31
Heterostructure Laser Diodes Both carrier and photon confinements are readily achieved in modern laser by the use of heterostructure devices!

Chapter 5b

Embed Size (px)

DESCRIPTION

Optoelectronics Lecture notes

Citation preview

Page 1: Chapter 5b

Heterostructure Laser Diodes

Both carrier and photon confinements are readily achieved in modern laser by the use of heterostructure devices!

Page 2: Chapter 5b

Heterostructure Laser Diodes

• Fig.7 shows a Double Heterostructure (DH) device based on two junctions between different semiconductor materials with different bandgaps.– Semiconductors are AlGaAs with Eg 2eV

– and GaAs with Eg 1.4eV

• The p-GaAs region is a thin layer (0.1-0.2mm) and constitutes the active layer in which lasing combination takes place– Both p-GaAs and p-AlGaAs are heavily p-type doped and are

degenerate with EF in the valence band.

Page 3: Chapter 5b

Refractiveindex

Photondensity

Activeregion

n ~ 5%

2 eV

Holes in VB

Electrons in CB

AlGaAsAlGaAs

1.4 eV

Ec

Ev

Ec

Ev

(a)

(b)

pn p

Ec

(a) A doubleheterostructure diode hastwo junctions which arebetween two differentbandgap semiconductors(GaAs and AlGaAs).

2 eV

(b) Simplified energyband diagram under alarge forward bias.Lasing recombinationtakes place in the p-GaAs layer, theactive layer

(~0.1 m)

(c) Higher bandgapmaterials have alower refractiveindex

(d) AlGaAs layersprovide lateral opticalconfinement.

(c)

(d)

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

GaAs

Fig.7

Page 4: Chapter 5b

Carrier confinement in DH

• When a sufficiently large forward bias is applied, – Ecof n-AlGaAs moves above Ecof p-GaAs, which leads to a large

injection of electrons in the CB of n-AlGaAs into p-GaAs as shown in Fig.7.

– These electrons are confined to the CB of p-GaAs since there is a barrier DEc between p-GaAs and p-AlGaAs

• Since p-GaAs is a thin layer, the concentration of injected electrons can be increased quickly even with moderate increase in forward current.– This effectively reduces the threshold current for population

inversion or optical gain

Page 5: Chapter 5b

Photon confinement in DH

• AlGaAs has a lower refractive index than that of GaAs– Note: a wider bandgap semiconductor generally has a lower

refractive index• The change in the refractive index defines an optical

dielectric waveguide that confines the photons to the active region of the optical cavity– Thereby reduces photon losses & increases photon concentration– It increases the rate of stimulated emissions

• Both carrier & photon confinement lead to reduction in the threshold current density.

Page 6: Chapter 5b

The structure of DH

• A typical structure of a double heterostructure laser diode is similar to a double heterostructure LED.– The doped layers are grown epitaxially on a

crystalline substrate, which is n-GaAs– It consists of the first layer substrate, n-AlGaAs,

the active p-GaAs layer and the p-AlGaAs layer– There is an additional p-GaAs layer called

contacting layer, next to p-AlGaAs.

Page 7: Chapter 5b

The structure of DH, cont

• The electrodes are attached to the GaAs rather than AlGaAs– This allows better contacting and avoids Schottky junctions

which limits the current• The p- and n-AlGaAs layers provide carrier and optical

confinement in the vertical direction by forming heterojunction with p-GaAs.

• The active layer is p-GaAs – which means that the lasing emission will be in in the range 870-

900nm depending on the doping level• An important feature of this laser diode is the stripe

geometry (stripe contact) on p-GaAs

Page 8: Chapter 5b

Schematic illustration of the the structure of a double heterojunction stripecontact laser diode

Oxide insulator

Stripe electrode

SubstrateElectrode

Active region where J > Jth.(Emission region)

p-GaAs (Contacting layer)

n-GaAs (Substrate)

p-GaAs (Active layer)

Currentpaths

L

W

Cleaved reflecting surfaceEllipticallaserbeam

p-AlxGa

1-xAs (Confining layer)

n-AlxGa

1-xAs (Confining layer) 12 3

Cleaved reflecting surface

Substrate

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Fig.8 : Heterojunction laser diode

Page 9: Chapter 5b

Current Paths in DH

• Current density J from the stripe contact is not uniform laterally– J is greatest along the central path, 1, and decreases away

from path 1 towards 2 or 3 – The current is confined within path 2 & 3

• The current density paths through active region where J >Jth as shown in Fig.8 – defines the active region where the lasing emission emerges– The width of the active region is defined by J from the stripe

contact• The optical gain is highest where the current density is

greatest– Such lasers are called gain guided.

Page 10: Chapter 5b

Two advantages of using a stripe geometry

1. The reduced contact area also reduces the threshold current Ith.– Typical stripe width may be as small as a few mm

leading to typical threshold currents that may be tens of mA.

2. The reduced emission area makes light coupling to optical fibers easier.

Page 11: Chapter 5b

Improving rear facet reflectance

• The laser efficiency can be further improved by reducing the reflection losses from the rear crystal facet

• The refractive index of GaAs is ~3.7, the reflectance is 0.33– By fabricating a dielectric mirror at the rear facet,

which is mirror consisting of a number of quarter wavelength semiconductor layers of different refractive index

– It is possible to bring the reflectance close to unity and thereby improve the optical gain of the cavity

Page 12: Chapter 5b

Lateral optical confinement

• The lateral optical confinement of photons to the active region is poor – because there is no marked change in the refractive

index laterally

• Laterally optical confinement can increase the rate of stimulated emissions– It can be achieved by shaping the refractive index profile in

the same way the vertical confinement

Page 13: Chapter 5b

Oxide insulation

n-AlGaAs

p+-AlGaAs (Contacting layer)

n-GaAs (Substrate)

p-GaAs (Active layer)n-AlGaAs (Confining layer)

p-AlGaAs (Confining layer)

Schematic illustration of the cross sectional structure of a buriedheterostructure laser diode.

Electrode

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Fig.9 : Structure of heterostructure laser diode

Page 14: Chapter 5b

Index Guided

• Fig.9 shows the active layer p-GaAs is bound both vertically and laterally by a lower index AlGaAs.– It behaves as a dielectric waveguide and ensure the

photons are confined to the optical gain region– It is called buried double heterostructure laser diode

• Since the optical power is confined to the waveguide defined by the refractive index variation– these diodes are called index guided

Page 15: Chapter 5b

Gain-induced guide Positive-index guide Negative-index guide- can emit >100mW- strong instabilities- highly astigmatic

- more stable structure- central region has higher

n- all guided light is

reflected at dielectric boundary

- more popular compared to negative-index guide

- more stable structure- central region has

lower n- most of light refracted

into surrounding material and lost

Page 16: Chapter 5b

Types of laser diodes

• The laser diode heterostructure based on GaAs and AlGaAs are suitable for emission ~900nm

• For operation in the optical communication, wavelength of 1.3 and 1.55 mm,– Typical heterostructure are based on InP

(substrate) and quarternary alloys InGaAsP which has a greater refractive index.

– The composition of the InGaAsP alloy is adjusted to obtain the required bandgap for the active and confining layers

Page 17: Chapter 5b

Laser mode

• The optical resonator is essentially Fabry-Perot cavity as shown in Fig.10 which can be assigned a length (L), width (W) and height (H).– L determines the longitudinal mode separation– W and H determine the transverse (lateral) modes

• If the transverse dimensions (W & H) are sufficiently small, only the lowest transverse mode, TEM00, will exit.

Page 18: Chapter 5b

Height, H Width W

Length, L

The laser cavity definitions and the output laser beamcharacteristics.

Fabry-Perot cavity

Dielectric mirror

Diffractionlimited laserbeam

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Fig.10 : Laser Cavity

Page 19: Chapter 5b

Transverse Mode of Laser

Wave fronts

Sphericalmirror

Optical cavityTEM00 TEM10

TEM01 TEM11

TEM00 TEM10

TEM01 TEM11

(b)

(c) (d)

Laser Modes (a) An off-axis transverse mode is able to self-replicate after one roundtrip. (b) Wavefronts in a self-replicating wave (c) Four low order transverse cavitymodes and their fields. (d) Intensity patterns in the modes of (c).

(a)

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Page 20: Chapter 5b

Longitudinal Mode of Laser

(c)

Relative intensity

dlm

Optical Gain

l

Allowed Oscillations (Cavity Modes)

dlm

(b)

L

Stationary EM oscillationsMirrorMirror

ll

m(l /2) = L

(a)

lo

Page 21: Chapter 5b

Elementary Laser Diode Characteristics

• The output spectrum from a laser diode (LD) depends on two factors

1. The nature of the optical resonator used to build the laser oscillations

2. The optical gain curve (line-shape) of the active medium

Page 22: Chapter 5b

Single Mode & Multimode

• The actual modes that exist in the output spectrum depend on– the optical gain these modes will experience

• The spectrum of optical power vs wavelength is either multimode or single mode depending on– Optical resonator structure and the pumping current level

• Fig.11 shows the output spectrum from an index guided LD at various output power levels– The multimode spectrum at low output power becomes single

mode at high output powers– The output spectrum of most gain guided LDs tend to remain

multimode even at high diode currents

Page 23: Chapter 5b

778 780 782

Po = 1 mW

Po = 5 mW

Relative optical power

(nm)

Po = 3 mW

Output spectra of lasing emission from an index guided LD.At sufficiently high diode currents corresponding to highoptical power, the operation becomes single mode. (Note:Relative power scale applies to each spectrum individually andnot between spectra)

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Fig.11 : Laser Mode

Page 24: Chapter 5b

Temperature Sensitive

• Fig.12 shows the changes in the optical power vs diode current characteristics with the case temperature.– As the temperature increases, the threshold

current increases steeply e.g. exponentially of the absolute temperature

• Output spectrum also changes with the temperature– The peak emission wavelength of single mode

exhibits “jump” at certain temperature.– A jump corresponds to a mode hop in the output

Page 25: Chapter 5b

0 20 40 60 800

2

4

6

8

10

Po (mW)

I (mA)

0 C25 C

50 C

Output optical power vs. diode current as three different temperatures. Thethreshold current shifts to higher temperatures.

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Fig.12 : Threshold current shifts to higher temperature

Page 26: Chapter 5b

o

(nm)Mode hopping

20 30 40 50

Case temperature ( C)

Single mode

776

778

780

782

784

786

788

20 30 40 50Case temperature ( C)

Single mode

20 30 40 50

Multimode

Case temperature ( C)

Peak wavelength vs. case temperature characteristics. (a) Mode hops in the outputspectrum of a single mode LD. (b) Restricted mode hops and none over the temperaturerange of interest (20 - 40 C). (c) Output spectrum from a multimode LD.

(a) (b) (c)

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Page 27: Chapter 5b

Mode Hop

• At the new temperature, another mode fulfills the laser oscillation condition which means a discrete change in the laser oscillation wavelength

• Between mode hops, lo increases slowly with the temperature – due to the slight increase in the refractive index n and cavity

length with temperature • If mode hop are undesirable, then the device structure

must be such to keep the modes sufficiently separated.– Highly stabilized LDs are usually marketed with thermoelectric

coolers integrated into the diode package to control the device temperature.

Page 28: Chapter 5b

Slope Efficiency

• Slope efficiency determines the optical power Po of the output coherent radiation in terms of the diode current above the threshold current Ith.

• If I is the diode current, the slope efficiency hslope is

W/A or W/mA• Slope efficiency depends on the LD structure & the

semiconductor packaging

th

oslope II

P

Page 29: Chapter 5b

Conversion Efficiency

• The conversion efficiency gauges the overall efficiency of the conversion from the input of electrical power to the output of optical power.– It can be easily determined from the output

power at the operating diode current and voltage.• In some modern LDs, this may be as high as

30%-40%.

Page 30: Chapter 5b

Example: Laser output wavelength variation

• Given that the refractive index n of GaAs has a temperature dependence dn/dT1.510–4K–1

estimate the change in the emitted wavelength 870 nm per degree change in the temperature between mode hops

Page 31: Chapter 5b

Solution

• Consider a particular given mode with wavelength lm,

m (lm/2n) = L

dlm/dT = d/dT [2nL/m] 2 L/m (dn/dT)

Substituting for L/m in terms of lm,

dlm/dT lm/n (dn/dT)

=1.510–4K–1 870nm/(3.7) =0.035nmK–1

Note that we used n for a passive cavity whereas n above should be the effective refractive index of the active cavity which will also depend on the optical gain of the medium, and hence its temperature dependence is likely to be somewhat higher than the dn/dt value we used