EMVT Reluctance Machines

  • View
    516

  • Download
    6

Embed Size (px)

DESCRIPTION

Reluctance Machines Facing the challenges of future electrical power trains Prof E.A. Lomonova Dr J.J.H. Paulides

Transcript

  • 1. Electromechanics and Power Electronics GroupEindhoven University of Technology, NLPhone: + 31 (0)40 247-3573/2310Fax: + 31 (0)40 243-4364email: e.lomonova@tue.nlhttp://www.tue.nl/epeReluctance MachinesFacing the challengesof future electrical power trainsProf E.A. Lomonova (e.lomonova@tue.nl)Dr J.J.H. Paulides (j.j.h.paulides@tue.nl) and many MSc, PDeng and PhD students

2. Classification of electrical machines11 3. Synchronous reluctancemachines22 4. 3Simple salient IM-based salient structuresstructureSegmentalstructureIPM-basedstructureDouble barrierstructureSome historical developments3 5. Modern SynRM structures4Axially laminated rotor: Very high performance Complex construction Costly to manufactureTransversely laminated rotor: High performance Mass-production by punching possible Relatively cheap to manufacturePromising formass-production!4 6. Stator voltage equations in dq-reference frame(no iron losses):dv RidtvR id Phasor diagram:5sdsd s sd sq rsqsq s sq sd rdt += += +Non-linearity and position dependence:sd = f(isd,isq,r) and sq = f(isd,isq,r)Analytical modeling5 7. Numerical modeling: Finite Element (FE)Properties of FE modeling: Accurate magnetic field solution Includes non-linear soft-magnetic materials Includes leakage flux of mechanical connections Relatively long computation time66 8. Drives and controlStructure of the SynRM drive:77 9. Examples of commercial SynRM drivesABB SynRM motor-drive package: Power range: 11 kW 315 kW High efficiency (IE4) or high powerdensity Seperate drive with sensorlesscontrol8KSB SuPremE motor Power range: 0.55 kW 45 kW High efficiency (IE4) Motor mounted drive with sensorlesscontrol8 10. Permanent magnet assisted SynRMsImproving SynRM performance: Add cheap PM to barriers(e.g. Ferrite PMs) Increase torque capabilityand power factor99 11. Flux-switching machines10 12. Switched reluctance machines with assisted excitation Flux-switching machines11Reluctance machines with hybrid excitation 13. Switched reluctance machine=Low torquedensity+ RobustrotorstructureFlux-switching machinePermanentmagnetsThree-phasearmaturewindingsFerromagneticmaterialBrushless AC/DC machineComplicatedrotor structureHightorquedensity12Flux switching machine 14. With PM Excitation With DC Excitation13PM or DC excitation? 15. Advantages of DC excitation: No need of rare-earth elements Allow higher temperature Wide speed range[*][*] Y. Tang, J. J. H. Paulides, E. A. Lomonova, Flux-switchingmachine with DC excitation, Transaction onMagnetics, Vol. 48(11), pp. 3583-3586, Nov., 201214DC excited flux-switching machine 16. Toroidal DC windingLap DC windingAC windingsConcentratedwindingsDistributed windingsDC windings15Different winding topologies 17. Flux-switching machinesApplications16 18. Automotive industry EnergyIn-wheel traction ofelectric car Servo drivesWindMillingCutters Hydro17Application of flux switching machines 19. 18Application In-wheel traction Automotive industryIn-wheel traction ofelectric car 20. CPSRTorque Max.TorqueBasespeedPowerMax.Constant power speed Compact and light-weight High torque density Wide speed range High efficiencySpeed Requirements for the motor design19Application In-wheel traction 21. 22. inverter supply voltage!#$,%##$50 km/h@15%140 km/h@0%80 km/h@10%20Efficiency map based on: Copper losses Pcu, Iron losses Pfe, and Friction losses.Application example: Traction 23. Field oriented control (FOC) Controller structure Control of ' 24. () * and + Field weakening Space vector modulation21Application example: Traction controller 25. Chosen control strategy Follow the ,-./ line Calculate-./)01 26. 2* Calculate 3453) -./ 27. 456* 6 follows 3 Always on the ,-./ line789:8: ;= ?8)78*7@22Application example: Control strategy 28. 23Application of flux switching machines Servo drivesCutters Milling 29. Application example Design for fast acceleration9-10-2014 PAGE 24Back-emfTorque24 30. Application example Performance comparison Stall torques measured from the normalized de-ratingcharacteristics at a housing temperature of 60CBenchmark Prototype Torque ripple reduced by a continuous rotor skewing25 The FSPM prototype is compared to a state-of-the-art industrialbenchmark machine, i.e. a brushless PM motor. 31. 26Application example Performance evaluation FSPMs offer very good servo capability with loweredinertia due to PM-less rotor with a high stall torque A higher torque-to-inertia ratio is achieved for an activemotor volume under identical thermal operation A smooth torque profile combined with low noise isensured with only 0.2% rippleElectromechanics and Power Electronics GroupEindhoven University of Technology, NLPhone: + 31 (0)40 247-3573/2310Fax: + 31 (0)40 243-4364email: e.lomonova@tue.nlhttp://www.tue.nl/epe 32. Further readingTU/e EPE Literature27Electromechanics and Power Electronics GroupEindhoven University of Technology, NLPhone: + 31 (0)40 247-3573/2310Fax: + 31 (0)40 243-4364email: e.lomonova@tue.nlhttp://www.tue.nl/epe 33. 20+ publications in peer reviewed international journals IEEE Magnetics, Industry applications, Power electronics COMPEL, ETASR, IET, Springer, Elsevier30+ publications in highly ranked European and internationalconferences: INTERMAG EVER ELECTRIMACS COMPUMAG ICEM ECCE28PublicationsConferences (Overview)... 34. Journal publications Y. Tang, J. J. H. Paulides, E. A. Lomonova, Energy conversion in dc excited flux-switching machines, IEEETransactions on Magnetics, to be published in 2014. Y. Tang, J. J. H. Paulides, E. A. Lomonova, Automated design of dc-excited flux-switching in-wheel motorusing magnetic equivalent circuits, IEEE Transactions on Magnetics, to be published in 2014. Y. Tang, J. J. H. Paulides, E. A. Lomonova, Topologies of flux-switching machines for in-wheel traction,COMPEL: The International Journal for Computation and Mathematics in Electrical and ElectronicEngineering, to be published in 2014. Y. Tang, J. J. H. Paulides, E. A. Lomonova, Analytical modeling of flux-switching motor using variablemagnetic equivalent circuits, ISRN Automotive Engineering, 2014, 1-11. Y. Tang, T. E. Motoasca, J. J. H. Paulides, E. A. Lomonova, Comparison of flux-switching machines andpermanent magnet synchronous machines in an in-wheel traction application, COMPEL: The InternationalJournal for Computation and Mathematics in Electrical and Electronic Engineering, 32(1),153 165, 2013. Y. Tang, J. J. H. Paulides, T. E. Motoasca, E. A. Lomonova, Flux-switching machine with DC excitation, IEEETransactions on Magnetics, 48(11), 3583-3586, 2012. Y. Tang, J. J. H. Paulides, K. V. Kazmin, E. A. Lomonova, Investigation of winding topologies for permanentmagnet in-wheel motors, COMPEL: The International Journal for Computation and Mathematics in Electricaland Electronic Engineering, 31(1), 88-107, 2012. J. J. H. Paulides, B. L. J. Gysen, K. J. Meessen, Y. Tang, E. A. Lomonova, Influence of multiple air gaps on theperformance of electrical machines with (semi) Halbach magnetization, IEEE Transactions on Magnetics,47(10), 2664-2667, 2011. E. A. Lomonova, E. V. Kazmin, E.V., Y. Tang, J. J. H. Paulides, In-wheel PM motor : compromise between highpower density and extended speed capability, COMPEL: The International Journal for Computation andMathematics in Electrical and Electronic Engineering, 30(1), 98-116, 201129PublicationsConferences (cont) 35. Journal publications Sprangers, R.L.J., Paulides, J.J.H., Boynov, K., Waarma, J. and Lomonova, E.A., Comparison of twoanisotropic layer models applied to induction motors, IEEE Trans. Ind. Appl., Vol. 50, No. 4, pp. 2533-2543,July/August 2014 Ilhan, E., Kremers, M.F.J., Motoasca, T.E., Paulides, J.J.H.Lomonova, E. (2013). Nonlinear performancecharacteristics of flux-switching PM motors. Journal of Electrical Engineering, 2013:593434 Kremers, M.F.J., Paulides, J.J.H., Ilhan, E., Janssen, J.L.G.Lomonova, E. (2013). Relative permeability in a3D analytical surface charge model of permanent magnets. IEEE Transactions on Magnetics, 49(5), 2299-2302. Ilhan, E., Paulides, J.J.H.Lomonova, E. (2012). Fast torque estimation of in-wheel parallel flux switchingmachines for hybrid trucks. COMPEL: The International Journal for Computation and Mathematics inElectrical and Electronic Engineering, 31(1), 40-53. Ilhan, E., Motoasca, T.E., Paulides, J.J.H.Lomonova, E. (2012). Conformal mapping: Schwarz-Christoffelmethod for flux-switching PM machines. Journal of Mathematical Sciences, 6:37 Ilhan, E., Kremers, M.F.J., Motoasca, T.E., Paulides, J.J.H.Lomonova, E. (2012). Spatial discretizationmethods for air gap permeance calculations in double salient traction motors. IEEE Transactions on IndustryApplications, 48(6), 2165-2172. 2010 Gysen, B.L.J., Ilhan, E., Meessen, K.J., Paulides, J.J.H.Lomonova, E. (2010). Modeling of flux switchingpermanent magnet machines with Fourier Analysis. IEEE Transactions on Magnetics, 46(6), 1499-1502. Ilhan, E., Paulides, J.J.H.Lomonova, E. (2010). Fast torque estimation of in-wheel parallel flux switchingmachines for hybrid trucks. Journal of Electrical Engineering, 10(3), 175-182. Ilhan, E., Gysen, B.L.J., Paulides, J.J.H.Lomonova, E. (2010). Analytical hybrid model for flux switchingpermanent magnet machines. IEEE Transactions on Magnetics, 46(6), 1762-1765. Ilhan, E., Motoasca, T.E., Paulides, J.J.H.Lomonova, E. (2012). Energy conversion loops for flux-switchingPM machine analysis. Engineering, TechnologyApplied Science Research, 2(5), 285-290.30PublicationsConferences (cont) 36. Conference publications Y. Tang, J. J. H. Paulides, E. A. Lomonova, Energy conversion in dc excited flux-switching machines,Proceedings of the IEEE International Magnetics Conference, (INTERMAG 2014), Dresden, Germany, May 4-8,2014. Y. Tang, J. J. H. Paulides, E. A. Lomonova, Automated design of dc-excited flux-switching in-wheel motorusing magnetic equivalent circuits, Pro