42
©2015 Waters Corporation 1 Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products using UltraPerformance Convergence Chromatography™ (UPC 2 ®) with MS Detection Jane Cooper Senior Applications Scientist Chemical Materials Business Operations Wilmslow, UK

Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

Embed Size (px)

Citation preview

Page 1: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 1

Analysis of Allergens in Perfumes Cosmetics and

Personal Care Products using UltraPerformance

Convergence Chromatographytrade (UPC2reg) with MS

Detection

Jane Cooper

Senior Applications Scientist

Chemical Materials Business Operations

Wilmslow UK

copy2015 Waters Corporation 2

Introduction

Background

ndashFragrances

ndashCosmetic Allergens

o Regulations

o Current methodologies

ndashUPC2

o Advantages over existing technologies

o Interfacing with MS detection

Summary of method development and results achieved using UPC2 with MS detection

Questions

copy2015 Waters Corporation 3

Fragrances

Fragrances are complex combinations of natural

andor man-made substances added to many

consumer products ndash to give them a distinctive smell

ndash impart a pleasant odour

ndash mask the inherent smell of some ingredients

ndash enhance the experience of the product user

ndash create important olfactory benefits that are

o ubiquitous tangible and valued

ndash used to communicate complex ideas such as

o creating mood

o signalling cleanliness

o freshness

o softness

o alleviating stress

o creating well-being

o trigger allure and attraction

copy2015 Waters Corporation 4

Fragrances

In most types of cosmetics and skin care products including

ndash Perfumes

ndash Shampoos

ndash Conditioners

ndash Moisturizers

ndash Facial cosmetics

ndash Deodorants

gt5000 different fragrances present

copy2015 Waters Corporation 5

Cosmetic Allergens

ndash An abnormal reaction of the body to a previously

encountered allergen introduced by

bull Inhalation

bull Ingestion

bull Skin contact

o Symptoms

bull Itchy eyes

bull runny nose

bull wheezing

bull skin rash

bull diarrhea

copy2015 Waters Corporation 6

Cosmetic Allergens

ndash Regulations

o EU Cosmetic Regulations (12232009)

bull Concentration exceeds 0001 in leave-on products

(10 mgkg) (eg a moisturiser) and 001 (100

mgkg) in rinse-off products (eg a shampoo)

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 2: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 2

Introduction

Background

ndashFragrances

ndashCosmetic Allergens

o Regulations

o Current methodologies

ndashUPC2

o Advantages over existing technologies

o Interfacing with MS detection

Summary of method development and results achieved using UPC2 with MS detection

Questions

copy2015 Waters Corporation 3

Fragrances

Fragrances are complex combinations of natural

andor man-made substances added to many

consumer products ndash to give them a distinctive smell

ndash impart a pleasant odour

ndash mask the inherent smell of some ingredients

ndash enhance the experience of the product user

ndash create important olfactory benefits that are

o ubiquitous tangible and valued

ndash used to communicate complex ideas such as

o creating mood

o signalling cleanliness

o freshness

o softness

o alleviating stress

o creating well-being

o trigger allure and attraction

copy2015 Waters Corporation 4

Fragrances

In most types of cosmetics and skin care products including

ndash Perfumes

ndash Shampoos

ndash Conditioners

ndash Moisturizers

ndash Facial cosmetics

ndash Deodorants

gt5000 different fragrances present

copy2015 Waters Corporation 5

Cosmetic Allergens

ndash An abnormal reaction of the body to a previously

encountered allergen introduced by

bull Inhalation

bull Ingestion

bull Skin contact

o Symptoms

bull Itchy eyes

bull runny nose

bull wheezing

bull skin rash

bull diarrhea

copy2015 Waters Corporation 6

Cosmetic Allergens

ndash Regulations

o EU Cosmetic Regulations (12232009)

bull Concentration exceeds 0001 in leave-on products

(10 mgkg) (eg a moisturiser) and 001 (100

mgkg) in rinse-off products (eg a shampoo)

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 3: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 3

Fragrances

Fragrances are complex combinations of natural

andor man-made substances added to many

consumer products ndash to give them a distinctive smell

ndash impart a pleasant odour

ndash mask the inherent smell of some ingredients

ndash enhance the experience of the product user

ndash create important olfactory benefits that are

o ubiquitous tangible and valued

ndash used to communicate complex ideas such as

o creating mood

o signalling cleanliness

o freshness

o softness

o alleviating stress

o creating well-being

o trigger allure and attraction

copy2015 Waters Corporation 4

Fragrances

In most types of cosmetics and skin care products including

ndash Perfumes

ndash Shampoos

ndash Conditioners

ndash Moisturizers

ndash Facial cosmetics

ndash Deodorants

gt5000 different fragrances present

copy2015 Waters Corporation 5

Cosmetic Allergens

ndash An abnormal reaction of the body to a previously

encountered allergen introduced by

bull Inhalation

bull Ingestion

bull Skin contact

o Symptoms

bull Itchy eyes

bull runny nose

bull wheezing

bull skin rash

bull diarrhea

copy2015 Waters Corporation 6

Cosmetic Allergens

ndash Regulations

o EU Cosmetic Regulations (12232009)

bull Concentration exceeds 0001 in leave-on products

(10 mgkg) (eg a moisturiser) and 001 (100

mgkg) in rinse-off products (eg a shampoo)

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 4: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 4

Fragrances

In most types of cosmetics and skin care products including

ndash Perfumes

ndash Shampoos

ndash Conditioners

ndash Moisturizers

ndash Facial cosmetics

ndash Deodorants

gt5000 different fragrances present

copy2015 Waters Corporation 5

Cosmetic Allergens

ndash An abnormal reaction of the body to a previously

encountered allergen introduced by

bull Inhalation

bull Ingestion

bull Skin contact

o Symptoms

bull Itchy eyes

bull runny nose

bull wheezing

bull skin rash

bull diarrhea

copy2015 Waters Corporation 6

Cosmetic Allergens

ndash Regulations

o EU Cosmetic Regulations (12232009)

bull Concentration exceeds 0001 in leave-on products

(10 mgkg) (eg a moisturiser) and 001 (100

mgkg) in rinse-off products (eg a shampoo)

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 5: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 5

Cosmetic Allergens

ndash An abnormal reaction of the body to a previously

encountered allergen introduced by

bull Inhalation

bull Ingestion

bull Skin contact

o Symptoms

bull Itchy eyes

bull runny nose

bull wheezing

bull skin rash

bull diarrhea

copy2015 Waters Corporation 6

Cosmetic Allergens

ndash Regulations

o EU Cosmetic Regulations (12232009)

bull Concentration exceeds 0001 in leave-on products

(10 mgkg) (eg a moisturiser) and 001 (100

mgkg) in rinse-off products (eg a shampoo)

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 6: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 6

Cosmetic Allergens

ndash Regulations

o EU Cosmetic Regulations (12232009)

bull Concentration exceeds 0001 in leave-on products

(10 mgkg) (eg a moisturiser) and 001 (100

mgkg) in rinse-off products (eg a shampoo)

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 7: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 7

Current methodologies

GC-MS (~30-40 min)

HS-GC-MS (~30-40 min)

GC-GC-MS (~30-40 min)

LC-UV (~40 min)

Limitations Considerations of any method to be used for Allergen analysis include

ndash specificity

o allergens are small molecules (ions with low mz)

o many isobaric (same formula)

o with nonspecific fragment (close structure)

ndash resolution between analytes between isomers and with matrices components

ndash sensitivity at least 1 ppm (greater preferred)

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 8: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 8

Allergens (structures)

Regulated Allergens2

1

Amyl Cinnamaldehyde

2

Benzyl alcohol

3

Cinnamyl alcohol

4

Citral CAS 122-40-7 (C14H18O) CAS 100-51-6 (C7H8O) CAS 104-54-1 (C9H10O) CAS 5392-40-5 (C10H16O)

5

Eugenol

6

Hydroxy-citronellal

7

Isoeugenol

8

Amyl cinnamyl alcohol

CAS 97-54-0 (C10H12O2) CAS 107-75-5 (C10H18O2) CAS97-54-1 (C10H12O2) CAS 101-85-9 (C14H20O)

9

Benzyl salycilate

10

Cinnamaldehyde

11

Coumarin

12

Geraniol

CAS 118-58-1 (C14H12O3) CAS 104-55-2 (C9H8O) CAS 94-64-5 (C9H6O2) CAS 106-24-1 (C10H18O)

13

Lyral

14

Anisyl alcohol

15

Benzyl cinnamate

16

Farnesol CAS 31906-04-4 (C13H22O2) CAS 105-13-5 (C7H8O2) CAS 103-41-3 (C16H14O2) CAS 4602-84-0 (C15H26O)

17

Lilial

18

Linalool

19

Benzyl benzoate

20

Citronellol

CAS 80-54-6 (C14H20O) CAS 78-70-6 (C10H18O) CAS 120-51-4 (C14H12O2) CAS 106-22-9 (C10H20O)

21

Hexyl cinnamaldehyde

22

Limonene

23

Methyl heptine carbonate

24

Alpha isomethyl ionone

CAS 101-86-0 (C15H20O) CAS 5989-27-5 (C10H16) CAS 111-12-6 (C9H14O2) CAS 127-51-5 (C14H22O)

[Type a quote from the document or

the summary of an interesting point

You can position the text box

anywhere in the document Use the

Text Box Tools tab to change the

formatting of the pull quote text box]

Regulated Cosmetic

allergens considered

as regulated under

current EU Cosmetic

Regulations (12232009)

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 9: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 9

Additional compounds considered (structures)

Six additional compounds were

also analyzed

Four cosmetic allergens not

yet regulated under current

EU Cosmetic Regulations

(12232009)

Two compounds that are

potential carcinogens

(methyl eugenol and 4-

allyl anisole)

Additional compounds considered

25

Atranol

26

Chloratranol

27

Methyl-2-nonynoate CAS 526-37-4 (C8H8O3) CAS 57074-21-2 (C8H7ClO3) CAS 111-80-8 (C10H16O2)

28

Methyl eugenol

29

Phenylacetaldehyde

30

4-Allyl anisole

CAS 93-15-2 (C11H14O2)

CAS 122-78-1 (C8H8O)

CAS 140-67-0 (C10H12O)

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 10: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 10

Allergens

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 11: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 11

Convergence Chromatography (UPC2)

Based on the principles of normal-phase LC

Uses CO2 as the primary mobile phase

Choice to add a co-solvent

With the ease-of-use of reversed-phase LC

With the separation power of Normal Phase

chromatography

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 12: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 12

Convergence Chromatography (UPC2) Analyses a Diverse range of compounds

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 13: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 13

The UPC2 Advantage

ndash Breakthrough technique

o Expands the boundaries of reversed phase LC and GC

o Replacement for normal phase LC

ndash Facilitates analysis of mixtures with components of wide polarity

range

ndash Separate and characterize compounds that challenge GC and LC

ndash Eliminate need to work with toxic organic solvents (greener

technology)

Why UPC2 over existing technology

radic

radic

radic

radic

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 14: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 14

Sample manager Isocratic

Solvent Manager

QDa or MS

Binary Solvent manager

Convergence Manager

PDA Detector

ELSD

Column Manager

(30S)

Convergence Chromatography (UPC2)

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 15: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 15

Convergence Chromatography (UPC2)

Xevo TQD UPC2

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 16: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 16

Interfacing UPC2 with MS detection

MS splitter

From the Column manager or PDA

Isocratic Solvent Manager

To the convergence Manager

To the MS

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 17: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 17

Universal Source Platform

Electrospray

Ionization (ESI)

Atmospheric

Pressure

Chemical

Ionization (APCI)

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 18: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 18

Interfacing UPC2 with MS detection

Electrospray Ionization (ESI)

ndash An electrically charged field is used to generate charged droplets

then analyte ions are formed by evaporation prior to MS analysis

ndash The addition of a protonation source such as formic acid to the

mobile phases to enhance ionization and increase sensitivity

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 19: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 19

Interfacing UPC2 with MS detection

Atmospheric Pressure Chemical Ionization (APCI)

ndash The solvent present acts as chemical ionization reagent gas in order

to ionize the sample

ndash The sample in the gas phases is then ionized by corona discharge

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 20: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 20

Parameters considered

UPC2 column

Modifier

Pressure

Gradient

Flow rate

Sample diluent

Temperature

Make-up solvent flow

Ionization mode

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 21: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 21

Preliminary Results

Initial screen of 8 UPC2 columns

o ACQUITY UPC2 BEH

o ACQUITY UPC2 CSH Flourophenyl

o ACQUITY UPC2 2-EP

o ACQUITY UPC2 HSS C18 SB

o ACQUITY UPC2 Torus 2-PIC (2-picolylamine)

o ACQUITY UPC2 Torus 1-AA (1-aminoanthracene)

o ACQUITY UPC2 Torus Diol (High Density Diol)

o ACQUITY UPC2 Torus DEA (Diethylamine)

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 22: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 22

BEH 2-Ethylpyridine [2-EP]

ndash Exhibits good retention peak shape and selectivity properties without the use of additives

BEH

ndash Heightens interaction with polar analyte functional groups when compared to the less polar surface of BEH 2-EP

CSH Fluoro-Phenyl

ndash Provides good retention for weak bases and alternate elution orders for acidic and neutral compounds via a significantly different selectivity

Viridisreg Hybrid SFC Chemistries

Two particles Ethylene Bridged Hybrid (BEH) in 17 amp 5 microm Charged Surface Hybrid (CSH) in 17 amp 5 microm

Multiple dimensions (5 microm only)

50 75 100 150 250 mm length 21 30 46 mm ID

VanGuardtrade pre-columns

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 23: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 23

Four Unique Column Chemistries

ACQUITY UPC2 Torus 2-PIC

ndash 2-picolylamine

ACQUITY UPC2 Torus DEA

ndash Diethylamine

ACQUITY UPC2 Torus DIOL

ndash High density diol

ACQUITY UPC2 Torus 1-AA

ndash 1-aminoanthracene

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 24: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 24

Preliminary Results

UPC2 conditions (column screening conditions)

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Columns BEH CSH Flourophenyl 2-EP 2-PIC 1-AA

Diol DEA HSS C18 SB

Mobile phase A CO2

Mobile phase B Ethanol

Isocratic Solvent Manager Methanol (05 mLmin)

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 25: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 25

Column screening

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 26: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 26

Modifier solvents screened

o Ethanol

o Methanol

o Isopropyl alcohol (IPA)

o Acetonitrile

Preliminary Results

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 27: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 27

Modifier screening

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 28: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 28

Time100 200 300 400 500 600 700

5000

10000

15000

20000462

Methods

UPC2 conditions

CCM back pressure 1500 psi

Sample temp 15 oC

Column temp 60 oC

Injection volume 3 microL

Column ACQUITY UPC2 C18 HSS

30 mm x 150 mm 18 microm

Mobile phase A CO2

Mobile phase B Methanol (01 Formic Acid)

Isocratic Solvent Manager Methanol (04 mLmin)

Time

(min)

Flow

(mLmin)

A

(CO2) B Curve

1 Initial 15 995 05 Initial

2 45 15 854 146 6

3 46 15 80 20 6

4 5 15 80 20 6

5 505 15 995 05 6

6 7 15 995 05 6

20 CO2 B

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 29: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 29

Method Information Detectors

MS system Xevo TQD

Ionization mode APCI (positive and negative)

Corona voltage 10 microA

Source temp 150 oC

APCI Probe temp 600 oC

Desolvation gas 1000 Lhr

Cone gas 15 Lhr

Acquisition Multiple Reaction Monitoring

(MRM)

Method Information MS

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 30: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 30

MRM chromatograms

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 31: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 31

Method Information Detectors

Method Information MS

No Chemical Substance Retention time

(min) isomers

APCI (+-)

Cone Voltage

(V) Transition

Collision energy

1 Amyl Cinnamaldehyde 184 + 30 2030 gt 1290 18

2030 gt 1470 16

2 Benzyl alcohol 186 + 8 1550 gt 910 8

1550 gt 1230 4

3 Cinnamyl alcohol 278 + 25 1330 gt 1850 18

4 Citral 158 + 15 1530 gt 690 6

1530 gt 950 15

5 Eugenol 168 + 20 1651 gt 1240 20

1651 gt 1371 12

6 Hydroxy-citronellal 337 + 18 1710 gt 1110 15

1710 gt 1530 10

7 Isoeugenol 190 + 25 1651 gt 1050 20

1651 gt 1330 20

8 Amyl cinnamyl alcohol 284 + 25 1870 gt 1170

20

1870 gt 1310 16

9 Benzyl salycilate 186 + 15 2290 gt 910 12

2290 gt 1510 12

10 Cinnamaldehyde 175 + 25 1330 gt 550 18

1330 gt 1150 14

11 Coumarine 252 + 40 1470 gt 910 28

1470 gt 1030 23

12 Geraniol 159 + 20 1370 gt 810 14

1370 gt 950 16

13 Lyral 324 + 20 1930 gt 1110 18

1930 gt 1750 12

14 Anisyl alcohol 279 + 40 1210 gt 770 25

1210 gt 780 25

15 Benzyl cinnamate 231 + 25 2210 gt 1050 6

2210 gt 1930 8

16 Farnesol 261276283 + 25 2051 gt 1090 20

2051 gt 1210 20

17 Lilial 231 + 10 2212 gt 909 30

18 Linalool 223 + 20 1370 gt 810 20

1370 gt 950 20

19 Benzyl benzoate 187 + 8 2130 gt 910 8

20 Citronellol 219 + 18 1571 gt 570 10

1571 gt 830 10

21 Hexyl cinnamaldehyde 194 + 30 2174 gt 129 20

2174 gt 147 14

22 Limonene 067 + 20 1370 gt 810 14

1370 gt 950 16

23 Methyl heptine carbonate

072 + 30 1550 gt 670 24

1550 gt 1230 15

24 Alpha isomethyl ionone 165 + 20 2072 gt 1111 20

2072 gt 1231 20

25 Atranol 457 - 18 1510 gt 7894 20

1510 gt 12309 20

26 Chloratranol 290 - 18 1850 gt 12117 20

1850 gt 15699 20

27 Methyl-2-nonynoate 153 + 34 1530 gt 429 22

1530 gt 970 16

28 Methyl eugenol 178 + 25 1790 gt 138 16

1790 gt 164 14

29 Phenylacetaldehyde 070 + 2 1210 gt 569 4

1210 gt 890 10

30 4-Allyl anisole 252 + 30 1469 gt 769 28

1469 gt 909 32

Cosmetic allergens

expected retention times

ionization mode cone

voltages MRM transitions

and associated collision

energy values refer to the quantitation transition

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 32: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 32

Method Information Detectors

Method Information MS

Benzyl salycilate

CAS 118-58-1 (C14H12O3)

Mass = 2282433

GCMS ndash typically 91 mz (EI)

APCI - softer ionization technique

MRM transitions (Precursor gt product ion)

2290 gt 910 mz

2290 gt 1510 mz

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 33: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 33

Calibration Curve

Compound name Cinnamyl Alcohol

Correlation coefficient r = 0999967 r^2 = 0999935

Calibration curve 931955 x + -86289

Response type External Std Area

Curve type Linear Origin Include Weighting Null Axis trans None

Conc-00 20 40 60 80 100 120 140 160 180 200 220 240

Re

sp

on

se

-0

5000

10000

15000

20000

025 to 25ppm

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 34: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 34

Preliminary Results

Sample analysis

ndash Perfume

(10 mgKg)

100 microL perfume + 900 microl

(methanol + 20 mM

Ammonium hydrogen

carbonate)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 35: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 35

Preliminary Results

Sample analysis

ndash Shampoo

(100 mgKg)

ndash 02 g sample add 25 mL

water and 25 mL

(methanol + 20 mM

Ammonium hydrogen

carbonate)

ndash Mixture vortexed for 2

minutes (1600 rpm)

ndash Mixture further mixed in an

ultrasonic bath for 30

minutes

ndash Approximately 1 mL of

extract centrifuged for 5

min (10000 rpm)

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

-000 100 200 300 400

0

Time100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

100 200 300 400

2

100 200 300 400

0

100 200 300 400

0

100 200 300 400

0

Time200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

0

200 300 400 500

3

Methyl eugenol

Cinnamaldehyde

Eugenol

Alpha isomethyl

ionone

Geraniol

Methyl-2-nonynoate

Citral

Limonene

Phenylacetaldehyde

Methyl heptinecarbonate

Hydroxy-citronellal

Lyral

Amyl cinnamylalcohol

Cinnamylalcohol

Anisylalcohol

Coumarine

4-Allyl anisole

Farnesol

Lilial

Benzyl cinnamate

Linalool

Citronellol

Hexylcinnamaldehyde

Isoeugenol

Amyl Cinnamaldehyde

Benzyl alcohol

Benzyl salycilate

Benzyl benzoate

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 36: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 36

Farnesol

2-trans6-cis-Farnesol Synonym 2E6Z-Farnesol

2-cis6-trans-Farnesol Synonym 2Z6E-Farnesol

transtrans-Farnesol Synonym

2E6E-Farnesol

ciscis-Farnesol Synonym 2Z6Z-Farnesol

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 37: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 37

Time230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

230 240 250 260 270 280 290 300 310 320

-0

100

Farnesol in shampoo

Farnesol (shampoo)

05 ppm Farnasol standard (equivalent to 125 mgKg)

Farnesol (shampoo fortified at 10 mgKg)

Major = transtrans Minor = cistrans and transcis Often not seen = ciscis

Transitions 2051 gt 1090 mz 2051 gt 1210 mz

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 38: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 38

Chloratranol and Atranol

Time100 200 300 400 500 600 700 800 900

0

100 200 300 400 500 600 700 800 900

0

457

421

Atranol

Chloratranol

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 39: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 39

Conclusion

Separation by UPC2 is an ideal alternative to both HPLC and GC analysis

Ability to run LC and GC amenable compounds in single analysis

Fast 7 minute analysis of the 24 regulated allergens and 6

additional compounds containing ndash different classes of compounds

ndash different polarities

UPC2 with MS detection offers an orthogonal technique which

enables greater selectivity and specificity compared to either HPLC or GC analysis alone

The developed 7 minute UPC2 method is greater than 6 times

faster than existing HPLC and GC methods with 95 less solvent usage than existing HPLC method

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 40: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 40

Acknowledgments

Waters (France)

ndash Steacutephane Dubant

ndash Freddy Delsenne

Waters (Wilmsow)

ndash Peter Hancock

ndash Michael Jones

ERINI

ndash Ceacuteline Roy

Yves Rocher

ndash Beatrice Grimaud

ndash Isabelle Dubrulle

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 41: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 41

Application Note

720005553en (available on wwwwaterscom)

copy2015 Waters Corporation 42

Any Questions

Page 42: Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products

copy2015 Waters Corporation 42

Any Questions