1 = A2 = A7 = A8 = 80.12= 960 mm²

A3 = A6 = 180.16= 2 880 mm²

A4 = A5 = 68.16= 1 088 mm²

� = � = 220 mm

� = 172 mm

Page 62: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

62

� = T = 130 mm

� = 88 mm

k = ¢ = 40 mm

Cálculo do momento de inércia

I z = ��� + ��� + ��� + ��� + ��T + ��� + ��k + ��¢ hi@ = hiA = hi£ = hi¤ hi4 = hi] hiJ = hiX I z = 4 . ��� + 2 . ��� + 2 . ���

��� = ��.�1���

�� + A1 . �� −3�� = +-.�B,�4

+- + 960 . �220 − 130�- = 8 288 000 .�78�� m4

��� = ��.�1���

�� + A3 . �� −3�� = +B,.�+<�4

+- + 2 880 . �172 − 130�- = 5 141 760 .�78�� m4

��� = ��.�1���

�� + A4 . �� −3�� = +<.�<B�4

+- + 1 088 . �130 − 130�- = 419 242,6667.�78�� m4

=> I z = 44 274 005,33 . �78�� m4

�� = - ��.3�� = -

;KB.+,4>.�±+0,�.+,?4KK-.K,,/,00.+,?@A = ± 140 940 489,9 Pa (no topo ou na base da seção)

b)

V(0,6) = 80 kN

�� = - �.��.�

Cálculo acima da L.N. Q = 2 . Q1

Page 63: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

63

Q = 2 . A . | −3| = 2 . 80 . 12 . |220 − 130| = 172 800 . �78  m³ b = 2 . 12 mm = 0,024 m

¡:� = - B,.+,4.+.-B,,.+,?q

KK-.K,,/,00.+,?@A.,,,-K = 13 009 891,37 Pa

c) Cálculo acima da L.N. Q = Q1 + Q2 + Q3 + Q4 + Q5

Q1 = Q2

Q4 = Q5

Q = 2 . Q1 + Q3 + 2 . Q4

Q1 = A1 . |� −3| = 12 . 80 . |220 − 130| = 86 400 . �78  m³ Q3 = A3 . |� −3| = 16 . 180 . |172 − 130| = 120 960 . �78  m³ Q4 = A4 . |� −3| = 34 . 16 . |147 − 130| = 9 248 . �78  m³ Q = 312 256 . �78  m³ b = 2 . 16 mm = 0,032 m

¡:� = - B,.+,4.0+--/<.+,?q

KK-.K,,/,00.+,?@A.,,,0- = 17 632 016,67 Pa (ocorre na L.N.)

PROBLEMAS ENVOLVENDO COMBINAÇÃO DE CARREGAMENTO

*** 36) a alavanca AB tem uma seção transversal retangular de 10 x 30 mm. Sabendo-se que θ = 40º, determinar as tensões normal e de cisalhamento nos três pontos indicados (a, b e c).

Page 64: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

1 780 . sen(40°) . 0,125 = M =>

|M�|= |M¦| = |M�| = |M§| = 1 7

N = 1 780 . cos(40°) N

yi = 15 mm (posição da L.N.)

�� = �# -

��.�� ; �� =

�.��.�

V = 1 780 . sen(40°) ; b = 0,0

Iz = +,.0,4

+- = 22 500 . �78�� m

9u = +.B,.����K,°�

,,,,,0 + +.B.���

--/,,

�� = - �.��.�

A = 0 => �� = 0

9^ = B,B--<<,,,/),

- = 40 411 330,03 Pa

R = ¡u¨á© = ª��7�����7, 7� 9u¨á© = 9^ + R = 80 822 660,05 Pa

9u¨í¬ = 9^ - R = 0

. 0,125 = M => M = 222,5 . sen(40°) N.m

1 780 . sen(40°) . 0,100 = 178 . sen(40°) N.m

(posição da L.N.)

�� ; Q = A . | −3|

; b = 0,010 m

m4

����K,°�.,,,+//,,.+,?@A = 80 822 660,05 Pa

411 330,03 Pa

7��- +�0�- = 40 411 330,03 Pa

80 822 660,05 Pa

Adriano Alberto

64

Page 65: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

9­ = +.B,.����K,°�

,,,,,0 + +.B.���--/,,.

�� = - �.��.�

Q = 0,010 . 0,015 . 0,0075 = 1,125 .

¡­ = - +.B,.����K,°�.+,+-/.+,

--/,,.+,?@A.,,,+,

9^ = K/K/+G.,,-G),

- = 2 272 598,515 Pa

R = ¡­¨á© = ª�2272598,515

����K,°�.,.+,?@A = 4 545 197,029 Pa

1,125 . �78� m³

+,?] = - 5 720 809,726 Pa

2 272 598,515 Pa

515�- +�5720809,726�- = 6 155 677,699 Pa

Adriano Alberto

65

Page 66: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

9­¨á© = 9^ + R = 8 428 276,214

9­¨í¬ = 9^ - R = - 3 883 079,184

sen���S� = /.-,B,G,.-<<+//<..,<GG => �

9� = +.B,.����K,°�

,,,,,0 + +.B.���

--/,,

�{ = - �.��.�

A = 0 => �{ = 0

9^ = 8.+.0--</,GG),

- = - 35 866 133 Pa

R = ¡�¨á© = 35 866 133 Pa

8 428 276,214 Pa

3 883 079,184 Pa

�S = 34,16724521° (anti-horário)

����K,°�.�8,,,+/�/,,.+,?@A = - 71 732 265,99 Pa

35 866 133 Pa

Adriano Alberto

66

Page 67: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

67

9�¨á© = 9^ + R = 0

9�¨í¬ = 9^ - R = - 71 732 265,99 Pa

Acredito que a resposta da lista considera apenas as tensões normais e cisalhantes separadamente, sem calcular as tensões máximas. Além disso, os valores parciais encontrados diferem um pouco das respostas. Possivelmente foram feitas muitas aproximações.

36) σa = 80,85 MPa T τa = 0 σb = 4,55 MPa T τb = 5,70 MPa σc = 71,8 MPa C τc = 0

*** 37) O eixo mecânico de um automóvel é feito para suportar as forças e o torque mostrado. Sabendo-se que o diâmetro do eixo é de 30 mm, determinar as tensões normal e de cisalhamento no: (a) ponto H; (b) ponto K.

Page 68: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

68

N = 0 Vy = ; Vz = 0 T = - 2 800 N.m My = 0 Mz = - 2 700 . 0,350 + 2 700 . 0,200 = - 405 N.m

Iz = Iy = HIJK =

H�,,,+/�JK

AT = LM- = L�0,015�-

�� = �# +

���� +

���

a) Para o ponto H: 9® = 0 -

K,/.,,,+/O�P,P@X�J

J +

,.,O�P,P@X�J

J = - 152 788 745,4 Pa

¡¯ = ¯

,,/.H.I4 = 8-B,,

,,/.H�,,,+/�4 = 8/<,,H�,,,+/�4 => �* = - 528 158 626 Pa

¡® = ¡¯ + ¡°_ = ¡¯ + 0 = - 528 158 626 Pa

Page 69: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

69

R = ���á� = 533,6549769 MPa ���á� = - 610,049349,6 Pa Para o ponto K:

9± = 0 + K,/.,O�P,P@X�J

J +

,.�8,,,+/�O�P,P@X�J

J = 0

¡¯ = ¯

,,/.H.I4 = -B,,

,,/.H�,,,+/�4 = /<,,

H�,,,+/�4 => �* = 528 158 626 Pa

¡± = ¡¯ + ¡°² = ¡¯ + 0 = 528 158 626 Pa De acordo com o desenho, que não está muito claro, como as forças em y estão equilibradas, não existe força cortante em y no ponto k. Logo, Vy = 0

��= �.��.� = 0

Page 70: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

70

Através do circulo de Mohr, �³�á�= �³�á�= 528 158 626 Pa Acredito que a resposta da lista está errada. 37) H: σx = 151 MPa C σz = 0 τxz = 527 MPa K: σx = σy = 0 τxy = 527 MPa *** 38) Uma mola é feita de um arame circular de raio c, formando uma hélice de raio R. Determinar a máxima tensão de cisalhamento produzida pelas forças P e P’, iguais e opostas. (Sugestão: determinar inicialmente a força cortante V e o torçor T numa seção transversal.)

V = P

T = P . 2R

�� = - �.��.�

I = .{��

�* = *

7,T. .{�

� = - �.�

M = T = 2PR

Para o ponto A:

�# = ��# + �*

Q = 0 => ¡°´ = 0

Page 71: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

71 ¡R = ¡¯ =

-Uµ,,/.H.�4 =

�S¶ {�

�# = - -�·�O¸JJ

= - ¢¹º {�

9^ = 8¤»¼O¸4 ),- = -

�¹º {�

R = ª�4�- +�4�- . UµH�4 =

�√�.S¶ {� = �#��á��

9R¨á© = 9^ + R = - K�·H�4 +

K√-.UµH�4 =

;�√�8�>.S¶ {�

9R¨í¬ = 9^ - R = - K�·H�4 -

K√-.UµH�4 =

8;�√�)�>.S¶ {�

sen���S� =

K√0- => �S = 22,5° (anti-horário)

Page 72: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Para o ponto B:

�� = ��� + �*

Q = H.�A- .

K.�0H =

-�40

¡j = U.A¸44O.¸JJ .-.� +

�.-·,,/.H.�4 =

UH

�� = 0

����á�� = ����á�� = �SW{� )ºZ {�

A lista não apresentou a resposta para est

U.J4H.�A + �.-·

,,/.H.�4 = ,,/.�.U.J4 )�.-·,,/.H.�4 =

�SW{� )ºZ {�

Z

a resposta para esta questão.

Adriano Alberto

72

Z

Page 73: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

73

*** 39) Várias forças são aplicadas ao tubo mostrado. Sabendo-se que o tubo tem diâmetro, interno e externo, de 40 mm e 48 mm, respectivamente, determinar as tensões normal e de cisalhamento no: (a) ponto H; (b) ponto K.

N = 660 N ; Vy = 0 ; Vz = 0 T = 880 . 0,250 = 220 N.m My = 660 . 0,100 + 220 . 0,250 – 880 . 0,250 = - 99 N.m Mz = - 660 . 0,250 = - 165 N.m

Iz = Iy = H��,,,-K�J8�,,,-,�J�

K = 1,349125549 . �78k m4

�� = �# -

���� +

���

Para o ponto H: 9® =

<<,H��,,,-K�A8�,,,-,�A� -

8+</.,,,-K+,0KG+-//KG.+,?£ +

8GG.,+,0KG+-//KG.+,?£ => �� = 30 546 008,14 Pa

¡¯ = --,.,,,-K

,,/.H.��,,,-K�J8�,,,-,�J� = 19 568 230,71 Pa

¡® = ¡¯ + ¡°_ = ¡¯ + 0 = ¡¯ => �� = 19 568 230,71 Pa

9^ =

0,/K<,,B,+K),- = 15 273 004,07 Pa

Page 74: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

74

R = ¡®¨á© = ª�15273004,07�- +�19568230,71�- = 24 822 979,4 Pa 9®¨á© = 9^ + R = 40 095 983,47 Pa 9®¨í¬ = 9^ - R = - 9 549 975,33 Pa sen���S� =

+G/<B-0,,.+-KB--G.G,K => �S = 26,01398101° (horário)

Para o ponto K: 9± =

<<,H��,,,-K�A8�,,,-,�A� -

8+</.,+,0KG+-//KG.+,?£ +

8GG.,,,-K+,0KG+-//KG.+,?£ => �� = - 16 417 745,57 Pa

¡¯ = --,.,,,-K

,,/.H.��,,,-K�J8�,,,-,�J� = 19 568 230,71 Pa

¡¾ = ¡¯ + ¡°² = ¡¯ + 0 = ¡¯ => �¿ = 19 568 230,71 Pa

Page 75: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

9^ =

8+<K+..K/,/.),- = - 8 208 872,783

R = ¡¾¨á© = ª�8208872,783 9¾¨á© = 9^ + R = 13 011 429,89 9¾¨í¬ = 9^ - R = - 29 429 175,45 sen���S� =

+G/<B-0,,.+-+--,0,-,<. => �

Obs: As respostas da lista não H: σx = 30,5 MPa T σz = 0 τxz = 19,56 MPaK: σx = 16,4 MPa C σy = 0 τxy = 19,56 MPa

8 208 872,783 Pa

783�- +�19568230,71�- = 21 220 302,67 Pa

13 011 429,89 Pa

29 429 175,45 Pa

�S = 33,6209754° (anti-horário)

ão são as tensões máximas:

= 19,56 MPa = 19,56 MPa

Adriano Alberto

75

Page 76: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

76

Figura: Slide do Prof. Alberto B. Vieira Jr.

Page 77: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Figura:

Figura: Slide do Prof. Alberto B. Vieira Jr.

Adriano Alberto

77

Page 78: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

78

40) e 41) Os eixos maciços são carregados como mostrado nas figuras. Determine, e mostre num esboço, as tensões principais e a tensão tangencial máxima no ponto A da superfície do eixo. 40)

Como Vz, ao flexionar a barra em torno de y, causa uma tração no ponto A, a convenção

de sinais deve ser de forma que ��� seja positivo. Ou seja, sentido anti-horário como

positivo. N = - 80 000 N ; Vy = 0 ; Vz = 10 000 N T = - 0,600 . 10 . 10³ = - 6 000 N.m My = 0,900 . 10 . 10³ = 9 000 N.m Mz = 0 O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz.

Iz = Iy = HIJK =

H�,,,/�JK

�� = �# +

���� +

���

Para o ponto A: 9R =

8B,,,,H�,,,/�A +

,.,O�P,PX�J

J +

G,,,.,,,/O�P,PX�J

J => �# = 81 487 330,86 Pa

¡¯ = ¯

,,/.H.I4 = 8<,,,

,,/.H.�,,,/�4 = - 30 557 749,07 Pa

¡R = ¡¯ + ¡°² = ¡¯ + 0 = ¡¯ => �# = - 30 557 749,07 Pa A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção.

Page 79: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

9^ =

B+KB.00,,B<),- = 40 743 665,43 Pa

R = ¡R¨á© = ª�40743665,43 9R¨á© = 9^ + R = 91 673 247,22 Pa 9R¨í¬ = 9^ - R = - 10 185 916,36 Pa sen���S� =

0,//..KG,,./,G-G/B+,.G => �

40 743 665,43 Pa

43�- +�30557749,07�- = 50 929 581,79 Pa

91 673 247,22 Pa

10 185 916,36 Pa

�S = 18,43494882° (anti-horário)

Adriano Alberto

79

Page 80: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

41)

Como Vz, ao flexionar a barra em torno de y, causa uma tração no ponto A, a convenção

de sinais deve ser de forma que

positivo. N = - 60 000 N ; Vy = 0 ; T = - 0,100 . 5 000 – 0,100 . 3 000 My = 5 000 . 2 – 3 000 . 2 = 4 Mz = 0 O sinal do torque T tem que seguir a mesma convenção para os sinais de M

Iz = Iy = HIJK =

H�,,,-/�JK

�� = �# +

���� +

���

Para o ponto A: 9R =

8<,,,,H�,,,-/�A +

,.,O�P,PX�J

J +

K,,,O�

¡¯ = ¯

,,/.H.I4 = 8B,,

,,/.H.�,,,-/ ¡R = ¡¯ + ¡°² = ¡¯ + 0 = ¡¯ =>

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção.

, ao flexionar a barra em torno de y, causa uma tração no ponto A, a convenção

de sinais deve ser de forma que ��� seja positivo. Ou seja, sentido anti

= 0 ; Vz = - 5 000 N e 3 000 N

0,100 . 3 000 = - 800 N.m

000 N.m

O sinal do torque T tem que seguir a mesma convenção para os sinais de M

,,,.,,,-/�P,PAX�J

J => �# = 295 391 574,4 Pa

,-/�4 = - 32 594 932,35 Pa

=> �# = - 32 594 932,35 Pa

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

Adriano Alberto

80

, ao flexionar a barra em torno de y, causa uma tração no ponto A, a convenção

seja positivo. Ou seja, sentido anti-horário como

O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz.

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

Page 81: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

9^ = -G/0G+/.K,K),

- = 147 695 787,2

R = ¡R¨á© = ª�147695787,2 9R¨á© = 9^ + R = 298 945 498,5 9R¨í¬ = 9^ - R = - 3 553 924,1 sen���S� =

0-/GKG0-,0/+/+-KG.++,0 => �

*** 42) Uma barra de aço de 50 mm de diâmetro estáDetermine, e mostre num esboço, a tensão principal máxima noadjacente ao apoio.

147 695 787,2 Pa

2�- +�32594932,35�- = 151 249 711,3 Pa

298 945 498,5 Pa

3 553 924,1 Pa

�S = 6,222551599° (anti-horário)

Uma barra de aço de 50 mm de diâmetro está carregada como mostrado na figura. mostre num esboço, a tensão principal máxima no topo da superfície

Adriano Alberto

81

carregada como mostrado na figura. topo da superfície

Page 82: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Como Vy, ao flexionar a barra em torno de z, causa uma tração no ponto superior, a convenção de sinais deve ser de forma que positivo. N = 15 000 N ; Vy = - 500 T = 1 200 N.m My = 0 Mz = 500 . 0,900 = 450 N.m O sinal do torque T tem que seguir a mesma convenção para os sinais de M

Iz = Iy = HIJK =

H�,,,-/�JK

�� = �# +

���� +

���

Para o ponto: 9: =

+/,,,H�,,,-/�A +

K/,.,,,-/O�P,PAX�J

J =>

¡¯ = ¯

,,/.H.I4 = +-,,

,,/.H.�,,,-/ ¡: = ¡¯ + ¡°_ = ¡¯ + 0 = ¡¯ => A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção.

9^ =

KK0,B.0<,+<),- = 22 154 368,08

, ao flexionar a barra em torno de z, causa uma tração no ponto superior, a convenção de sinais deve ser de forma que

��� seja positivo. Ou seja, sentido horário como

0 N ; Vz = 0

O sinal do torque T tem que seguir a mesma convenção para os sinais de M

=> �� = 44 308 736,16 Pa

,-/�4 = 48 892 398,52 Pa

=> �� = 48 892 398,52 Pa

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

22 154 368,08 Pa

Adriano Alberto

82

, ao flexionar a barra em torno de z, causa uma tração no ponto superior, a seja positivo. Ou seja, sentido horário como

O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz.

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

Page 83: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

R = ¡wá: = ª�22154368,08 9:¨á© = 9^ + R = 75 831 948,67 9:¨í¬ = 9^ - R = - 31 523 212,51 sen���S� =

KBBG-0GB,/-/0<../B,,/G => �

Na resposta da lista tem antitorque tem que ser positivo de acordo com a convenção adotada.

*** 43) O eixo circular maciço de aço está submetido aosDetermine, e mostre num esboço, as tensões principapontos: (a) A; (b) B.

08�- +�48892398,52�- = 53 677 580,59 Pa

75 831 948,67 Pa

31 523 212,51 Pa

�S = 32,81176569° (horário)

Na resposta da lista tem anti-horário. Isso seria válido para um torque negativo. Mas, o torque tem que ser positivo de acordo com a convenção adotada.

43) O eixo circular maciço de aço está submetido aos torques e cargas indicados. esboço, as tensões principais e a tensão tangencial

Adriano Alberto

83

o seria válido para um torque negativo. Mas, o

torques e cargas indicados. is e a tensão tangencial máxima nos

Page 84: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

a) Como Vz, ao flexionar a barra em torno de y, causa uma compressão no ponto A

convenção de sinais deve ser de forma que

como negativo. N = 8 000 . N ; Vy = 0; V T = - 5 000 . L + 3 000 . L = My = - 1,5 . 500 . L = - 750 . Mz = 0 O sinal do torque T tem que seguir a mesma convenção para os sinais de M

Iz = Iy = HIJK =

H�,,,/�JK

�� = �# +

���� +

���

9: =

B,,,.HH�,,,/�A -

./,.H.,,,/O�P,PX�J

J =>

¡¯ = ¯

,,/.H.I4 = 8-,,,.H,,/.H.�,,,/�

¡: = ¡¯ + ¡°² = ¡¯ + 0 = ¡¯ =>

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção.

9^ =

8-,B,,,,,),- = - 10 400 000

flexionar a barra em torno de y, causa uma compressão no ponto A

convenção de sinais deve ser de forma que �� seja negativo. Ou seja, sentido horário

; Vz = 500 . N

= - 2 000 . N.m

N.m

O sinal do torque T tem que seguir a mesma convenção para os sinais de M

=> �� = - 20 800 000 Pa

�4 = - 32 000 000 Pa

=> �� = - 32 000 000 Pa

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

10 400 000 Pa

Adriano Alberto

84

flexionar a barra em torno de y, causa uma compressão no ponto A, a

seja, sentido horário

O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz.

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

Page 85: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

R = ¡R¨á© = ª�10400000�- 9:¨á© = 9^ + R = 23 247 585,35 9:¨í¬ = 9^ - R = - 44 047 585,35 sen���S� =

0-,,,,,,00<K./B/,0/ => �

b)

9: = B,,,.HH�,,,/�A + 0 + 0 => �� =

�- +�32000000�- = 33 647 585,35 Pa

23 247 585,35 Pa

44 047 585,35 Pa

�S = 35,9979192° (horário)

= 3 200 000 Pa

Adriano Alberto

85

Page 86: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

¡¯ = ¯

,,/.H.I4 = 8-,,,.H,,/.H.�,,,/�

¡°_ =

°_.ÀÁ.­

Q = A . = HIA- .

K.I0H =

����

¡°_= 500.L.A�P,PX�44 O�P,PX�J

J .,,+,, = 266 666,6667 Pa

¡: = ¡¯ + ¡°_ = - 32 000 000 A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção.

9^ =

0-,,,,,),- = 1 600 000 Pa

R = ¡j¨á© = ª�3200000�- 9:¨á© = 9^ + R = 33 373 643,86 9:¨í¬ = 9^ - R = - 30 173 643,86 sen���S� =

0+.00000,000+..0<K0,B< => �

O resultado da lista deu diferente. Mas, pelos cáldiferença está no �� = - 31 733 333,33 Pa. Como o torque não variou em relaç(cuja resposta foi igual à da lista), o erro está no cálculo do acredito que meus cálculos estejam corretos.

�4 = - 32 000 000 Pa

266 666,6667 Pa

+ 266 666,6667 => �� = - 31 733 333,33 Pa

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

00 000 Pa

� +�31733333,33�- = 31 773 643,86 Pa

33 373 643,86 Pa

30 173 643,86 Pa

�S = 43,55679075° (anti-horário)

O resultado da lista deu diferente. Mas, pelos cálculos, �� = 1 600 000 Pa coincide. Então, a 31 733 333,33 Pa. Como o torque não variou em relaç

(cuja resposta foi igual à da lista), o erro está no cálculo do ���= 266 666,6667 Paque meus cálculos estejam corretos.

Adriano Alberto

86

A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma

coincide. Então, a 31 733 333,33 Pa. Como o torque não variou em relação à letra “a”

266 666,6667 Pa. Porém,

Page 87: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

43) b) σ1 = 33,1 MPa T σ2 = 29,9 MPa C τmáx = 31,5 MPa θp = 43,5º � *** 44) Sabendo-se que nos pontos tangencial são limitadas a máximo permissível de P.

= 29,9 MPa C σ3 = 0

se que nos pontos A e B, sobre o eixo da figura, as tensões normal e 90 MPa T e 60 MPa, respectivamente. Determine o

Adriano Alberto

87

figura, as tensões normal e , respectivamente. Determine o valor

Page 88: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

88

;��,�á�># = ;��,�á�>� = 90 . 106 Pa ;���,�á�># = ;��,�á�>� = 60 . 106 Pa

P = ? Convenção de sinais: sentido horário positivo para o ponto A e negativo para o ponto B N = 8P ; Vy = P ; Vz = 0 T = 0,200 . P My = 0,200 . 8P = 1,6 . P Mz = 0,400 . P O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz.

Iz = Iy = HIJK =

H�,,,/�JK

�� = �# +

���� +

���

Para o ponto A:

9R = BU

H�,,,/�A + 8,,K,,.�.�8,,,/�

O�P,PX�JJ

+ +,<.U.,

Á² => 9R = BU

H�,,,/�A + ,,K,,.U.KH�,,,/�4 =>

9R = BU.,,,/)+,<.U

H�,,,/�4 => �# = 5 092,958179 . P

¡¯ = ¯

,,/.H.I4 = ,,-,,.U

,,/.H.�,,,/�4 = 1 018,591636 . P

¡R = ¡¯ + ¡°_ = ¡¯ + 0 = ¡¯ => �# = 1 018,591636 . P Para o ponto B:

Page 89: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

89 9j=

BUH�,,,/�A +

,,K,,.�.,Á_ +

+,<.U.,,,/O�P,PX�J

J => 9j =

BUH�,,,/�A +

+,<.U.KH�,,,/�4 =>

9j = BU.,,,/)<,K.U

H�,,,/�4 => �� = 17 316,05781 . P

�� = �* + ��

��= - �.��.�

Q = A . = HIA- .

K.I0H =

����

¡°²= - U.A�P,PX�44

O�P,PX�JJ .,,+,, = - 169,7652726 . P

¡j = - 1 018,591636 . P - 169,7652726 . P => �� = - 1 188,356909 . P No ponto B, a força P em Vy e o torque T apresentam o mesmo sentido. Logo, devem ter o mesmo sinal que, no caso, deve ser o de T, que já foi convencionado negativo no início dos cálculos. Como as tensões foram maiores no ponto B, utiliza-se esses valores pra o círculo de Mohr.

9^ = +.,0+<,/.B+.+,4.�),

- = 8,658028905 . �7� . P R = ¡j¨á© = ª�8,658028905. 100. P�- +�1188,356909. P�- = 8,73920229 . 103 . P

Page 90: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

90

9j¨á© = 9^ + R = 17,3972312 . 103 . P 60 . 106 = 8,73920229 . 103 . P => P = 6 865,615191 N (não serve) 90 . 106 = 17,3972312 . 103 . P => P = 5 173,236992 N = Padm

Resp da lista: 5199 N 45) Sabendo-se que o tubo estrutural mostrado tem uma espessura da parede uniforme de 6 mm, determinar a tensão de cisalhamento em cada um dos três pontos indicados (a, b e c).

Vy = - 40 000 N

Posição da L.N.: yi = ys = 30 mm

Iz = +,,.�<,�4

+- - BB.�KB�4

+- = 988 992 . �78�� m4

T = 40 000 . 0,047 = 1 880 N.m

�*= *

�o.#� = +BB,

-.,,,,<.,,,GK.,,,/K = 30 864 197,53 Pa

Para o ponto a:

�� = �ÃÄ + �*

�ÃÄ = - ���.�

b = 0,006 . 2 = 0,012 m

Q = A’ . Å′

Å′ = -.,,,,<.,,,0,.,,,+/),,,BB.,,,,<.,,,-.

-.,,,,<.,,,0,),,,BB.,,,,< = 0,022135135 m

Q = (2.0,006.0,030 + 0,088.0,006) . 0,022135135 = 19,65599988 . �78� m³

¡u = - 8K,,,,.+G,<//GGGBB.+,?]

GBBGG-.+,?@A.,,,+- + 30 864 197,53 = 97 113 469,11 Pa

Page 91: Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02

Adriano Alberto

91

Para o ponto b:

�� = �ÃÄ + �*

�ÃÄ = - ���.�

b = 0,006 . 2 = 0,012 m

Q = A’ . Å′

Å′ = 0,027 m

Q = (0,100. 0,006) . 0,027 = 16,2 . �78� m³

¡­ = - 8K,,,,.+<,-.+,?]GBBGG-.+,?@A.,,,+- + 30 864 197,53 = 85 465 245,87 Pa

Para o ponto c:

�{ = �ÃÇ + �* => ¡� = 0 + ¡¯ => �{ = 30 864 197,53 Pa

45) τa = 97,1 MPa τb = 85,5 MPa τc = 30,9 MPa