93
String Searching Algorithms String Searching Algorithms Problem Description Problem Description two strings P and T over the same alphabet , mine whether P occurs as a substring in T (or in which position(s) P occurs as a substring in T). trings P and T are called pattern and target ctively. Adapted from G.Plaxton]

String searching

Embed Size (px)

DESCRIPTION

string searching algorithms. Given two strings P and T over the same alphabet E, determine whether P occurs as a substring in T (or find in which position(s) P occurs as a substring in T). The strings P and T are called pattern and target respectively.

Citation preview

Page 1: String searching

String Searching AlgorithmsString Searching AlgorithmsProblem DescriptionProblem Description

Given two strings P and T over the same alphabet ,determine whether P occurs as a substring in T (orfind in which position(s) P occurs as a substring in T).

The strings P and T are called pattern and target respectively.

[Adapted from G.Plaxton]

Page 2: String searching

String Searching AlgorithmsString Searching AlgorithmsSome applicationsSome applications

[Adapted from K.Wayne]

Page 3: String searching

String Searching AlgorithmsString Searching AlgorithmsTrivial Approach - AlgorithmTrivial Approach - Algorithm

SimpleMatcher(string P, string T)

n length[T]

m length[P]

for s 0 to n m do

if P[1...m] = T[s+1 ... s+m] then

print s

T(n,m) = (n m + 1) m (1) = (n m)

Page 4: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - IdeaRabin-Karp Algorithm - Idea

Pattern - P[1m]Target - T[1n]

p = P[m] + 10 P[m–1] + 100 P[m–2] + + 10m P[1]

for s = 0 to n – m:

ts = T[s+m] + 10 T[s+m–1] + 100 T[s+m–2] + + 10m T[s+1]

P matches T at position i if and only if p = ti

Page 5: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - IdeaRabin-Karp Algorithm - Idea

p = P[m] + 10 P[m–1] + 100 P[m–2] + + 10m P[1]

p = P[m] + 10 (P[m–1] + 10 (P[m–2] + + 10 (P[2] + 10 P[1]))))

t0 = T[m] + 10 T[m–1] + 100 T[m–2] + + 10m T[1]

t0 = T[m] + 10 (T[m–1] + 10 (T[m–2] + + 10 (T[2] + 10 T[1]))))

ts+1 = 10 (ts – 10m–1 T[s+1]) + T[s+m+1]

Page 6: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - Example Rabin-Karp Algorithm - Example 11

T = 289462340372392345P = 234

p = 234

t = 289, 894, 946, 462, 623, 234, 340, 403, 37, 372, 723, 239, 392, 923, 234, 345

Page 7: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - ProblemRabin-Karp Algorithm - Problem

What to do, if p is too large to be stored as integer data type?

(The simplest) solution:

Use p mod q and ti mod q, instead of p and ti

If p mod q ti mod q no match is possible at position i

If p mod q = ti mod q we have to check for match explicitly

Page 8: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - Rabin-Karp Algorithm - AlgorithmAlgorithmRabinKarpMatcher(string P, string T, integer d, integer q)

n length[T]; m length[P]h dm–1 mod qp 0; t0 0

for i 1 to m dop (d p + P[i]) mod qt0 (d t0 + T[i]) mod q

for s 0 to n – 1 doif p = ts then

if P[1...m] = T[s+1 ... s+m] thenprint s

if s < n – 1 thents (d (ts – T[s+1] h) + T[s+m+1]) mod q

Page 9: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - Example Rabin-Karp Algorithm - Example 22

T = 289462340372392345P = 234q = 5

p = 234p mod q = 4

t = 289, 894, 946, 462, 623, 234, 340, 403, 37, 372, 723, 239, 392, 923, 234, 345

t mod q = 4, 4, 1, 2, 3, 4, 0, 3, 2, 2, 3, 4, 2, 3, 4, 0

Page 10: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - Rabin-Karp Algorithm - generalizationgeneralization

Instead of calculating numbers mod q, we can use an arbitraryhash function

Page 11: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - Rabin-Karp Algorithm - ComplexityComplexity

[Adapted from T.Ralphs]

Page 12: String searching

String Searching AlgorithmsString Searching AlgorithmsRabin-Karp Algorithm - Rabin-Karp Algorithm - ComplexityComplexity

Worst case:

T(n,m) = (n m + 1) m (1) = (n m)

Average case:

number of correct matches - vnumber of incorrect matches - n/q

T(n,m) = (n + m) + (m(v + n/q))

If v is small and m q, then T(n,m) = (n + m)

Page 13: String searching

String Searching AlgorithmsString Searching AlgorithmsTwo dimensional pattern Two dimensional pattern matchingmatching

[Adapted from M.Crochemore,T.Lecroq]

Page 14: String searching

String Searching AlgorithmsString Searching AlgorithmsTwo dimensional pattern Two dimensional pattern matchingmatching

[Adapted from M.Crochemore,T.Lecroq]

Page 15: String searching

String Searching AlgorithmsString Searching AlgorithmsKnuth-Morris-Pratt Algorithm - Knuth-Morris-Pratt Algorithm - IdeaIdea

[Adapted from A.Cawsey]

Page 16: String searching

String Searching AlgorithmsString Searching AlgorithmsKnuth-Morris-Pratt Algorithm - Knuth-Morris-Pratt Algorithm - Some historySome history

[Adapted from K.Wayne]

Page 17: String searching

String Searching AlgorithmsString Searching AlgorithmsKnuth-Morris-Pratt Algorithm - Knuth-Morris-Pratt Algorithm - IdeaIdeaT = gadji beri bimba glandridiP = gadjama

g a d j i b e r i b i m b a g l a n d r i d i

g a d j a m a

g a d j i b e r i b i m b a g l a n d r i d i

g a d j a m a

Page 18: String searching

String Searching AlgorithmsString Searching AlgorithmsKnuth-Morris-Pratt Algorithm - Knuth-Morris-Pratt Algorithm - IdeaIdeaT = gadjama gramma beridaP = gaga

g a d j a m a g r a m m a b e r i d a

g a g a

g a d j a m a g r a m m a b e r i d a

g a g a

Page 19: String searching

String Searching AlgorithmsString Searching AlgorithmsKnuth-Morris-Pratt Algorithm - Knuth-Morris-Pratt Algorithm - IdeaIdea

For each position q = 1, , m in P compute the number of positions by which pattern can be advanced, if a mismatch has been previously detected in q-th position.

Page 20: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - AlgorithmKMP - Algorithm

KnuthMorrisPrattMatcher(string P, string T)n length[T]m length[P] PrefixFunction(P)q 0for i 1 to n do

while q > 0 & P[q+1] T[i] do q [q]

if P[q+1] = T[i] thenq q + 1

if q = m then print i m q [q]

Page 21: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix FunctionKMP - Prefix Function

A << B - A is prefix of B, e.g. ab << abacae

A >> B - A is suffix of B, e.g. ae >> abacae

Ps - initial substring of P of length s

sP - terminal substring of P of length s

Prefix function:

: {1 ,2, , m} {0, 1, 2, , m–1}

[q] = max {k : k < q & Pk >> Pq}

Page 22: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix FunctionKMP - Prefix Function

[q] = max {k : k < q & Pk >> Pq}

[q] is the length of the longest prefix of P that is a propersuffix of Pq.

If a mismatch is detected at position q, then patterncan be advanced by q – [q] positions.

Page 23: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - ExampleKMP - Prefix Function - Example

[q] = max {k : k < q & Pk >> Pq}

[q] is the length of the longest prefix of P that is a propersuffix of Pq.

P = abracadabra

= 0,0,0,1,0,1,0,1,2,3,4

Page 24: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - AlgorithmAlgorithmPrefixFunction(string P)

m length[P][1] 0 k 0for q 2 to m do

while k > 0 & P[k+1] P[q] do k [k]

if P[k+1] = P[q] thenk k + 1

[q] kreturn

Page 25: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - ComplexityKMP - Complexity

KnuthMorrisPrattMatcher(string P, string T)n length[T]m length[P] PrefixFunction(P)q 0for i 1 to n do

while q > 0 & P[q+1] T[i] do q [q]

if P[q+1] = T[i] thenq q + 1

if q = m then print i m q [q]

(n) times

In worst case (m) times

Thus T(n,m) = O(nm)...

Page 26: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Complexity KMP - Complexity

T(n,m) = TP(m) + n TWhile(m) = O(n m)?

• q value are increased at most n times

• always q 0

Thus, q can not be decreased more than n times, i.e.while loop can be executed no more than n times.

T(n,m) = TP(m) + n TWhile(m) = TP(m) + (n)

KnuthMorrisPrattMatcher(string P, string T)n length[T]m length[P] PrefixFunction(P)q 0for i 1 to n do

while q > 0 & P[q+1] T[i] do q [q]

if P[q+1] = T[i] thenq q + 1

if q = m then print i m

q [q]

Page 27: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - CorrectnessCorrectness

[q] = max {k : k < q & Pk >> Pq}

[q] is the length of the longest prefix of P that is a propersuffix of Pq.

We define : 0[q] = q, i+1[q] = [i[q]]

*[q] = {q, [q], 2[q], , t[q] = 0}

Page 28: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - CorrectnessCorrectness

0[q] = q, i+1[q] = [i[q]]

*[q] = {q, [q], 2[q], , t[q] = 0}

Lemma

Let P be a pattern of length m with prefix function .Then, for q = 1,2, , m we have *[q] = {k : Pk >> Pq}

Page 29: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - CorrectnessCorrectness

Lemma

Let P be a pattern of length m with prefix function .For q = 1,2, , m, if [q] > 0, then [q] – 1 *[q–1].

Page 30: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - CorrectnessCorrectness

Corollary

Let P be a pattern of length m with prefix function .For q = 2, , m:

For q = 2, , m we define Eq–1 *[q–1] by

Eq–1 = {k : k *[q–1] & P[k+1] = P[q]}

[q] =0, if Eq–1 =

1 + max{k Eq–1}, if Eq–1

Page 31: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - CorrectnessCorrectnessWe consecutively compute [1], [2], , [m]

[1] = 0

For k > 1:

if P[k] = P[[k–1] + 1], then [k] = [k–1] + 1,

else, if P[k] = P[[k–2] + 1], then [k] = [[k–1]] + 1,

else, if P[k] = P[[k–3] + 1], then [k] = [[[k–1]]] + 1,

Page 32: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Prefix Function - KMP - Prefix Function - Complexity Complexity

TP(m) = const + m TWhile(m) = O(m2)

• k value are increased at most n times

• always k 0

Thus, k can not be decreased more than n times, i.e.while loop can be executed no more than n times.

TP(m) = const + m TWhile(m) = (m)

PrefixFunction(string P)m length[P][1] 0 k 0for q 2 to m do

while k > 0 & P[k+1] P[q] do k [k]

if P[k+1] = P[q] thenk k + 1

[q] kreturn

Page 33: String searching

String Searching AlgorithmsString Searching AlgorithmsKMP - Complexity KMP - Complexity

T(n,m) = TP(m) + n TWhile(m) = TP(m) + (n) =(m) + (n) =(m + n)

PrefixFunction(string P)m length[P][1] 0 k 0for q 2 to m do

while k > 0 & P[k+1] P[q] do k [k]

if P[k+1] = P[q] thenk k + 1

[q] kreturn

KnuthMorrisPrattMatcher(string P, string T)n length[T]m length[P] PrefixFunction(P)q 0for i 1 to n do

while q > 0 & P[q+1] T[i] do q [q]

if P[q+1] = T[i] thenq q + 1

if q = m then print i m

q [q]

Page 34: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore Algorithm - Idea 1Boyer-Moore Algorithm - Idea 1

T = gadji beri bimba glandridiP = lonni

g a d j i b e r i b i m b a g l a n d r i d i

l o n n i

g a d j i b e r i b i m b a g l a n d r i d i

l o n n i

Bad character heuristic

Page 35: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore Algorithm - Idea 2Boyer-Moore Algorithm - Idea 2

T = gadji beri bimba glandridiP = ajiji

g a d j i b e r i b i m b a g l a n d r i d i

a j i j i

g a d j i b e r i b i m b a g l a n d r i d i

a j i j i

Good suffix heuristic

Page 36: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Bad Character Boyer-Moore - Bad Character FunctionFunction

Bad character function:

: {0,1,2, , m}

[s] = max {k : P[k] = s} (if such k exists)

[s] = 0 (otherwise)[Adapted from M.Goodrich, R.Tamassia]

Page 37: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Bad Character Boyer-Moore - Bad Character FunctionFunction

BadCharacterFunction(string P, set )m length[P]for a do

[a] 0for j 1 to m do

[P[j]] jreturn

TB(m,||) = (m + ||)

Page 38: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Suffix FunctionBoyer-Moore - Suffix Function

Suffix function:

: {1, 2, , m} {1, 2, , m}

[j] = m – max {k : k < m & jP >> Pk PK >> jP}

[Adapted from R.Lee, C.Lu]

Page 39: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Suffix FunctionBoyer-Moore - Suffix Function

[Adapted from R.Lee, C.Lu]

Page 40: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Suffix FunctionBoyer-Moore - Suffix Function

[Adapted from R.Lee, C.Lu]

Page 41: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Suffix FunctionBoyer-Moore - Suffix Function

[Adapted from R.Lee, C.Lu]

Page 42: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore - Suffix FunctionBoyer-Moore - Suffix Function

SuffixFunction(string P)m length[P] PrefixFunction(P) P’ Reverse(P); ’ PrefixFunction(P’)for j 0 to m do

[j] m – [m]for l 1 to m do

j m – ’[l]if [j] > l – ’[l] then

[j] l – ’[l]return

TS(m) = (m)

Page 43: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore Algorithm - Boyer-Moore Algorithm - AlgorithmAlgorithmBoyerMooreMatcher(string P, string T, set )

n length[T]m length[P] LastOccurenceFunction(P,m, ) GoodSuffixFunction(P,m)s 0while s n m do

j mwhile j > 0 & P[j] = T[s + j] do

j j 1if j = 0 then

print ss s + [0]

else s s + max( [j], j [T[s + j]])

Page 44: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore Algorithm - Boyer-Moore Algorithm - ComplexityComplexity

TB(m,||) = (m + ||)

TS(m) = (m)

T(n,m,||) = TB(m,||) + TS(m) + n TWhile(m) =

= (m + ||) + (m) + O(n m) = O(|| + n m)?

It can be shown that

T(n,m,||) = (|| + n + m)

Page 45: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore Algorithm - Boyer-Moore Algorithm - ComplexityComplexity

It can be shown that:

T(n,m,||) = (|| + n m) using only bad character rule

T(n,m,||) = (|| + n + m) using only good suffix rule, ifthe pattern does not occur in text

T(n,m,||) = (|| + n m) using only good suffix rule, ifthe pattern does occur in text

Page 46: String searching

String Searching AlgorithmsString Searching AlgorithmsBoyer-Moore Algorithm - Boyer-Moore Algorithm - ComplexityComplexity

With Galil's modification:

T(n,m,||) = (|| + n + m) using only good suffix rule

There is also a similar Apostolico-Giancarlo algorithm that achieves (|| + n + m) time bound (which is much easier toprove)

On average the number of character comparisons is n/m (for large ||)

Page 47: String searching

String Searching AlgorithmsString Searching AlgorithmsAlgorithms - Complexity Algorithms - Complexity comparisoncomparison

[Adapted from H.Løvengreen]

Page 48: String searching

String Searching AlgorithmsString Searching AlgorithmsAlgorithms - Efficiency Algorithms - Efficiency comparisoncomparison

n=5000

[Adapted from I.Spence]

Page 49: String searching

String Searching AlgorithmsString Searching AlgorithmsComplexity - Lower BoundComplexity - Lower Bound

Theorem (Rivest)

Any string searching algorithm has worst-case time complexity

T(n,m) = (m + n)

Page 50: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - The problemSuffix Trees - The problem

Theorem (Rivest)

Any string searching algorithm has worst-case time complexity

T(n,m) = (m + n)

Despite this, we probably can do better!(Well, for slightly different problem...)

[Adapted from P.Kilpeläinen]

Page 51: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix TreesSuffix Trees

[Adapted from P.Kilpeläinen]

Page 52: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix TreesSuffix Trees

[Adapted from P.Kilpeläinen]

Page 53: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - ExampleSuffix Trees - Example

[Adapted from P.Kilpeläinen]

Page 54: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Do they always Suffix Trees - Do they always exist?exist?

[Adapted from P.Kilpeläinen]

Page 55: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Application to Suffix Trees - Application to string matchingstring matching

[Adapted from P.Kilpeläinen]

Page 56: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - ConstructionSuffix Trees - Construction

[Adapted from P.Kilpeläinen]

Page 57: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - ConstructionSuffix Trees - Construction

[Adapted from P.Kilpeläinen]

Page 58: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Construction - Suffix Trees - Construction - ExampleExample

[Adapted from P.Kilpeläinen]

Page 59: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Construction - Suffix Trees - Construction - ExampleExample

[Adapted from P.Kilpeläinen]

Page 60: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Construction - Suffix Trees - Construction - ExampleExample

[Adapted from P.Kilpeläinen]

Page 61: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Construction - Suffix Trees - Construction - ComplexityComplexity

[Adapted from P.Kilpeläinen]

Page 62: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Compact Suffix Trees - Compact representationrepresentation

[Adapted from P.Kilpeläinen]

Page 63: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Compact Suffix Trees - Compact representation - Examplerepresentation - Example

[Adapted from P.Kilpeläinen]

Page 64: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Some historySuffix Trees - Some history

[Adapted from P.Kilpeläinen]

Page 65: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithmalgorithm

[Adapted from P.Kilpeläinen]

Page 66: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Implicit treesSuffix Trees - Implicit trees

[Adapted from P.Kilpeläinen]

Page 67: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Implicit treesSuffix Trees - Implicit trees

[Adapted from P.Kilpeläinen]

Page 68: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Implicit treesSuffix Trees - Implicit trees

[Adapted from P.Kilpeläinen]

Page 69: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - String pathsSuffix Trees - String paths

[Adapted from P.Kilpeläinen]

Page 70: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithmalgorithm

[Adapted from P.Kilpeläinen]

Page 71: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - ExtensionsSuffix Trees - Extensions

[Adapted from P.Kilpeläinen]

Page 72: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - ExtensionsSuffix Trees - Extensions

[Adapted from P.Kilpeläinen]

Page 73: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Extensions - Suffix Trees - Extensions - ExampleExample

[Adapted from P.Kilpeläinen]

Page 74: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithm - Complexityalgorithm - Complexity

[Adapted from P.Kilpeläinen]

Page 75: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithm - Complexityalgorithm - Complexity

[Adapted from P.Kilpeläinen]

Page 76: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithm - Complexityalgorithm - Complexity

[Adapted from P.Kilpeläinen]

Page 77: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Suffix linksSuffix Trees - Suffix links

[Adapted from P.Kilpeläinen]

Page 78: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Suffix linksSuffix Trees - Suffix links

[Adapted from P.Kilpeläinen]

Page 79: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Suffix linksSuffix Trees - Suffix links

[Adapted from P.Kilpeläinen]

Page 80: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 81: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 82: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 83: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 84: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 85: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 86: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 87: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 88: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Speeding upSuffix Trees - Speeding up

[Adapted from P.Kilpeläinen]

Page 89: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Eliminating Suffix Trees - Eliminating extensionsextensions

[Adapted from P.Kilpeläinen]

Page 90: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Single phase Suffix Trees - Single phase algorithmalgorithm

[Adapted from P.Kilpeläinen]

Page 91: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithm - Complexityalgorithm - Complexity

[Adapted from P.Kilpeläinen]

Page 92: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithm - Complexityalgorithm - Complexity

[Adapted from P.Kilpeläinen]

Page 93: String searching

String Searching AlgorithmsString Searching AlgorithmsSuffix Trees - Ukkonen's Suffix Trees - Ukkonen's algorithm - Complexityalgorithm - Complexity

[Adapted from P.Kilpeläinen]