696
2013全國精密製造研討會暨 國際製造工程學會中華民國分會102年度年會 論文集 主辦單位:國立臺北科技大學、國際製造工程學會中華民國分會 承辦單位:國立臺北科技大學製造科技研究所 協辦單位:國立臺北科技大學研究發展處、國立臺北科技大學機電學院、 國立臺北科技大學機電整合研究所 教育部區域產學合作中心國立臺北科技大學 中華民國 2013 11 22

2013 sme papers

Embed Size (px)

DESCRIPTION

 

Citation preview

  • 1. 2013 102 20131122

2. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- A0016 10A0019 VeraCAD - 16A0020 22A002128A0022- FANUC 34A0023LED 40A0024 45A0025CAE 50A0026 SKD 54 A002959A0030 65A003171A0032 NON-BAR 76A0033 79A003685A0037 912 3. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------A003896 A0039The Design of Acoustic Horns for Ultrasonic aided tube flange makingKuen-Ming Shu Jyun-Wei Chen Shu-Rui Hu Sheng-Zhi Wu Cheng-Yu Chen102A0040 106A0041111A0042 116A0043 122A0044 128 A0045 133A0046 ABS 138A0047 144A0048 DP980 Yoshida-Uemori 150A0049 6061 156A0050 162A0051 167A0052 172A0053 178A0054 183A0055 1883 4. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------A0058193 A0059 197A0061Zerodur202A0062208A0063 214A0065220 A0066 224A0068PA66 CAE 230B0009 236B0010 241B0011Sn 247B0012Mu jung KaoFrank Lin Titanium Dioxide Brake Nanofluid Manufacturing by Plasma Arc System NAK80 DLC 253B0016 263B0017- 269B0018 275B0019 279B0020WO3 284B00144258 5. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------C0006290C0007296C0008 302C0009308C0010 314C0011319C0012324C0013330C0014336C0016CNC NURBS 341C0017 347C0018 352C0019 358D0021 362D0022368D0023MPCVD 372D0024 CIGS 377E0002BMS C 5382 6. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------E0004388 E0005 394E0006 398E0007 LED 403F0015 ISO 9001 409F0016 ISO 9001 414 F0019420F0020RFID ETC 426F0021- 431G0003 437G0004 442 G0005447G0006 452I0015Yu-Hsuan LinBo-Hsiang Tu Chih-Hao ChenHo Chang458I0016 464I0017 470I0018 476I0019 4826 7. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------I0020488 I0026 493J0002 499J0005 505J0007511J0008515J0009 521J0010 APDL 527J0011533J0012 539J0013CFD 544 J0015 550J0016 ATV 555J0017560J0018565J0019 571J0020 576J00215817 8. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------J0022584J0023 590J0024 596J0025 600J0026 606J0027610J0028615J0029HFC-245fa 620J0030 626J0031 631J0032 637J0033 643J0034 649J0035 652J0036 658J0037Replication Accuracy of Polymer HotMing-Chung LinShia-Chung664Embossed MicrochannelsChenJin-Yih KaoYue-Ci GuoChun-Sheng ChenEffect of gas counter pressure on the carbon fiber orientation and the associated electrical conductivitiesRean-Der ChienShia-Chung ChenJin-Yih KaoYue-Ci GuoChun-Sheng ChenJ00388670 9. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------J0039Quang-Anh Nguyen675J0040680J0041685J0042 6919 10. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 1 1 NSC 101-2221-E-011-042 Spurrier[3] Liu[4] 0.1mm SUS 304 Abaqus () 100kN 0.3mm 250kN 0.2mm PEMFC ( ) PEMFC 2-D 3-D 0.1mm SUS316L ANSYS CFX Abaqus/ Standard 2-D 3-D 2-D 3-D : 1. 1. 2. Li[1] Pollegri[2] 2. 2.1 0.1mm SUS316L () 0.1mm SUS316L ASTM 0.15mm ASTM E345 10 11. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- ASTM :0.05mm :0.25mm :2mmE345 SUS316L PEMFCKn190GPa0.33203MPa1139.30.348 2 (Hyperelastic) U(Strain Energy Potential)- Polynomial 3-D Form (1) [5] Abaqus 2.3.1 N=M=2(1) 300K0.1m/s [5](2) 300K 1atm HD557.269.270.703.206.039.92E-05(3) (No Slip Wall)HD707.499.770.663.065.948.79E-05(4) HD9050.0362.064.6721.2640.581.66E-052.3.2 2.2 ANSYS CFX 50 mm50 mm 0.25 mm 0.05 mm 11 12. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------CPE4R(1) 2mm 2mmCPE4RH 0.2[4] 0.1[4] (1) 1.5mm 1mm(1) 0(2) 0(3) 0 10(2) 1mm 2mm w=2.5mms=1.5mH=1mm R=0.6mmr=0.5mm=20 2.5mm 1mm 3mm (3) 1mm 2.5mm 3-D 2-D 3-D 2-D 2-D 1.5mm 1mm 3D Deformable Solid S4R 2.4 Abaqus 2-D() C3D8RH30mm0.1mm30mm 2-D 4mm2D Deformable 2-D Solid()12 13. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 3-D 11 3. 3.2 3-D 3-D 2-D 3-D ( 15 ) 0.06mm 0.067mm ()3.1 2-D 111315 2-D HD55 15 9.9%8.5%2-D 11 15 (11 )11 () 15 0.853(mm)1(mm)()0.733(mm)0.844(mm)1(mm)()0.725(mm) 13 0.751(mm) 11 0.821(mm)1(mm)()0.817(mm)0.917(mm)1(mm) 11 13 14. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 0.067mm 0.1mm 3.3 CCD 11 (1) 0.9mm3.3 0.9mm 0.9mm (2) 1mm 11 1mm 11 3.5 1mm 14 15. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------rubber pad forming, Journal of Power Sources,vol.195, pp. 3529-3535 (2010).5. 4. 2012(1) Finite Element Analysis on Forming and Efficiency of Micro-Channels of Metallic Bipolar Plate for Fuel Cell (2) 1You-Min Huang and Shung-Ping Wang 1(3) 1Department of Mechanical Engineering,National Taiwan University of Science and Technology(4) (a) (b) Abstract(c) Bipolar plate is an important component of the fuel(d) cell. Because there is no suitable fabrication process for(e) mass-production of bipolar plate, the cost of portablefuel cell is still too high now a days. In this study, the(5) rubber pad forming process was used to fabricate themicro-channels on metallic bipolar plate and the effecton process parameters of the rubber pad forming wereanalyzed. Polyurethane rubbers were used for the rubber5. pads, and SUS316L stainless steel sheets with a thickness of 0.1mm were tested in the experiment.NSC-101-2221-E-011-042Firstly, finite element analysis (FE, Ansys CFX software) Abaqus was used to analyze the efficiency of fuel cell byANSYSgeometric factor of channels numerically, in order tofigure out the influence of velocity and pressure on channel depth, channel width, rib width. Secondly, finite6. element analysis (FE, Abaqus / Standard software) was1. X. Li and I. Sabir, Review of bipolar plates in PEMalso used to analyze the rubber pad forming processfuel cellsFlow-field design, International Journalnumerically. Finally, the experimental and numericalof Hydrogen Energy, vol. 30, pp. 359-371 (2005).results showed a good agreement in this study.2. A. Pollegri and P.M. Spaziante, U.S. Pat., No.5,Furthermore, an optimization design of micro-channels108,849 (1992).for fuel cell was developed under rubber pad forming3. F.R. Spurrier, B.E. Pierce and M.K. Wrighe, U.S. Pat.,process.No.4, 631,239 (1986).Keyword: Rubber pad forming, micro-channel, Finite4. Y. Liu and L. Hua, Fabrication of metallic bipolarelement, Optimizationplate for proton exchange membrane fuel cells by15 16. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- VeraCAD - 1 2 3 1 3 2 VeraCAD DEFORM VeraCAD [78] [9] VeraCAD VeraCAD VeraCAD - 12 DEFORM VeraCAD : VeraCADDEFORM2. 1. VeraCAD Eumuco Golden Rules [6]LensCircle Shoulder VeraCAD Tail 12 DEFORM VeraCAD [1] Slender Parts [2] Preform [3] Roll Forging [45] VeraCADVolume Exact Reducer roll Analysis based on CAD[6]16 17. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 45 mm 200 mm VeraCAD 2 VeraCAD 2 3. 3.1 VeraCAD Eumuco [6] AR AR A0 A1 A0 (1) A0 A1 -- 1 45% 7% 28% - HL 2 VeraCAD 41.58%27.28% Eumuco [6] 41% 28% 3 1 ~ 4 L11 1 4 12 L21 L12 L22 L13L23 C L RC(a)(Tail)WL Rtop(Shoulder)(Body)(b)(a) (b) 1 (a) (b) 3.2 40 EUMUCO RW [6] 370 mm 240 mm 3 mm1 1 C C L11 L113.3 57.6% VeraCAD 1150C 1.38% 1279.2 mm2 57.6% 543.4 mm2 RC 13.15 mm33 LL2 2 C C L12 L124 4 L LL L13 13(a) 2 2 C C1 1 C C L21 L21 33 C CL22 L224 4 C C L23 L23(b) 3 (a) (b)17 18. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- VeraCAD L22 L22 20 mm30 mm 40 mm VeraCAD 41% 38%35%32% 12 A ~ L 1 L11 L21 45 mmL12 L22 12 7.33 rad/s VeraCAD 4. 4.1 VeraCAD VeraCAD L11 L11 5 A L11 VeraCAD L12 L12 L12 VeraCAD 6 2 AR L12 L13 AR L22 L23 (%) (mm) (mm) (%) (mm) (mm) A 41 16.85 96.76 28 20 135 B 41 25.62 89.37 28 30 125 C 41 34.26 82.76 28 40 115 D 38 16.62 92.07 31.5 20 135 E 38 25.21 85.54 31.5 30 125 F 38 33.7 78.72 31.5 40 115 G 35 16.38 87.95 34.6 20 135 H 35 24.82 81.62 34.6 30 125 I 35 33.17 75.14 34.6 40 115 J 32 16.14 84.12 37.5 20 135 K 32 24.43 78.03 37.5 30 125 L 32 32.64 71.83 37.5 40 115XABABCDBAY3.4 (Disalignment) VeraCAD 3D DEFORM DEFORM VeraCAD 4 AISI 1045 1150C 35000 A D VeraCADCB DCCDFEMZ XCross section Area (mm2) 5 A 1400 VeraCAD FEM () FEM ()1200 1000800 600 400200 0 0 4 A 50100150200Position (mm) 6 A 0.3 [9, 10] 0.7 VeraCAD L12 18 19. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- L11 4.5 mm VeraCAD 6 3 D-D (mm2) WL (mm) AR VeraVera (%) FEM FEM CAD CAD (%) (%) A 41 54.54 54.18 0.66 754.6 748.6 0.8 D 38 53.64 52.68 1.79 793.1 785.4 0.97 G 35 52.82 51.36 2.79 831.6 851.5 1.21 J 32 52.2 50.12 3.98 869.9 857 1.484.2 VeraCAD VeraCAD 7 8 9 L22 D G J L13 3 VeraCAD Rtop VeraCAD 1% 4 3 4 38% VerCAD 52.68 mm XABABCDA 4 D-D (mm2) WL (mm) AR VeraVera (%) FEM FEM CAD CAD (%) (%) A 41 54.54 54.18 0.66 754.6 748.6 0.8 D 38 52.59 52.16 0.84 793.1 787.1 0.76 G 35 50.4 50.02 0.75 831.6 826.4 0.63 J 32 49 48.86 0.29 869.9 865.8 0.47 4.3 VeraCAD 10 11 12 L12 A B C L12 VeraCAD VeraCAD BY AVeraCADFEMCDB DCCDZ X 7 D XABBAXACBCCDABAA BBC VeraCAD FEMDCB DBCDCVeraCADDAYYADDFEMZ XZ 10 A XCD 8 G XABCDCDABYXABCDABA YA A BC VeraCADFEMDCA BDCDZB DXZ 11 B XCBCVeraCAD FEMD 9 J 19 20. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------XABCDA 4BY AABCD VeraCADBCCross section Area (mm 2)DFEMZ XDC 12 C 600600 400 200 0 50100150200250Cross section Area (mm 2)1400 VeraCAD FEM () FEM ()1200 1000 800600 400 200 0 050100150200250Position (mm) 15 G 2800800 14 D VeraCAD FEM () FEM ()110001000Position (mm)1400 1200VeraCAD FEM () FEM ()12000Cross section Area (mm 2)Cross section Area (mm 2)4.4 90 VeraCAD VeraCAD 13 1 13 2 L21 VeraCAD 2 L21 13 3 VeraCAD 14001400 VeraCAD FEM () FEM ()12001000 800600 400200 0 0350100150200250Position (mm)400 16 J 200 0 050100150200 4 (%) (%) ABC 41 28 -4.1 DEF 0 38 31.5 GHI 35 34.6 +2.7 JKL 32 37.5 +4.2250Position (mm) 13 A VeraCAD VeraCAD ABC 4.5 A D G J 13 14 15 16 20 21. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------2012 9. 2010 10. H. Karacaoval, Analysis of Roll-Forging Process, A Thesis for Master Degree of Middle East Technical University, 2005 L23 VeraCAD 4.1% DEF L23 0 GHI L23 2.7% VeraCAD 2 ~ 4%Study on Roll Forging of a Round Metal Rod in One Stage Roll Grooves Created by VeraCAD Kuang-Jau Fann1, Jin-Tien Hsieh2, Chun-Chi Chen3 1 Department of Mechanical Engineering, National Chung Hsing University, Taichung 2, 3 Department of Mechanical Engineering, National Chung Hsing University, Taichung5. VeraCAD 2 ~ 4% L11 VeraCAD L22 Abstract This study uses VeraCAD to design one stage roll forging of lens circle roll grooves for a round metal rod. The design of roll parts with different shoulder lengths and various reduction ratios establishes 12 varieties of two passes roll forging die. Then the commercial Finite Element software DEFORM is used to simulate the roll forging process to get its roll parts. An investigation is done to compare the roll parts created by VeraCAD with those simulated by DEFORM. And then a method is proposed that designing roll forging via the calibration module of VeraCAD to reduce the difference of volume distribution between VeraCAD and DEFORM, effectively achieve the purpose of the volume distribution process. As a result, The shoulder length and the reduction ratio are an important factors for roll forging process. Further, in the first pass process, the position of billet in the die must be corrected, and the lens cross-section geometry of first roll parts needs to be corrected. Then the position of the roll part in the die is to be corrected in the final pass as well. Finally, the roll part created by DEFORM would match the original design. The results might help die makers in design of forging roller for the preform of slender forging parts by using VeraCAD.7. 1. T. Altan, Metal Forming Handbook, New York: Springer, 1998 2. H. Tschaetsch, Metal Forming Practice, Berlin: Springer, 2006 3. K. Lange, Handbook of Metal Forming, New York: McGraw Hill, 1985 4. Lasco Umformtechnik Werkzeugmaschinenfabrik, November , Querkeil-und Reckwalzen, 2006 5. ASM International, ASM Handbook Vol. 14 Forming and Forging, 4th. ASM International, 1998 6. H. Eratz, VeraCAD 3.59, Eratz Engineering, 2009 7. 2012 2012 8. KeywordsRoll Forging, Preform, Finite Element Analysis, Slender Forging Part, VeraCAD, DEFORM21 22. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- * NSC 101-2221-E-011-019 2. (1)(2)(3) 2.1 rl( l ) u rl( c ) u rl (u ) xl0 zl 1T(1) {xl , zl } xll ul rb ul cos b xl c uc xc b cos uc , c l zl ul ul sin b zl uc zc b sin uc : {xc , zc } cos 0 / 2 b sin 0 / 2 b xc rb b cos 0 / 2 sin 0 / 2 z cos 0 / 2 b sin 0 / 2 b b c cos 0 / 2 sin 0 / 2 1. [1] [2] Al-Daccak [3] Ichino [4] Chang Tsay[5] 8 (1)(2) (3) (2)(3) b ul uc0zlb ( xc , zc )rb xl Sl rl (u) St rt (u) z rt (u, )=Mtl ( )rl (u) (4) cos sin 0 0 sin cos 0 0 Mtl ( ) 0 0 1 0 0 0 1 0 (4)( rt ) u (u, ) 22 23. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------rt (u , ) rt (u , ) u n t (u , ) {n xt , n yt , nzt } rt (u , ) rt (u , ) u M(5) zt yt xt xlrbzd xd2.2 zlxl ( xcf , zcf ) rgbuu u b 0 rg 0 seg 2 ca cc men tan n rg Re / cos d tan 1 tan n 0 cos rg / 2 :rg (u) u sin b0 u cos b 1T(7) men n seg Re d c a cc ( rd( s ) (u, )= xds ) (6) u () ( y ds )( zds ) 1 T(8)( xds ) u , cos rg / 2 (s) yd u , u cos 0 (s) zd u , u sin 0 sin rg / 2 2.3 23 24. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- St Sd Sa Sb Sc rd (u, ) (9) =Mdc (Cx , Cy , Cz )Mcb (b )Mba (a )Mat ( )rt (u) A (nyt sin a nzt cos a )2 2 2 2 B (nxt nxM (nyt sin a nzt cos a ) ) M :Cx Cy Cx 1 0 M dt = 0 0 1 0 0 00 0 Cx cos b 0 sin b 1 0 Cy 0 1 0 0 1 Cz sin b 0 cos b 0 0 1 0 0 0 0 0 0 cos sin cosa -sina 0 -sin cos sina cosa 0 0 0 0 0 1 0 00 0 0 1 0 0 0 0 1 0 0 1 xM xt cos b sin b ( yt sin a zt cos a ) yM yt cos a zt sin a zt cos a cos b u (u, ) n d (u , ) a b rd (u , ) rd (u , ) u Z yd yc ,bab x b, a oc ,b , azcxczb zazd(12) () Cx X C y Y Cz od(11) xt sin b yt sin a cos b zMCy xd10mmCzCx2.4 S d S1 S eS f ( L da (b , a ; 0)n t (u ) ) M n M {nxM , n yM , nzM } 2 2 2 2 n n nzt (nyt nyM nzt ) a cos1 ( yM yt ) 2 2 nyt nzt nxM nxt AB ) 1 b cos ( 2 (nxt nyt sin a nzt cos a )2 S g S d S1 S1 (10)24 25. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- (12) (17) f1 (u , , c ) n1 (u , , c ) v1 (u , , c )=0 (u, , c ) (13)(15) ze z d ye , d z1zg , fyfoe , d1 ()cygy1 B3. () () xe xdo1, g , fm xf x1, g=M1g (1 )M gf ( m )M fe (B )M ed (c )rd (u , )0 cos m -sin m 0 sin m cos m 0 0 0 1 0 0zg0 0 1 010.160htmm11.115ndeg20.0000 0 0 1(14)z R a z z g u :deg90.000 bdeg2.0002.000rbmm190.500190.500bmm0.8000.800 r1 (u , , c ) r1 (u , , c ) u adeg22.000-22.00022.000-22.000bdeg-0.8020.802-0.8000.800X Cxmm110.743110.743Cymm177.115177.115Z Czmm-73.09773.097-73.097Bmm0.000mdeg16.35668.366Ra3.2211.0510.000 (15)(1 v 1 2 ) r1 (u, , c ) c73.097 r1 ( u , , c ) c S1 (12) v1 (u, , c ) mm(13)Y cn 1 (u , , 1 ) F hk38.1000 1 0 01 =Rac 5.080mm0 0 cos c 0 sin c 0 0 B 0 1 0 0 1 0 -sin c 0 cos c 0 0 1 0 0 0 1 c B m 1 1 c 1 0 0 0mmr1 (u , ,c ,1 )z m en 0 0 1 0 cos -sin 1 1 M1d = 0 sin 1 cos 1 0 0 0 16 49(16)25 26. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- Solidworks 3D 15 arcsec10mm J I 4 4 4 5 5 5 6 6 6 J 4 4 4 5 5 5 6 6 62 3 4 2 3 4 2 3 4 I 2 3 4 2 3 4 2 3 4XPYP31.9581 32.8405 33.7180 32.9900 33.9250 34.8548 34.0467 35.0293 36.00630.0000 0.3298 0.7444 -0.0152 0.3314 0.7703 -0.0201 0.3438 0.8064-31.9581 -32.8405 -33.7180 -32.9900 -33.9250 -34.8548 -34.0467 -35.0293 -36.00630.0000 0.3298 0.7444 -0.0152 0.3314 0.7703 -0.0201 0.3438 0.8064ZP XN 99.8800 0.2765 99.5911 0.3562 99.3023 0.4200 103.2310 0.2729 102.9250 0.3552 102.6190 0.4207 106.5730 0.2720 106.2520 0.3559 105.9300 0.4224 99.8800 -0.2765 99.5911 -0.3562 99.3023 -0.4200 103.2310 -0.2729 102.9250 -0.3552 102.6190 -0.4207 106.5730 -0.2720 106.2520 -0.3559 105.9300 -0.4224YNZN-0.9568 -0.9272 -0.8971 -0.9580 -0.9277 -0.8968 -0.9584 -0.9275 -0.8960-0.0899 -0.1158 -0.1373 -0.0880 -0.1148 -0.1369 -0.0871 -0.1143 -0.1367-0.9568 -0.9272 -0.8971 -0.9580 -0.9277 -0.8968 -0.9584 -0.9275 -0.8960-0.0899 -0.1158 -0.1373 -0.0880 -0.1148 -0.1369 -0.0871 -0.1143 -0.1367 Solidworks 3D J I 4 4 4 5 5 5 6 6 6 J 4 4 4 5 5 5 6 6 62 3 4 2 3 4 2 3 4 I 2 3 4 2 3 4 2 3 4XP 98.8405 99.1393 99.4371 102.2510 102.5700 102.8880 105.6770 106.0130 106.3480 -98.8405 -99.1393 -99.4371 -102.2510 -102.5700 -102.8880 -105.6770 -106.0130 -106.3480YPZP XN 0.0000 36.6096 0.1048 0.3149 35.6938 0.1088 0.6426 34.7780 0.1125 -0.0259 37.9481 0.1051 0.3094 36.9707 0.1093 0.6587 35.9933 0.1131 -0.0341 39.2418 0.1057 0.3190 38.2118 0.1099 0.6872 37.1817 0.1138 0.0000 36.6096 -0.1048 0.3149 35.6938 -0.1088 0.6426 34.7780 -0.1125 -0.0259 37.9481 -0.1051 0.3094 36.9707 -0.1093 0.6587 35.9933 -0.1131 -0.0341 39.2418 -0.1057 0.3190 38.2118 -0.1099 0.6872 37.1817 -0.1138x[mm] (b)()x[mm] (a)() -15.0 0YN -0.9523 -0.9485 -0.9447 -0.9526 -0.9487 -0.9448 -0.9527 -0.9487 -0.9447-0.2865 -0.2974 -0.3080 -0.2854 -0.2967 -0.3076 -0.2850 -0.2965 -0.3076-0.9523 -0.9485 -0.9447 -0.9526 -0.9487 -0.9448 -0.9527 -0.9487 -0.9447-20ZN-0.2865 -0.2974 -0.3080 -0.2854 -0.2967 -0.3076 -0.2850 -0.2965 -0.3076-15.00 -20-40-40 -20020-40-20 0 20 (deg)40 (deg)(c)()(d)() 4. Ease off TCA 26 27. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------5. A Study on Straight Bevel Gears Using Interlocking Coniflex Cutting Method Based on the Bevel Gear Cutting Machine NSC 101-2221-E-011-019 Hsin-Yen Hsieh1, Y. P. Shih5. 1*1Department of Mechanical Engineering, National Taiwan University of Science and Technology1. 84-101 2010 2. H. J. Stadtfeld, Calculating Instructions Generated Straight Bevel Coniflex Gears, The Gleason Works, Rochester, NY, USA ,1961 3. M. L. Al-Daccak, J. Angeles and Gonzlez-Palacios, M. A., The Modeling of Bevel Gears Using the Exact Spherical Involute, Transactions of ASME, Journal of Mechanical Design, Vol. 116, No. 2, pp. 364-368, 1994 4. K. Ichino, H. Tamura and K. Kawasaki, Method for Cutting Straight Bevel Gears Using Quasi-Complementary Crown Gears, ASME Proceedings of the Seventh International Power Transmission and Gearing Conference, San Diego, CA, USA , pp. 283-288, 1996 5. C. K. Chang and C. B. Tsay, Mathematical Model of Straight Bevel Gears with Octoid Form, Journal of the Chinese Society of Mechanical Engineers, Vol. 21, No. 3, pp. 239-245, 2000 6. Y. P. Shih, A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears, Mech. Mach. Theory, Vol. 45, No. 8, pp. 1108-1124, 2010 7. F. L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, 2nd Edition, Cambridge University Press, Cambridge, UK, 2004. 8. 1998 9. 2012 10. G. J. Spear, Rotary Cutter for Gears and the Like, U.S. Pat., 2947062,1960AbstractThe Coniflex cutting method developed by Gleason is used to produce straight bevel gear (SBG). This method uses two interlocked cutters to generate a combination of profile and lengthwise crowning in the tooth flanks, and thus achieves the advantages of low assemble sensibility and high precision. This method is only operated in the dedicated machine. However, the details of the Coniflex cutting method are not provided because of commercial considerations. The main goal of this work is to establish the mathematical model of Coniflex SBG based on the universal bevel gear cutting machine. This model contains three modules: (1) a cutter, (2) an imaginary generating gear, and (3) the relative motion between an imaginary generating gear and the work gear. The proposed model is validated numerically using the generation of straight bevel gears with the Coniflex cutting method. And then the correctness of the model is confirmed using the ease-off and tooth contact analysis. KeywordsStraight bevel gear, Coniflex cutting method, mathematical model of tooth surface.27 28. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 1 1 NSC101-2221-E-231-004 2. V 2.1 Lagrangian ij , j bi ui(1) ij (Cauchy stress tensor) (mass density) bi (body force density) ui (acceleration ) V u u dV u dV b u dV t u dS1. iV [1-6] LS-DYNA (real-process-like method) [7](hat-bending) 1 -- ViiijViSii, j(2)i V u i S t i (surface traction or contact force)(2) M u K u F(3)M (mass matrix) (acceleration vector) K (stiffness matrix)u (displacement vector)F (body force and contact force vector)M(3) n(t) n+1(t+t) u n1 (M 1 M ) [ F K u n 2 (2u n u n1 )] t 2 t(4) t (time increment) (quasi-static) (3)K uF28(5) 29. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 3 2 (5) 2.2 Barlat89 Barlat89 [8] Barlat Lian 1989 Lankford a K1 K 2mm a K1 K 2 c 2K 2mm 2 Y4. 4.1 Barlat 3 5% sh-02-d sh-03-d 4 sh-03-d sh-02-d sh-02-d 4 () (Barlat89 Hill48) 5% sh-02-d sh-04-d 5 [12] 6 sh-02-d (Barlat89) sh-04-d (Hill48) 4 (6) a 22K1 R0 R90 1 R0 1 R90(7) xx h yy(8)2 xx h yy K2 2 2 2 p 2 xy (9)c 2ah(10)R0 1 R90 1 R0 R90(11) R0 R90 p45 R45 m=6() m=8() Y 4.2 PAM-STAMPDYNAFORM AUTOFORM [13] 5 NIP=3~9 NIP=2 K n Y K n(12)3. 3.1 1[5];2 1 SB1SB24.3 V Barlat89 Hill48 V 6 V 7 V 3.2 V V 29 30. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- Barlat89 Hill48 3.0% 8 V () 3D 3D 9 10 5.6.7. 8.5. (1) (2) (SB1) (SB2) (3) (4) 9. 10.11. 12.13.6. 2007 2008 2011 C. H. Liu, A. C. Wang, K. Z. Liang, A study of the electromagnetic micro-stretching process, Proceeding of ICAM2010, pp. 65-69, 2010. F. Barlat and J. Lian, Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity, Vol. 5, pp. 51-66, 1989. LS-DYNA Keyword Users Manual, LSTC, USA, 2009. R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London, Series A, Vol.193, pp.281-197, 1948. J. O. Hallquist, LS-DYNA Theoretical Manual, LSTC, USA , 2006. Ledentsov et al., Model adaptivity for industrial application of sheet metal forming simulation, Finite Elem. Anal. Des., Vol. 46(7), pp.585-600, 2010. S. Swaddiwudhipong and Z. S. Liu, Dynamic response of large strain elasto-plastic plate and shell structures, Thin-Walled Struct., Vol. 26(4), pp.223-239, 1996.8. NSC-101-2221-E-231-004 ; ;7. 1 1. Y. M. Huang and D. K. Leu, An elasto-plastic finite element analysis of sheet metal U-bending process, J. Mater. Process. Technol., Vol. 48, No. 1-4, pp. 151-157, 1995. 2. 2003 3. 2004 4. 2 30 31. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 3 V 7 V 4 8 V 5 9 6 10 31 32. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 3 4 5 2 V 6 V 32 33. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------The study on precise estimation methods of springback analysis in sheet metal forming 1Abstract This research project is focused on the springback effect of the bending processes. The dynamic finite element method is applied to simulate the hat-bending and V-bending processes. Then, the experimental results are compared with the numerical solutions. The detailed discussions of the influence factors, such as the element types, the number of integration point across the thickness and the hardening rules are presented. The main goal of this project hopes to seek the best analytical model and the processing parameters, and then apply to the related forming industry.1Chun-Ho Liu and A-Cheng Wang 1Department of Mechanical Engineering, Chien Hsin University of Science and Technology, ZhongliKeywords: Springback, Hat-bending, V-bending33 34. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013-FANUC 1 2 * 1 2 * FANUC Servo-Guide Encoder 1.1 [1] (Hobbing Machine)(Shaping Machine) [2] () [3] (Spur Gear) (Helical Gear)(Worm Gear)[4] [5] FANUC Servo-Guide Encoder 1.2 Han[6] (look-ahead interpolator)(Buffer) 1.1.2. Cao[7] CNC 34 35. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 [8]-[9] ( :Berier, B-spline, NURBS) (acceleration/deceleration) [10]-[13]Lin[14]Tsai[15] NURBS 2. NURBS(: )( ) NC G FANUC2.1 (Hobbing Machine) (Shaping Machine) CNC (Intersected Axes)(Crossed Axes) CNC , CNC 3.CNC 4.(Liebherr)2.2t 5. 4. :(Climb Cutting) (Conventional Cutting)(diagonal Cutting) (5.) (20) 3.1 3.1.1 CNC B= C= A= X= Y= Z=(a) Gleason 125GH FANUC Series 31i-Model-A 10 32 8 24 AI I&II 1000 1nm FANUC (1) NURBS (2) (3) (b) Gleason 125GH 3. Gleason 125GH NC35 36. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 20133.2 CNC ( ) FANUC FANUC Servo-Guide Encoder 6. () () 7. 3.3 6. CNC HRV-Filter Servo-Guide (Center Frequency) (Bandwidth) (Damping) (Notch-filter) (Center Frequency) (Bandwidth)1 servo guide Graph 2ToolFrequence ResponseMeasure3 4 Bode 5 V-Gain (P2021) 6 Tcmd Filter & Hrv Filter (1/2 ) (Damping) 8 HRV-Filte : 8 HRV-Filte 300: P2113=300 50: P2177=50 15: P2359=15 (0~100 ) 7. 36 37. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 20133.4 (1)X 9.-10. (2)Y 11.-12. (3)Z 13.-14. (4) C 15.-16. 11.Y (=60~70Hz) 12.Y (=80~90Hz) 13.Z (=20~30Hz) 9. X (=60~70Hz) 10.X (=80~90Hz)37 38. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013X 60~70Hz 80~90Hz Y 60~70Hz 80~90Hz Z 20~30Hz 30~40Hz C 30~40Hz 50~60Hz 14.Y Z C 17.-18.Z (=30~40Hz) 15.X C (=30~40Hz) 17. 16.C (=50~60Hz) ( ) 18. 38 39. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013235-242, 2006.[14] M.-T. Lin, M.-S. Tsai and H.-T. Yau, [1] [2] [3] [4] [5] [6][7][8][9][10][11][12][13]1982 1982 G. C. Han, D. I. Kim, H. G. Kim, K. Nam, B. K. Choi and S. K. Kim, A high speed machining algorithm for CNC machine tools, in Proceedings of the 25th Annual Conference of the IEEE on Industrial Electronics Society, San Jose, California, USA, Nov. 29-Dec. 3, 1999, pp. 1493-1497. W.-G. Cao, Q.-X. Chang, A kind of arithmetic having the function of look ahead in smoothly controlling, Modular Machine Tool and Automatic Manufacturing Technique, vol. 5, no. 9, pp. 5659, 2005. S. Bedi, I. Ali and N. Quan, Advanced interpolation techniques for CNC machines, Transaction of the ASME, Journal of Engineering for Industry, vol. 115, pp. 329336, 1993. F. C. Wang and D. C. H. Yang, Nearly arc-length parameterized quintic-spline interpolation for precision machining, Computer-Aided Design, vol. 25, no. 5, pp. 281288, 1993. T. J. Ko, H. S. Kim and S. H. Park, Machineability in NURBS interpolator considering constant material removal rate, International Journal of Machine Tools and Manufacture, vol.45, pp.665-671, 2005. S. H. Nam and M. Y. Yang, A study on a generalized parametric interpolator with real-time jerk-limited acceleration, Computer-Aided Design, vol. 36, no.1, pp. 27-36, 2004. X. Liu, F. Ahmad, K. Yamazaki and M. Mori, Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics, International Journal of Machine Tools and Manufacture, vol. 45, pp. 433-444, 2005. Y. Sun, J. Wang and D. Guo, Guide curve based interpolation scheme of parametric curves for precision CNC machining, International Journal of Machine Tools and Manufacture, vol. 46, pp.[15]Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm, International Journal of Machine Tools and Manufacture, vol. 47, no.15, pp. 2246-2262, 2007. M.-S. Tsai, H.-W. Nien, H-.T. Yau, Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery, Computer-Aided Design, vol. 40, pp.554566, 2008.The Research of Controller Preference Setting of Hobbing Machine Taking FANUC as an Example 2*Yih-Fang Chang1 and Pu-Hsin Tung 1 Mechanical and Automation Engineering Dept., Da-Yeh University 2* Mechanical and Automation Engineering Dept., Da-Yeh University Abstract Gear is one of the widely-used transmission components. With the development of the technology, we value gear precision than before; therefore, the manufacturing method is very important. In manufacturing, hobbing machine, gear-shaping machine, and other machines are widely-used in the manufacture of various gears. Among them, hobbing machine is easy to set, efficient in production, and the quality of products is stable. After regrinding, the precision and quality of products are great, so the hobbing machine is widely-used. However, compare with other machines, hobbing machine is easy to shake when process due to the snatchy cutting in hobbing process. Therefore, in order to promote better stability when processing, the research focuses on the following: After the hobbing machine is assembled, in the preference setting process of FANUC controller and verification process of controller adjustment, we use Servo-Guide software to intercept Pass Error Messages from Motorserver Encoder to judge the speed gain of each axle and broadband adjustment. By doing this, we can control the effect of High Frequency Resonance.Keywords: hobbing machine, gear-shaping machine, snatchy cutting, speed gain39 40. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------LED * *[email protected] NSC100-2221-E-270-014-MY3, NSC100-2632-E-270-001-MY3 NSC102-2221-E-270-003 ( 1) [1-5]( )() ( ) 2 LED LED LED 3 LED LED LED LED LED LED LED 20% LED 1. 6 9095 100% 2013 5 6411.6 5.92% (1) (2) : 2. 2.1 4 LED 3 (1)(2) (3) 48mm 48mm DC 40 41. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- LED 5 6 LED (150mm x 150mm x 10mm 90.8g 0.84 k=4.22 )(150mm x 150mm x 10mm 107.0g k 0.13 ) 300mm x 150mm x 150mm 10mm 75mm 2 TT-T-30SLE T-type 15 0.2C 0.2C R T 5.6%2.1%3. 7 T0=32.6C (Tup) (Tup) LED Tup LED (Tup) k=4.22 k 0.13 LED LED LED LED Tup Tup 8 LED T0=32.6 C LED (Tfin) 7~20% LED (Tfin) LED (Tfin) LED LED LED (Tfin) 9 7 8 (Tup) LED (Tfin) LED (R) 20%2.2 LED (R) R=Tw T0 Qt QLoss(1) Tw T0 Qt QLoss (R) (hLoss) (QLoss) DC (Qt)(1) (Qnc)(2) (QLoss) QLoss = hLoss A (Tw T0 ) = Qt Qnc = ( I V ) h plate A (Tw T0 )(2) V I A hplate Ellison [6] T T0 h plate = 1.361 w D/4 4. 1. 2.0.25(3) (Qt)T (hLoss)(R) Moffat [7]3.41 LED LED LED LED LED LED LED 20% 42. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------5. ( NSC100-2221-E-270-014-MY3, NSC100-2632-E-270-001-MY3 NSC102-2221-E-270-003)6. 2 LED [1] Yongliang Mu, Guangchun Yao, Lisi Liang, Hongjie Luo and Guoyin Zu, "Deformation mechanisms of closed-cell aluminum foam in compression" Science Direct, Vol. 63, (2010), 2612-2623. [2] Tania Vodenitcharova, Maizlinda Idris, and Mark Hoffman, "Experimental and analytical study on the deformation response of closed-cell Al foam panels to local contact damageMechanical properties extraction" Materials Science and Engineering A, Vol. 527, (2010), 6033-6045. [3] M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, and J. Banhart, "The effect of cooling rate on the structure and properties of closed-cell aluminium foams" Science Direct, Vol. 58, (2010),5031-5042. [4] Yanze Song, Zhihua Wang, Longmao Zhao, and Jian Luo, "Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model" Materials and Design, Vol.31, (2010), 4281-4289. [5] Xingchuan Xia, Hui Feng, Xin Zhang, and Weimin Zhao, " The compressive properties of closed-cell aluminum foams with different Mn additions " Materials and Design, Vol. 51, (2013),797-802. [6] G.N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold Company, New York, 1984, pp. 29-45. [7] R.J. Moffat, Contributions to the theory of single-sample uncertainty analysis, ASME J. Fluids Engineering, Vol. 104, pp. 250-258, 1982.LED 3 LED (a) (b) 4 1 42 43. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------(a) (b) 5 7 (T0=32.6C) 6 LED (Unit: mm)43 44. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------Effect of LED Lamp Inserted into the Closed-Cell Aluminum-Foam Ceiling on Heat Transfer Tzer-Ming Jeng, Sheng-Chung Tzeng*, Yen-Hao Huang Department of Mechanical Engineering, Chienkuo Technology University, 500 Changhua, Taiwan, R.O.C. * Corresponding: [email protected] NSC No: NSC100-2221-E-270-014-MY3, NSC100-2632-E-270-001-MY3 and NSC102-2221-E-270-003Abstract This work systematically studied the design and heat transfer characteristics of the porous light-metal green building materials. The base materials of this porous light-metal green building materials were closed-cell aluminum foams. When the LED lamp is inserted into this porous materials, the porous materials may enhance the heat transfer capacity of the heat sink of LED lamp due to their high thermal conductivity. This work experimentally measured the local temperature distributions and the total heat transfer performance of the LED lamp inserted into the aluminum-foam ceiling. The control group was the wooden ceiling. The experimental results indicate that the present porous ceiling reduced the total thermal resistance of LED lamp by 20%. Besides, the fire-insulation level of the closed-cell aluminum-foam materials are much higher than those of wooden materials; while the density of the front is somewhat lower than that of the rear. This study demonstrates the potential of the closed-cell aluminum foams as the light and safe green building materials with fire-insulation function. 8 LED (T0=32.6C)KeywordsClosed-cell aluminum foams, Heat transfer,Theheightofspaceabovetheceiling=7.5cmLED lamp, Ceiling 9 Experimental Measurements of the44 45. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 2 3 1 2 3 (Surface Roughness) (CNC) 6061 (Pocketing) 6061 : 1. [1] [23] [47] [8][9] [10] [11] CNC 6061 2. CNC [12](a) (b)(c) 1 6061 ... [10] TIALN 1 CNC 6061 120mm x 80mm x 10mm AlphaCam 120mm x 80mm x 10mm 8mm x 15mm 2 3 [11] (1)1000 2000 3000 rpm (2) 100 150 200 mm/min (3) 0.1 mm (4) 0.1 0.2 0.3 mm 3. 3.1 4~ 6 0.1 mm 0.3 mm 3000 rpm 100 mm/min 0.1 mm 45 46. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------5. 3.2 7~ 9 3000 rpm 100 mm/min 0.1 mm 1. 2.3.4.3.3 10~ 12 [5] 3000 rpm 100 mm/min 0.1 mm 5.6.7.8.4. 6061 9.10.11.12.46 309-319 1986 D.Y. Jang, Y.G. Choi, H.G. Kiam, A. Hsiao, Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning, International Journal of Machine Tools and Manufacture, Vol. 36, No. 4, pp. 453-464, 1996 S.C. Lin, M.F. Chang, A Study on the effects of vibrations on the surface finish using a surface topography simulation model for turning, International Journal of Machine Tools and Manufacture, Vol. 38, No. 7, pp. 763-782, 1998 D.K. Beak, T.J. Ko, H.S. Kim, Optimization of feedrate in a face milling operation using a surface roughness model, International Journal of Machine Tools and Manufacture, Vol. 41, No. 3, pp. 451-462, 2001 S.A. Coker, Y.C. Shin, In-process control of surface roughness due to tool wear using a new ultrasonic system, International Journal of Machine Tools and Manufacture, Vol. 36, No. 3, pp. 411-422, 1996 T.S. Smith, R.T. Farouki, M.A. Kandari and H. Pottmann, Optimal Slicing of Free-Form Surfaces, Computer Aided Geometric Design, Vol. 19, No. 1, pp. 43-64, 2002 B.C. Irene, V.C. Joan, D.F. Alejandro, Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut, International Journal of Machine Tools & Manufacture, Vol. 53, No. 1, pp. 151159, 2012 E.S. Topal, The role of stepover ratio in prediction of surface roughness in flat end milling, International Journal of Mechanical Sciences, Vol. 51, No. 11, pp. 782789, 2009 A.E. Diniz, J.C. Filho, Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process, Wear, Vol. 232, No. 1, pp. 67-75, 1999 G.E. D'Errico, E. Guglielmi, G. Rutelli, A study of coatings for end mills in high speed metal cutting, Journal of Materials Processing Technology, Vol. 92-93, No. 1, pp. 251-256, 1999 elearningDJ.comMastercam 9 3-43 2007 365-473 1997 47. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------6. 0.4Ra(m)0.35 0.3 0.25S10000.2S20000.15S3000100F 1 (a)(b)(c)150F200F(mm/min) 4 0.1 mm 0.4Ra(m)0.35 0.3 S10000.25 0.2S20000.15S3000100F 2 150F200F(mm/min) 5 0.2 mm 0.4Ra(m)0.35 0.3 S10000.25 0.2S20000.15S3000100F150F200F 3 6061 (mm/min) 6 0.3 mm 47 48. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------0.9 0.8 0.7 0.6Ra(m)Ra(m)0.3 0.25 0.2 0.15S10000.1S20000.05S3000 100F150FS1000 S20000.5 0.4S3000100F200F150F200F(mm/min)(mm/min) 7 0.1 mm 10 0.1 mm 0.8Ra(m)0.90.25Ra(m)0.3 0.2 S10000.15 0.1S20000.05S3000 100F150F0.7 S10000.6 0.5S20000.4S3000200F100F(mm/min)150F200F(mm/min) 8 0.2 mm 11 0.2 mm 0.8Ra(m)0.90.25Ra(m)0.30.2 0.15S10000.1S20000.05S3000100F150F0.7 S10000.6 0.5 0.4200FS2000 S3000 100F(mm/min)150F200F(mm/min) 9 0.3 mm 12 0.3 mm 48 49. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------the industrial application of 6061 aluminum matrix composite in high precision end milling process. 1 (a)(b)(c)TIALNTIALNTIALN222 D3mm3mm3mm R1.5mm1mmKeywordsSurface roughness, Pocketing path, End mill.Study on Surface Roughness of Plane Milling by Means of End Mills with Different Geometries Su-Tang Chiou1, Yu-Jung Huang2, Shih-Chieh Kao3 1 Department of Mechanical Engineering National United University 2 Department of Mechanical Engineering National United University 3 Department of Mechanical Engineering National United University Abstract Surface roughness is one of the most important indices for the modern precision machining and can be affected by different factors including the choice of cutting tools. In this study, the surface roughness of plain milling for 6061 aluminum matrix composite is investigated by using computer numerical control (CNC) milling machine. Three types of end mill, i.e. flat end mill, ball end mill and bull nose cutter, are also used for milling operations. The cutting process is varied with different parameters such as spindle rotational speed, feed rate and cutting depth under constant cutting path and interval. The mechanical parts are machined with a linear pocketing path. Furthermore, the surface roughness is measured and evaluated by means of the roughness meter. The experimental result shows that for all three types of end mill, the effect of feed rate on the surface roughness is more evident than that of spindle rotational speed. Furthermore, the variation of the surface roughness with cutting depth is more obvious for the ball end mill and flat end mill than that for bull nose cutter. Finally, the bull nose cutter has the best surface roughness followed by flat end mill and ball end mill. The current results provide a valuable reference for49 50. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------CAE 1 2 1 2 (Notebook) Pro/Mechanica ABS PA-727 15.95 mm2.0 mm 1.5 mm 7.75 mm 2.2 6 160 gf 10 0.25mm 1 33050 gf 280 380 gf 280 gf 380 gf 2.3 : 2.3.1 ABS PA-727 2 1. 3C (Notebook) (power button) CAE Pro/Mechanica 2.3.2 2 3 2.3.3 160 gf 4 2.3.4 33050 gf 280 gf 5 2. 2.3.5 6 2.1 1 2.3.6 Pro/Mechanica 50 51. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------Tetra 7 280 gf 280380 gf 2.4 2.4 4. 2.41 . ; . 1.5 mm 1.0 mm 10.0 mm 18.95 mm; ABS PA-727 2 2.4.2 5. 3 (1) 2.0 mm 1.5 mm 10.0mm (2) 1.5 mm 1.0 mm 7.75 mm (3) 2.0 mm 1.5 mm 7.75 mm 1. http://www/t-mec.com.tw 2. http://www.chimericorp.com6. 3. 4 3.1 CAE 8 2.1mm 0.25mm 280 1 3.2 CAE 9 0.41mm 0.25mm 280 1 [1] Rating (max) DC12V 50mA Contact Resistance 50m max Insulation Resistance DC500V-100M min Withstand Voltage AC250V - 1 minute Stroke 0.25mm Operating Force 16050gf Durability 106C Cycles3.3 3.3 CAE 10 1.2 mm 0.25mm 280 3.4 3.4 CAE 11 0.24 mm 0.25mm 280 280 gf51 52. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 2 ABS PA-727 [2] 5 6 2 NB 7 3 3 1.5 mm 1.0 mm 2.0 mm 1.5 mm 1.5 mm 1.0 mm 2.0 mm 1.5 mm 4 2.1 mm 0.41 mm 1.2 mm 0.24 mm 4 52 10.0 mm 10.0 mm 7.75 mm 7.75 mm < 280gf < 280gf < 280gf > 280gf 53. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------that start force will go up due to structural strength increases deformation difficulty. When fixed arm has a proper cross-sectional shape, length and amount of fixed arm, enable the power switch for start force falls within the test specification. 8 Keywords Power button, Simulation, Fixed arm, 9 10 11 Using CAE Analysis Study Note-Book Power Button for Structure Strength Lee-Long Han1 Sheng-Min Huang2 1 Associate Professor; Department of Mechanical Engineering, National Taipei University of Technology 2 Graduate Student, Institute of Manufacturing, National Taipei University of Technology Abstract The power button as notebook computer part, its function is to activate notebook computer through power switch. During the design process, diversity that results from structural strength of the power button may cause insufficiency of start force or overloading. In this study, Pro/Mehanica CAE software was used for analyzing power button, focusing on simulation analysis of the structural strength of the body for notebook power button. The body of power button is injection molding parts with fixed arm. In the restricted space condition, to explore how to design the optimal fixed arm to meet the test specifications of the power button in order to avoid repeating the development of mold. The design parameters of the power button have relation with fixed position of the fixed arm, the cross-sectional shape, material, number of fixed arm. Analysis showed53 54. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- SKD 1*1 * : [email protected] () SKD11 2 (TiN) (TiN) SKD11 1. 11SDK HRC20 1 200 2 (: ) 200 ()20 2. 11SKD SKD11 1000 SKD11 180 1 2 1 SKD11 HRC 1 2 3 4 18.5 18.4 18.5 18.5 62 61.8 62.1 62 61.2 61 61.4 61.3 2 500 HV 23005 18.4 61.9 61 0.4 :#1500:#240:#80 :#46:#16SKD11 1 54 55. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- AFM 3 3 SKD11 12345Ra0.9m0.18m0.27m0.34m0.43m SKD11Ti N2500TiN 90 AFMSEM SKD11 3 4 5 12345 2 m 4 5 SKD-113. 12 SKD11 HRC 18.5 62 SKD11 500SKD11 SKD61SKD61 HRC55SKD11 0.7~0.9SKD613 55 56. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------3 (Ra) 0.9 m0.18 m0.27 m0.34 m0.43 m 678910 Ra=0.9 m0.18 m0.27 m0.34 m 0.43 mAFM11 SEMAFMSEM SKD11 10 Ra=0.43m11 6 Ra=0.9m 12 150 125 80 30 30 SKD11 7 Ra=0.18m8 Ra=0.27m9 Ra=0.34m56 57. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------. 11. K.M.McHugh,Y.Lin,Y.Zhou and4.0 3.5 3.0on phase formation in spray-formed H13 tool steel,Materials Science and Engineering A,vol.477,2008,pp.31-38.2.0G2.5E.J.Lavernia,Influence of cooling rate12. B.Navinsek and P.Panjan,Oxidation1.5resistance of PVD Cr,Cr-N and Cr-N-O hard1.0coatings,surface and0.50.0 050100150200250technology,vol.59,1993,pp.244-248. 30013. K.G.Budinski, Surface engineering forTime (s)wear resistance,Prentice Hall, New 12 Jersey, 1988,pp.16-17.4. Tool alloy steel SKD Coating after surface roughness characterization 1*1li-yang Lin and Ho Chang 15. 1. 2.Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 37 1993 1-11 . *658240. 3. 87242.4.Abstract297-307Slitting knife used in bookbinding industry (printing process), is mainly used dotted holes in paper-cutting, and the arc tunnel. Because knives after a period of use, wear on the back of the blade, resulting in paper cut uneven, or continue to, increase the time of the subsequent cutting job. This research to industry manufactured knife SKD11 tool steel as a substrate of selection, after heat treatment, the use of different particle size of grinding wheel given alloy's surface roughness, ion sputtering again. Finally by wear test results to explore after2000. 5. 5199637-51.6. 1998.7.TiN(Al)N .8. 3.9.Communications : [email protected] 897.10. 57 58. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------coating of the surface characteristics. With a view to identifying the most appropriate surface condition, increase its abrasion resistance, thus enhancing the service life of slitting knife. To lower the origami folding and cutting the number of machining process, improve efficiency and streamline the process. Key words: SKD11, surface roughness, wear, slitter knife Key words SKD11, surface roughness, wear, slitter knife58 59. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 2 1 2 (1) (2) Ls-Dyna Ls-Dyna 6 : 2.1 2.1.1 PRO/E 3D HyperMesh/Ls-Dyna [4] (Shell) (Solid) Ls-Dyna 1 1. (Shock Test) [1] [2] 2.1.2 ABS+PC GIPCB fiberglass SUS301&304 1 2 2.1.3 (cushion) Ls-Dyna : 22G, 5080 mm/sec 5080 mm/sec 2 3 2. [3] G 2.2 2.2.1. Lansmont : 65/81D 4:59 60. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 10.75 ms 297.9MPa 22 25 ms 0.578% 23 3.4 4 Region 1 1 3.44 Region 2 15 9.12 0.75 Region 3 58 (): 3 Lansmont TP3 5 6 G 2.2.2 [5] 7 : : 25C (77F) : 40~50% 22G 5080 mm/sec4. 3. 3.1 Ls-Dyna 1 5 18.25 ms 405.9 MPa 8 25 ms 9.117% 9 1 9 ms 355.7MPa 10 25 ms 3.342% 114 8 10.5 ms 291.6MPa 1225 ms 0.392% 13 5. 1. Shock impact Ls-Dyna 5 4 2010 2. TFT-LCD MSC 11 1 2005 3. 2011 4. Ls-Dyna + HyperMesh .128~130(2006) 5. Lansmont Corporation Shock Machine Users GuideLansmont Corporation20023.2 14 15 1548 16 15 48 6. 3.3 Pro/E 1548 Region 1 Region 2 Region 3 17 Ls-Dyna Region 1 1 11.25 ms 356.9MPa 18 25 ms 3.439% 19Region 2 15 18 ms 301.1MPa 20 25 ms 0.754% 21Region 3 48 Part Material Density (g/cc) Youngs modulus (MPa) Yield stress (MPa) Poisson Ratio60 1 Sheet MB Plastic metal fiber PC + GI glass ABSkey parts -7.821.81.18by weight211000250026002500027818066-0.280.350.350.35 61. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 2 : 43 kgf Part Weight (kgf) Amount 1 0.75 GPU 4 1.5 24 0.017 6 0.313 2 0.57 12 0.80 2 0.96 2 3 [5] (cm) 65/81D 65 * 81PC /(G) (m/sec) (kg) (ms) L*W*H (cm) 600 7.3 227 2 81 * 150 * 379 Ma Alloy 220~240V / 20A / 3 3 4 Region 1 2 3Right Side Shock Impact Original design Add rivet Stress Plastic Stress Plastic (MPa) Strain(%) (MPa) Strain(%) 355.7 3.34 356.9 3.44 405.9 9.12 301.1 0.75 291.6 0.39 297.9 0.58 4 Lansmont65/68D 5 Lansmont TP3 1 61 62. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 6 10 () 7 11 () 8 () 12 () 13 () 9 ()62 63. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 17 1548 14 : 18 Region 1 () 15 :15 19 Region 1 () 16 :48 63 64. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 23 Region 3 () 20 Region 2 ()Shock Test and Simulation of Server Structure Lee-Long Han1, Hsin-Lang Chen2 1 Associate Professor, Department of Mechanical Engineering, National Taipei University of Technology, Taipei 2 Graduate student, Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 21 Region 2 ()Abstract This paper presents the shock test and simulation for server system structures in order to improve the server structure strength and reducing test time and possibility of design changing. Simulation can show the parts of the effective stress contour and plastic strain contour. The shock test can show the parts of deformation area. Shock test result that compared with first simulation, there are three deformation on the panel. This result is fully matched. A design change is the modification conducted to the panel, added six rivets to fix panel and chassis. And done the second simulation, the simulation result show that this change can prevent large deformation and stress concentration on the panel. 22 Region 3 ()Keywordsshock testdeformationeffective stress contourplastic strain contour64 65. 2013 SME2013 2013 Conference on Society of Manufacturing EngineersSME ----------------------------------------------------------------------------------------------------------------------- 1 1 1 2 3 1 2 3 () A6061-T6 =50m/min =0.0347mm( =0.05mm) =0.15mm/rev 14.03m( ) 0.99m() 21%2. 4 0.99 ()2.624.255.887.519.1410.7712.40 14.03m () 10N 5 (=0.99m) 6 (=14.03m) 0.02m 1. [1] [2] [3] ( 1 ) [4] ( 2 )[5] ( 3 ) 3. 1 3 4 81 4. 4.1 SAS 65 66. 2013 SME2013 2013 Conference on Society of Manufacturing EngineersSME ----------------------------------------------------------------------------------------------------------------------- 4.3 16~21 0.01mm~0.05mm 0.05mm 0.05mm() 0.03mm/rev 0.99m 4.25m7.51m10.77m14.03m 0.04127mm0.04116mm0.04002mm 0.03787mm0.0347mm 16~21 18 0.05mm 16~18 50mm/min 16~18 0.01mm0.03mm0.05mm 0.1mm/rev 0.04 mm/rev 0.03 mm/rev() 18 16~18 10~12 19~21 16~18 19~21 21 =0.15mm/rev =50m/min =0.0347mm( =0.05mm) 0.99m 2.239m 14.03m 1.776m 0.99m 21% 16~21 4.1 4.2 DOC = mm x1=m/min x2 = mm/rev x3 = (mm)x4 = m 7~9 (1) 7 8 9 7~9 7~9 4.2 Ra = m x1= m/min x2=mm/rev x3=(mm) x4=m 10~15 (2) 10~12 10~12 50mm/min 0.01mm 0.03mm 0.05mm 0.07mm/rev0.05 mm/rev0.03 mm/rev 13~15 10~15 66 67. 2013 SME2013 2013 Conference on Society of Manufacturing EngineersSME -----------------------------------------------------------------------------------------------------------------------2. 19 20 3. 4.5.5. W.O. Schotborgh, F.G.M. Kokkeler, H. Tragter and F.J.A.M. Houten, Dimensionless Design Graphs for Flexure Elements and a Comparison between Three Flexure Elements, Precision Engineering, 29, pp.41-47, 2005. 2005 2009 20107. 1. 2. 3. 4. 5. 6. 7. =0.15mm/rev=50m/min =0.0347mm(=0.05mm) 0.99m 2.239m 14.03m 1.776m 0.99m 21% 1 2 3 6. 1.L. L. Howell, Compliant Mechanism, John Wiley & Sons, New York, 2001.4 67 68. 2013 SME2013 2013 Conference on Society of Manufacturing EngineersSME -----------------------------------------------------------------------------------------------------------------------5 9 6 10 (=50m/min=0.01mm) 11 7 (=50m/min=0.03mm) 12 8 (=50m/min=0.05mm)68 69. 2013 SME2013 2013 Conference on Society of Manufacturing EngineersSME ----------------------------------------------------------------------------------------------------------------------- 13 17 (=0.03mm/rev=50m/min)(=50m/min=0.03mm) 14 18 (=0.09mm/rev=50m/min)(=50m/min=0.05mm) 15 19 (=0.15mm/rev=50m/min)(=0.03mm/rev=50m/min) 16 20 (=50m/min=0.01mm)(=0.09mm/rev=50m/min)69 70. 2013 SME2013 2013 Conference on Society of Manufacturing EngineersSME -----------------------------------------------------------------------------------------------------------------------Study of the Effect of the Multi-Notch Type Changeable-Stiffness Fixture on the Precision Turning Meng-wei Liu 1 , Hsun-Yi Juan 1 , Yi-Fan Chiu1, Shiu, Jin-Shiung 2 ,Jung-Shu Wu 3 1 Undergraduate student, Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University 2 Graduate student, Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University 3 Associate Professor, Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University 21 (=0.15mm/rev=50m/min) 1 1 2 3(m/min)50150250(mm/rev)0.030.090.15(mm)0.010.030.05(m)0.997.5114.03Abstract The purpose of this paper is to use the multi-notch type changeable-stiffness fixture to study the effect of the fixture stiffness on the precision of aluminum alloy A6061-T6. Firstly, we used the finite element method for the structural analysis of the multi-notch type changeable-stiffness flexible fixture in order to determine the dimensions of the fixture. Then we manufactured the multi-notch type changeable-stiffness tool fixture and use it to perform turning experiments. Finally, regression analysis was performed to produce statistical models. Cutting tools with higher stiffness usually produce better surface roughness than cutting tools with lower stiffness. However, our experimental results show that under higher feeds and higher actual depths of cut conditions, cutting tools with lower stiffness may produce better surface roughness than cutting tools with higher stiffness and the differences become larger as the actual depth of cut increases. For example, at cutting speed=50m/min, actual depth of cut=0.0347mm (corresponding to 0.05mm setting depth of cut), and feed=0.15mm/rev, the tool with tool-tip displacement of 14.03m (lower stiffness) has about 21% better surface roughness than the tool with tool-tip displacement of 0.99m (higher stiffness).Keywordschangeable-stiffness fixture, flexible turning, regression analysis70 71. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- [3][4]/P. Jaehong[6] 1. : 45m Toshiyuki Enomoto[1]2. ;3MJ.J. Gagliardi[2]1PU 71 72. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 ( ) / 1 Water +Al2O3(45m) 2 () Water+Al2O3 Water +Al2O3(45m)A 2gB 1g Water:0.1176g1gAl2O3:0.8gAl2O3A 2gB 1g Water:0.31043g1gAl2O3:1.6gAl2O3S45C 28.3mm 16.2mm(Ring on Disk) S45C28.3mm 16.2mm3 P240 2 -[3] (1) [5] 42.458/16.8461/ 3 (1)ADmaxDm m 616 N= (1 + /)2430130N(1)800rpm 1(Shore D) 82.5 72 73. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 2 2 84858585848484.5089878890878888.17 EPOXY83838384808282.503. (b)4 5 (a)(b) 4 56(a) ; (b) 6 (a)(b) 7 7(a) (a)73 74. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- P240 ; 7 3 4 6. 1.Toshiyuki Enomoto , Urara Satake, Tsutomu Fujita, Tatsuya Sugihara , Spiral-structured 3 fixed-abrasive pads for glass finishing, CIRPAnnals - Manufacturing Technology, Volume 1.12E-051.43E-051.81E-047.79E-067.71E-061.31E-042.5.47E-0462, Issue 1, Pages 311-314, 2013.2.54E-04J. J. Gagliardi , An introduction to fixed abrasive CMP , Semiconductor CMP group, 3M abrasive system division, 1999.3. 4 2013 4.2004 2.40E-011.43E-011.09E-018.88E-011.2743.63E-023.44E-023.07E-023.31E-016.07E-015.Imanaka, Lapping Mechanisms of GlassEspecially on Roughness of Lapped , / , Surface, Applied optics laboratory, Institute of optics and precision mechanics, CIRP, 13, pp.4. 227-233, 1966.6.P. Jaehong, J.Haedo, Y.Koichi, and K.Masaharu,Pad Surface Treatment to Control Performanceof Chemical Mechanical PlanarizationJapanese Journal of Applied Physics, Vol. 47,No. 2, pp. 1028-1033, 2008. 74 75. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------Analysis of Different Abrasive Machining Mechanisms with Epoxy Resin Pads Chunhui Chung, Jia-Syun Wang, Yann-Jiun Chen Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei Abstract Abrasive machining is one kind of machining processes which is widely used at the finishing step to obtain higher surface quality. Depending on whether the abrasive particles are bonded on the tool or not, Abrasive machining can be classified into two types: fixed abrasive and free abrasive machining. Most of studies done on Abrasive machining focus on the effects of process parameters and the comparison between the different types of the pad used on the process. However, few researches compared these two abrasive machining mechanisms with consistent machining parameters. In this study, the experiments have been conducted with different parameters to compare two types of abrasive machining. The results show that the fixed abrasive lapping provides higher surface quality but lower material removal rate and smaller effective working area.KeywordsEpoxy resin lapping pad, Fixed abrasive machining, Free abrasive machining75 76. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- NON-BAR 1 1 1 1 101-EC-17-A-05-S1-188 NON-BAR NON-BAR Y -0.645 3.4 (-0.016mm/m)Z 0.3215 1.7 (0.0082mm/m)2. () () NON-BAR least square : NON-BAR 1. 2011 52.6 2010 35%2011 40 4 [1](Laser-Interferometer)[2](DBB-Double Ball Bar)[3](LBB-Laser Ball Bar) [4](Grid Encoder)R-Test 3. NON-BAR 1NON-BAR [5] -76 77. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------( 5mm) 1 A/D 2 3 [7] 1 -390mm~312mm39mmFeedrate 360mm/min1000Hz 4Y [7] 2 [6] 5Z [7] -390~+312mm 39mm 1000 4 5 Y -0.645 3.4 (-0.016mm/m)Z 0.3215 1.7 (0.0082mm/m)4. NON-BAR 3 1 5. 77 78. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------The use of NON-BAR in composite processing machine parallelism detection6. (101-EC-17-A-05-S1-188) 7. 1.Wen-Yuh Jywe1, Tung-Hui Hsu1 Chung-Ying Lin1 1 Automation Engineering, National Formosa UniversityH. F. F. Castroa and M. Burdekin: International Journal of Machine Tools & manufacture, Vol. 46 (2006), pp. 89-97.2.Y. Kakion, Y. Ihara, and Y. Nakatsu, TheAbstractmeasurement of motion errors of NC machineWith the advances in global industrial technology continues to develop, Inter-industry competition more and more fierce. Therefore, the processing of the early processing product quality, accuracy and time will become the key to competitiveness. Which Car milling compound machine upper tool turret and lower tool turret of the two-axis parallelism error affects composite machining precision. In order to be able to quickly measure complex machining machine parallelism error, In this study of domestic self-developed and manufactured optical correction system for multi-axis machine tools NON-BAR and using the composite machine Upper and lower tool turret part of the action early processing, So that the upper and lower tool turret synchronous processing actions, It can be directly and quickly to the composite measure of parallelism error processing machine. In the whole process, The slope of Y axis is -0.645 error is about 3.4 arc seconds (-0.016mm / m), The slope of Z axis is 0.3215 error is about 1.7 arc seconds (0.0082mm / m).tools and diagnosis of their origins by using telescoping magnetic ball bar method, Annals of the CIRP 36, pp.337-380, 1987. 3.S. H. H. Zargarbashi, J. R. R. Mayer: International Journal of Machine Tools & manufacture, Vol. 46 (2006), pp. 1823-1834.4.W. Gaoa, T. Araki, S. Kiyono, Y. Okazaki, M. Yamanaka: Precision Engineering, Vol. 27 (2003),5. 6.pp. 289-298. CNC 2011/067. "KeywordsMulti-axis machines, NON-BAR,2013/6/20parallelism78 79. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1* 1 1 2 1 2 *E-mail:[email protected] SolidWorks ANSYS 1 Jones [1] (centrifugal force) AhmedHadfield [2] (WC-12%Co) (RCF) Polonsky [3] TiN(PVD) (RCF) 0.75 m Mitchell [4] M50M50M50 WangHadfield [5] EyzopKarlsson [6] : 1. 400~1,000 1,400 1 (Seal) (Outer ring)Rolling elements (Cage) (Inner ring)79 80. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- UXUYUZ 6 Solid187 Solid 10node 187 7 ( E ) ( ) 1 Free meshMapped mesh Sweep mesh Solid187() Free mesh 8 ANSYS 5~15 GPa 100,000~5,000,000 cycles 10 5GPa 15 GPa Kida [7] LevesqueArakere [8] [9] ANSYS [10] SolidWorks 3DANSYS 2. ANSYSANSYS 2 ANSYS ()(Pre-processor) SolidWorks 3D 3 SolidWorks x_t ANSYS 4 ANSYS 5 ANSYS Solid45Solid92Solid185 Solid187 Solid187 (I, J, K, L, M, N, O, P, Q, R) 2 (a) (b) 3 SolidWorks (a) (b) 80 81. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------(a) (b) (a) 4 ANSYS (a) (b) (b) 8 ANSYS (a) (b) 1 3800.273100.262080.302080.303800.272080.30310 5 (GPa)0.26& () & () 6 ()RP YQ23OK1 ZNMX I()(Solution) 9 (1) (2) UX -UX (3) UX UZ y (4) L4J 7 ANSYS Solid18781 82. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 10 3. ANSYS 3.1 (Von Misess stress) 13 5.0 MPa 83.8 MPa 82.5 MPa 78.4 MPa& 79.8 MPa& 78.7 MPa 14 9.27 m 5.13 m 6.31 m (&&) 8.38 m 8.66 m (&&) (& &) 15 1.0 MPa 10.0 MPa 1.0 MPa & 16 MPa& 15.7 MPa 10.0 MPa & 160 MPa & 157 MPa 9 ANSYS 10 ANSYS ()(Post-processor) 11 12 (Von Mises stress)Von Mises stress, (MPa)86 11 (Von Mises stress)84 82 80 78 76 & & 13 ANSYS Von Mises 12 82 83. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 16 (&&) 160 MPa 157 MPa 14 (&&) 233 MPa 228 MPa 12 (&& ) 324 MPa 334 MPa 17 16 , (m)10864 & & 14 ANSYS 350 & &150Von Mises stress, (MPa)Von Mises stress, (MPa)180120 90 6016 14 1230025020015030& 123456789& 16 ANSYS Von Mises 10, P (MPa) 15 ANSYS Von Mises 21, (m)3.2 (&& ) 16 10.0 MPa 1214 16 16 (&&) 160 MPa 157 MPa 14 (&&) 233 MPa 228 MPa 12 (&&) 324 MPa 334 MPa 17 (& &) 1.0 MPa & 1.68 m& 1.73 m 10.0 MPa & 16.8 m& 17.3 m & & (& &) 16 10.0 MPa 1214 16 16 14 122019181716&& 17 ANSYS 4. 1. (& &) (& &) 83 84. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------2.(& &) 16 12 14 Hybrid Ceramic Ball Bearings in Computer-assisted Stress Analysis Jang-Der Jeng 1, Lu Hsu1, Zeng-Gang Liu1, Yo-Wei Chang2 1 Department of Mechanical Engineering, National United University 2 Department of Energy Engineering, National United University5. 1. A. B. Jones, A General Theory for Elastically Constrained Ball and Radial Roller Bearings under Arbitrary Load and Speed Conditions, Vol. 82. pp. 309-320, 1960. 2. R. Ahmed and M. Hadfield, Wear of High-velocity Oxy-fuel (HVOF)-coated Cones in Rolling Contact, Wear, Vol. 203-204, pp. 98-106, 1997. 3. I. A. Polonsky, T. P. Chang, L. M. Keer and W. D. Sproul, A Study of Rolling-contact Fatigue of Bearing Steel Coated with Physical Vapor Deposition TiN Films: Coating Response to Cyclic Contact Stress and Physical Mechanisms underlying Coating Effect on the Fatigue Life, Wear, Vol. 215, pp. 191-204, 1998. 4. D. J. Mitchell, J. J. Mecholsky and J. H. Adair, All-steel and Si3N4-steel Hybrid Rolling Contact Fatigue under Contaminated Conditions, Wear, Vol. 239, pp. 176-188, 2000. 5. Y. Wang and M. Hadfield, Ring Crack Propagation in Silicon Nitride under Rolling Contact, Wear, Vol. 250, pp. 282-292, 2001. 6. B. L. Eyzop and S. Karlsson, Contact Fatigue of Silicon Nitride, Wear, Vol. 249, pp.208-213 , 2001. 7. K. Kida, K. Kitamura, H. Chiba and K. Yamakawa, Static and Fatigue Strengths of Pre-cracked Silicon Nitride Balls under Pressure Load, International Journal of Fatigue, Vol. 27, pp. 165-175, 2005. 8. G. Levesque and N. K. Arakere, An Investigation of Partial Cone Cracks in Silicon Nitride Balls, International Journal of Solids and Structures, Vol. 45, pp. 6301-6315, 2008 9. 2001 10. 2008Abstract A hybrid ceramic ball bearing is a precision ball bearing that consists of steel inner and outer races and balls made of ceramic material. The hybrid ceramic ball bearing has high hardness, non-magnetic, high wear resistance, good self-lubricating and rigidity characteristics, especially suitable for high speed, high precision and long life of the rolling elements. This study focuses on contact stress analysis of the hybrid ceramic ball bearing with inner and outer ring for various bearing materials. Further, 3D model of the hybrid ceramic ball bearing is constructed with SolidWorks software, and the image format file is converted to the ANSYS finite element software. For various bearing materials and bearing parameters, the effects of the contact stress on the hybrid ceramic bearings are investigated. By the finite element software, it can clearly understand the structural characteristics of the hybrid ceramic bearings. The results of this analysis will help the application of the hybrid ceramic bearings.KeywordsHybrid ceramic ball bearings, Contact stress, Finite element84 85. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- NSC 101-2622-E-150-003-CC3 SFRC SFRC 3Ching Lin et al.[2] Mahdavinejad[3]ANSYS Gibson and Wen[4] Kang and Raman[5] Zhang et al.[6] PCB 1. / 15% 90% Rahman et al.[1](SFRC) 2. 2.1 (MDOF) -- 1 Fn(t) xn(t) 2 85 86. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------x1(t) F1(t) k1k2m1c1k3m2c2m32.2 (FFT)c31 m11 x f1(t)kx1m22 x f2(t)k2(x2 - x1) c: k: f(t):x3(t) F3(t)x2(t) F2(t)k3(x3 - x2)F ( ) f (t ) e j dtm33 x(9)f3(t)f (t ) 1 2F ( ) e j d(10) c2(x2 - x1) c1x1: f(t): t: c3(x3 - x2)2 3. m1 m11 f 1(t ) c2( x2 x1) k 2( x x1) c1x1 k1x1 x 2 (1) m2 m2 2 f 2(t ) c3( x3 x2) k 3( x x2) x 3 c2( x2 x1) k 2( x x1)(2)2 m3 m33 f 3(t ) c3( x3 x2) k 3( x x2) x 33.1 CADSolidWorks3 CAD ANSYS Parasolid(*.x_t)(3)(1) ~ (3) m11 (c1 c2) x1 c2 x2 (k1 k 2) x1 k 2 x1 f 1(t ) x m2 2 c2 x1 (c2 c3) x2 c3 x3 k 2 x1 x (k 2 k 3) x2 k 3 x3 f 2(t ) m33 c3 x2 c3 x3 k 3 x2 k 3 x3 f 3(t ) x(4) (5) (6) 0 (c1 c 2) m1 0 x 1 c2 0 x1 x 2 x (c 2 c3) c 3 0 m2 0 2 c 2 x c3 c3 x3 0 0 m3 3 0 k2 0 x1 f 1(t ) ( k 1 k 2 ) k2 (k 2 k 3) k 3 x 2 f 2(t ) k3 k 3 x3 f 3(t ) 0 (7) M Cx K x f (t ) x(8) m: 3 CAD86 87. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- () 1 3DSolid 45 8 3XY Z() 3.2.1 free-free (Single Input Single Output, SISO) 5 (Frequency Response Function, FRF) 1 7,2008,0001.110111.9310110.280.29 (kg/m3) (N/m2) (106,967108,625119,996132,530 154,187) 132,530154,187 5132,530 Lanczos (Block lanczos method) 4 5 3.2.2 / 6 +X+Y4 3.2 / ()() (FFT)(a) +X 6 87(b) Y 88. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- (MEscope) 4. 4.1 2 7 15,000rpm 250 Hz 9 119.13Hz 2 ModeFrequency(Hz)ModeFrequency(Hz)1 2 3 4 547.14 76.77 119.13 162.50 165.496 7 8 9 10201.19 212.06 229.89 255.26 262.5610 162.50Hz 711 11 165.49Hz 4.2 15,000 rpm 0~250 Hz 37 Mode 129.92 Hz ZMode 245.98 Hz Y-Z X-Z Mode 378.58 Hz Z Z Mode 499.20 Hz X-Z Mode 5155.25 Hz7 47.14Hz 8 76.77Hz 88 89. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------Y-ZMode 6202.571 Hz X-Y Mode 7 216.459 Hz X-Y 15,000 rpm 0~250 Hz Mode 1~Mode 829.92 Hz 45.98 Hz78.58 Hz99.20 Hz155.25 Hz202.57 Hz 216.45 Hz246.75 Hz 1,795 rpm 2,758 rpm4,714 rpm5,952 rpm9,315 rpm12,154 rpm12,987 rpm14,805 rpm Mode13 Frequency Mode Shape (Hz)29.9243.165155.251.756202.570.877Damping Ratio(%)99.20216.450.713.65245.982.73378.584.3 (EMA) (FEA)4 10 2.024 Mode 1 2 389EMA (Hz) 26.8 47.8 53.3FEA (Hz) -------Error (%) ------- 90. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------4 5 6 770.0 110.1 140.6 173.265.2 98.4 138.2 170.6Investigative of Structure Characteristics for Vertical Machine-Tool7.0 10.6 1.7 1.5S. Y. Lin, B. H. Chen Department of Mechanical and Computer-Aided Engineering National Formosa University5. 1. 2. 10% Abstract In recent years, high cutting speed and high precision have become the main developing trend of the machine-tool which should possess high rigidity and high cutting stability to fulfill the demands of a rapid high-precision component machining. The machining precision and service life are the key performance indicators of the machine-tool, which can help to reinforce the design and manufacturing of the structure, also avoid the occurrences of structure resonance by controlling both the rigidity and dynamic characteristics of the machine-tool properly. This study attempts to develop the structural characteristics of machine-tool. The natural frequency, damping ratio and mode shape were investigated based on the numerical simulation analysis and experimental modal analysis for an overall machine-tool unit. The structural characteristics of a machine-tool could be obtained through experimental modal analysis which results were also used to modify the numerical simulation analysis model. According to the modal analysis results, there are 8 modes within the spindle rotation frequency range which are easily to excite structure resonant frequency. Hence, the above corresponding rotation speeds of this spindle should avoid in machining conditions planning.6. 7. 1. M. Rahman, M. A. Mansur, Z. Feng, Design Fabrication and Evaluation of a Steel Fiber Reinforced Concrete Column for Grinding Machines, materials and Design, Vol. 16, pp. 205-209, 1995 2. C. Y. Lin, J. P. Hung, T. L. Lo, Effect of Preload of Linear Guides on Dynamic Characteristics of a Vertical ColumnSpindle System, International Journal of Machine Tools & Manufacture, Vol. 50, pp. 741-746, 2010 3. R. Mahdavinejad, Finite Element of Machine and Workpiece Instability in Turning, International Journal of Machine Tools & Manufacture, Vol. 40, pp. 753-760, 2004 4. R. F. Gibson, Y. F. Wen, Evaluation of Boundary Conditions for a Composite Plate Vibration Test, Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 19-27, 1993 5. N. Kang and A. Raman, Vibration and Stability of a Flexible Disk Rotating in a Gas-Filled Enclosure-Part2 Experimental Study, Journal of Sound and Vibration, Vol. 296, pp. 676-689, 2006 6. B. Zhang, H. Ding and X. J. Sheng, Modal analysis of board-level electronic package, Microelectronic Engineering, Vol. 85, pp. 610-620, 2008Keywords: modal parameter, frequency response function90 91. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 1 2 1 2 2-1 CrN (Hv) 2000 3500 (50g ) 0.1~0.2 0.15 ( C) 300 300 ( C) 800 600 (P20) CrN 120 mm*120 mm 90 kg/cm , 80 kg/cm, 70 kg/cm, 60 kg/cm CrN 2.2 : PC+45%GF ( 2-2) PC/ABS PC/ABS : 1. 3C 120Ton 2-2 Test Test Unit Condition Method Specific Gravity Molding Shrinkage Tensile Strength Flexural Strength Flexural Modulus IZOD impact Strength Melt Temperature Mold temperature Nozzle Temperature2. 2.1 P20HRC34~38( ) CrN ( 2-1) (PVD) 500C 91Typical Value_ASTM D792_1.5_ASTM D955%0.1~0.25 mm/minASTM D638kg/cm14001.3 mm/minASTM D790kg/cm23001.3 mm/minASTM D790kg/cm14000023 C 30 CASTM D256kg.cm/ cm11_C270~310_C60~100_C290~310 92. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 100% ( 3-2) 70 kg/cm 95%CrN 86% 85% ( 3-3) 60 kg/cm 82%CrN 72% 71% ( 3-4) 2.3 : 120 mm 120 mm 1.0 mm (2-3)(2-4) 2-3 38 mm 0~270 rpm 1759 kg/cm 120 ton 4 2-4 (kg) (%) 90 80 30 60 5 70 60(s) 21.5(a)3. 3.1 (1.2mm ) (b)3.2 P20 CrN 90 kg/cm80 kg/cm70 kg/cm 60 kg/cm 90 kg/cm ( 3-1) 80 kg/cm (c) 3-1 90 kg/cm (a)(b)CrN(c) 92 93. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------(a)(a)(b) (b)(c) 3-2 80 kg/cm(c)(a)(b)CrN(c) 3-3 70 kg/cm(a)(b)CrN(c) 93 94. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------3.3 90 kg/cm 100%( 3-5) 80 kg/cm () ( 3-6) 70 kg/cm ( 3-7) 60 kg/cm ( 3-8) (a) 3-5 (90 kg/cm)(b) 3-6 (80 kg/cm)(c) 3-4 60 kg/cm (a)(b)CrN(c) 3-7 (70 kg/cm)94 95. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------2000 [2] 2002 [3] AlTiCrN/CrN 2006 [4] 2010 [5] 93 3-8 (60 kg/cm)The melt flow effect about molding surface finish and molding condition Lee-Long Han1 Chi-Chien Cheng2 1 Associate Professor; Department of Mechanical Engineering, National Taipei University of Technology 2 Graduate Student, Institute of Manufacturing, National Taipei University of Technology 3-9 4. Abstract CrN We investigate the melt flow effect about uncoated Mold between the un-coating and coating steel(P20) in this Research. We use CrN ,Zirconium alloy nano to be the coating material. After we coated the Mold steel, we will see the size of th end product to be good or bad reference. We can see the end product size is 120mm*120mm via the injection molding machine. We changed the injection presure to 90 kg/cm, 80 kg/cm, 70 kg/cm , 60 kg/cm , and compared the end products. We found that mold steel is the best in the melting flow with Zirconium alloy nano, in the same injection presure it is the biggest end product then CrN. And the uncoated Mold is the worst.5. 2013 Keywordssurface finish melt flowinjection process6. [1] CAE 95 96. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- NSC 101-2221-E-211 -002 Yan Chuang [2] Takino [3] Suzuki [4] (Standard PCD, S-PCD)( Electrically Conductive PCD, EC-PCD) EC-PCD S-PCD Storr [5] Yan [6] PCD 0.6 m : 1. (Polycrystalline Diamond, PCD) PCD PCD PCD PCD Chen [1] Ti-6A1-4V 2. PCD [6] 200 V 1 96 97. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------3. M1 M3 3 A S-PCD PCD PCD PCD PCD 3700 0C B EC-PCD EC-PCD S-PCD M5 R3 R1 D1 2 P1P3P5M1M3M5 P1 P5 tinP1P3 P1P3 ton15 (Duty Cycle)20 s(Off Duty Cycle) 1 15 Duty Cycle tin tonP1P3Off Duty CycleP5 Gap Voltage Gap Current 3 2 97 98. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------4. [7] (S-PCD) (EC-PCD) 0.6 mm 1.0 mm 2 0.5 mm 1.5 mm 2 [4] S-PCD 1.410-4 m 500~600 W/mKEC-PCD 1.610-5 m 440~580 W/mK 50m 200 V EC-PCD S-PCD EC-PCD 7 7(a) () 7(b) 7(c) EC-PCD 8 EC-PCD 5. 4 853 ns 907ns 14.2A 10.2A 5 (a) 64m 4m 8m 11m 3m EC-PCD S-PCD (b) 4 (a)(b) 6 () 98 99. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------(a)(a)(b)(b)(c)(c) 5 : (a)(b) 6 : (a)(b) S-PCD) (c)(EC-PCD)(S-PCD)(c)(EC-PCD)99 100. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 ----------------------------------------------------------------------------------------------------------------------- 8 (a)6. (1) (2) (3) (b)(4) (5) 7. (c) 7 : (a)(b)8. (S-PCD)(c)(EC-PCD)1. S. L. Chen, B. H. Yan, and F. Y. Huang, Influence of Kerosene and Distilled Water as Dielectrics on the Electric Discharge Machining Characteristics of Ti-6A1-4V, Journal of Materials Processing Technology, Vol. 87, pp. 107-111, 1999. 2. Mu-Tian Yan, Ming-Hsiang Chuang, A Study on100 101. 2013 SME 2013 2013 Conference on Society of Manufacturing EngineersSME 2013 -----------------------------------------------------------------------------------------------------------------------3.4.5.6.7.Micro Wire-EDM Using EDM Oil as Dielectric, Journal of Advanced Engineering Vol. 3, No. 4, pp. 285-289, 2008 Hideo Takino, Toshimitsu Ichinohe, Katsunori Tanimoto, Kazushi Nomura, Masanori Kunieda, Contouring of Polished Single-Crystal Silicon Plates by Wire Electrical Discharge Machining, Precision Engineering, Vol. 31, pp. 358363, 2007 Kiyoshi Suzuki, Yoichi Shiraishi, Nobuhiro Nakajima, Manabu Iwai, Shinichi Ninomiya, Yukinori Tanaka, Tetsutaro Uematsu, Development of New PCD Made Up of Boron Doped Diamond Particles and its Machinability by EDM, Advanced Materials Research Vols. 76-78, pp. 684-689, 2009 M. Storr, J. Speth, and W. Rehbein, A new Dielectric for Wire-EDM, Proceedings of the 15th International Symposium on Electromachining, USA, pp. 195-199, 2007. Mu-Tian Yan, Guan-Ren Fang, Yi-Ting Liu, An Experimental Study on Micro Wire-EDM of Polycrystalline Diamond Using a Novel Pulse Generator, The International Journal of Advanced Manufacturing Technology, Vol. 66, pp. 1633-1640, 2013. M. T. Yan, C. W. Huang, C. C. Fang, and C. X. Chang, Development of a Prototype Micro Wire-EDM Machine, Journal of Materials Processing Technology, Vol. 149, No. 1-3, pp. 99105, 2004.A Study on Micro Wire-EDM of Polycrystalline Diamond Using Oil Dielectric Mu-Tian YanTsung-Chien LinYu-Liang Su Huafan University, New Taipei City Department of Mechatronic Engineering Abstract This paper aims to investigate the influence of EDM oil and deionized water as dielectrics on micro wire electrical discharge machining characteristics of and polycrystalline diamond. A specific pulse generator for oil-based wire-EDM was devised to suppress thermal damages on the machined surface of PCD while achieving stable machining by supplying high open voltage and low discharge current pulse waveforms. A novel pulse control method was proposed to provide high-frequecncy pulse control signals with a period of off-duty cycle for reionization of the dielectric in the spark gap so as to reduce the consecutive occurrence of short circuits. Compared to water-based micro wire-EDM, oil-based micro wire-EDM could achieve smaller discharge energy and thus producing smaller thermal damaged layer and slit width. In comparison with oil dielectric, deionized waters faster quenching could lead to more micro-cracking on PCD surface. Experimental results also demonstrate that EC-PCD is superior to S-PCD in the smoothness of cutting edg