24
PV Lead-Acid Battery System All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Design Kit

PV Lead Acid Battery System Simulation

Embed Size (px)

DESCRIPTION

PV Lead Acid Battery System Simulation using PSpice or LTspice

Citation preview

Page 1: PV Lead Acid Battery System Simulation

PV Lead-Acid Battery System

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1

Design Kit

Page 2: PV Lead Acid Battery System Simulation

Contents

Slide #

1. Lead-Acid Battery

1.1 Lead-Acid Battery Specification...........................................................................

1.2 Discharge Time Characteristics...........................................................................

1.3 Charge Time Characteristics................................................................................

2. Solar Cells

2.1 Solar Cells Specification......................................................................................

2.2 Output Characteristics vs. Incident Solar Radiation.............................................

3. Solar Cell Battery Charger.........................................................................................

3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit..............................

3.2 PV Lead-Acid Battery Charger Circuit..................................................................

3.3 Charging Time Characteristics vs. Weather Condition.........................................

3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant

Current.................................................................................................................

3.5 Constant Current PV Lead-Acid Battery Charger Circuit......................................

3.6 Charging Time Characteristics vs. Weather Condition + Constant Current..........

4. Simulation PV Lead-Acid Battery System in 24hr.

4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr..............................

4.2 Short-Circuit Current vs. Time (24hr.)..................................................................

4.3 PV-Battery System Simulation Circuit..................................................................

4.4 PV-Battery System Simulation Result..................................................................

Simulations index............................................................................................................

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18-23

24

2All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

Page 3: PV Lead Acid Battery System Simulation

GS YUASA’s Lead-Acid : MSE-100-6

• Nominal Voltage................ 6.0 [Vdc]

• Capacity............................ 100[Ah]@C10, 65[Ah]@C1

• Rated Charge.................... 0.1C10A

• Input Voltage...................... 6.69 [Vdc]

• Charging time..................... 24 [hours] @0.1C10A

1.1 Lead-Acid battery Specification

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3

Page 4: PV Lead Acid Battery System Simulation

Time

10ms 100ms 1.0s 10s 100s

V(HI)

4.2V

4.8V

5.4V

6.0V

6.6V

0.6C (60A)

0

R3

1G

0

C1

10n

0 0

IN-

OUT+

OUT-

IN+

G1

limit(V(%IN+, %IN-)/1m,0,Idch)GVALUE

Hi

PARAMETERS:Idch = {Rate*CxAh}CxAh = 100Rate = 0.1

U1

MSE-100-6

NS = 1TSCALE = 3600

SOC1 = 1

PLUS

MINUS

1.2 Discharge Time Characteristics

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4

Battery Model Parameters

NS (number of batteries in unit) = 1 cell

C (capacity) = 100[Ah]@C10

SOC1 (initial state of charge) = “1” (100%)

TSCALE (time scale) , simulation : real time

1 : 3600s or

1s : 1h

Discharge Rate : 0.1C(10A), 0.25C(25A) , 0.6C(60A), and 1C(100A)

TSCALE=3600

means time Scale

(Simulation time :

Real time) is 1:3600

0.1C (10A)

0.25C (25A)

1C (100A)

Page 5: PV Lead Acid Battery System Simulation

Time

0s 4s 8s 12s 16s 20s 24s

1 V(X_U1.1)*100 2 V(HI) 3 I(G1)/100

0V

20V

40V

60V

80V

100V

120V

140V1

5.7V

6.0V

6.3V

6.6V

6.9V

7.2V

7.5V

7.8V2

0A

30mA

60mA

90mA

120mA

150mA

180mA

210mA3

>>

1.3 Charge Time Characteristics

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5

SOC [%]

Battery Model Parameters

NS (number of batteries in series) = 1 cell

C (capacity) = 100[Ah]@C10

SOC1 (initial state of charge) = “1” (100%)

TSCALE (time scale) , simulation : real time

1 : 3600s or

1s : 1h

Charging Time

Input Voltage = 6.69 Vdc

Input Current = 10 A @0.1C10

V2

6.69

PARAMETERS:

Ich = {0.1*CxAh}CxAh = 100

Hi

00

IN-

OUT+

OUT-

IN+

G1

limit(V(%IN+, %IN-)/0.1m,0,Ich)

GVALUE

0

R3

1G

0

C110n

U1

MSE-100-6

NS = 1TSCALE = 3600

SOC1 = 0

PLUS

MINUS

C10AVbatt [V]

Page 6: PV Lead Acid Battery System Simulation

BP Solar’s photovoltaic module : BP365TS

• Maximum power (Pmax)..............65[W]

• Voltage at Pmax (Vmp)...............8.7[V]

• Current at Pmax (Imp)................7.5[A]

• Short-circuit current (Isc)............8.1[A]

• Open-circuit voltage(Voc)...........11.0[V]

2.1 Solar Cells Specification

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6

456mm

1513m

m

Page 7: PV Lead Acid Battery System Simulation

V_V1

0V 2V 4V 6V 8V 10V 12V 14V

I(sense)* V(sense:+)

0W

20W

40W

60W

80W

100W

SEL>>

I(sense)

0A

2A

4A

6A

8A

10A

2.2 Output Characteristics vs. Incident Solar Radiation

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7

Parameter, SOL is added as

normalized incident radiation,

where SOL=1 for AM1.5

conditions

SOL=1

SOL=0.5

SOL=0.16

SOL=1

SOL=0.5

SOL=0.16

Curr

ent

(A)

Pow

er

(W)

Voltage (V)

BP365TS Output Characteristics vs. Incident Solar Radiation

+

BP365TS

U2BP365TSSOL = 1

Page 8: PV Lead Acid Battery System Simulation

Time

0s 4s 8s 12s 16s 20s 24s

1 V(X_U1.1)*100 2 V(HI) 3 I(G1)/100

0V

20V

40V

60V

80V

100V

120V

140V1

5.7V

6.0V

6.3V

6.6V

6.9V

7.2V

7.5V

7.8V2

0A

60mA

90mA

120mA

150mA

180mA

210mA3

>>

3. Solar Cell Battery Charger

• Solar Cell charges the Lead-Acid Battery (MSE-100-6) with direct connect technique.

Choose the solar cell that is able to provide current at charging rate or more with the

maximum power voltage (Vmp) nears the battery charging voltage.

• MSE-100-6

– Charging time is approximately 24 hours with charging rate 0.1C or 10A

– Voltage during charging with 0.1C is between 5.93 to 6.69 V

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8

5.93 V

6.69 V

0.1C or 10A

Page 9: PV Lead Acid Battery System Simulation

3.1 Concept of Simulation PV Lead-Acid Battery

Charger Circuit

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9

Lead-Acid

Battery

Photovoltaic

Module

MSE-100-6 (GS YUASA)

DC6.0V

100[Ah]@C10, 65[Ah]@C1

Short circuit current ISC

depends on condition: SOL

Over Voltage

Protection Circuit

7.29V Clamp Circuit

BP 365TS (BP Solar)*3panels

Vmp(system)=Vmp(panel)=8.7V

Imp=22.5A (7.5A3)

Pmax=195W (65W 3)

Input voltage + VF(D1)

6.69V+0.6V=7.29V

Page 10: PV Lead Acid Battery System Simulation

3.2 PV Lead-Acid Battery Charger Circuit

• Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident

radiation, where SOL=1 for AM1.5 conditions.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10

Hi

0

0

C1

1n

pv

pv

pv

+

BP365TS

U4BP365TSSOL = {sol}

PARAMETERS:

sol = 1

0

pv

0

+

BP365TS

U2BP365TSSOL = {sol}

pv U1MSE-100-6

TSCALE = 3600SOC1 = 0

PLU

S

MIN

US

+

BP365TS

U3BP365TSSOL = {sol}

0

DMOD

D1

Voch7.29Vdc

0

Page 11: PV Lead Acid Battery System Simulation

Time

0s 4s 8s 12s 16s 20s 24s

V(X_U1.1)*100

0V

20V

40V

60V

80V

100V

3.3 Charging Time Characteristics vs. Weather Condition

• Simulation result shows the charging time for sol = 1, 0.5, and 0.16.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11

sol = 1.00

sol = 0.50

sol = 0.16

Page 12: PV Lead Acid Battery System Simulation

3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit

+ Constant Current

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12

Lead-Acid

Battery

Photovoltaic

Module

Over Voltage

Protection Circuit

7.29V Clamp Circuit

MSE-100-6 (GS YUASA)

DC6.0V

100[Ah]@C10, 65[Ah]@C1

Constant

Current

Control

Circuit

Icharge=0.1C (10A)

Short circuit current ISC

depends on condition: SOL

BP 365TS (BP Solar)*3panels

Vmp(system)=Vmp(panel)=8.7V

Imp=22.5A (7.5A3)

Pmax=195W (65W 3)

Input voltage + VF(D1)

6.69V+0.6V=7.29V

Page 13: PV Lead Acid Battery System Simulation

3.5 Constant Current PV Lead-Acid Battery Charger Circuit

• Input the battery capacity (Ah) and charging current rate (e.g. 0.1*CxAh) in the

• “PARAMETERS: CxAh = 100 and rate = 0.1 ” to set the charging current.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13

Vmp(system)=Vmp(panel)=8.7V

Imp=22.5A

Pmax=195W

pv

DMODD1

Voch7.29Vdc

0

0

Hi

0

C1

1n

pv

pv

+

BP365TS

U4BP365TSSOL = {sol}

0

PARAMETERS:

sol = 1

0

pv

+

BP365TS

U2BP365TSSOL = {sol}

pv

+

BP365TS

U3BP365TSSOL = {sol}

0

PARAMETERS:

Ich = {0.1*CxAh}CxAh = 100

IN-

OUT+

OUT-

IN+

G1GVALUE

U1MSE-100-6

TSCALE = 3600SOC1 = 0

PLU

S

MIN

US

Page 14: PV Lead Acid Battery System Simulation

Time

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s

V(X_U1.1)*100

0V

20V

40V

60V

80V

100V

3.6 Charging Time Characteristics vs. Weather Condition

(Constant Current)

• Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can

generate current more than the constant charge rate (0.1), battery can be fully

charged in about 9.364 hour.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14

sol = 1.00

sol = 0.50

sol = 0.16

Page 15: PV Lead Acid Battery System Simulation

4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15

Lead-Acid

Battery

Photovoltaic

Module

Over Voltage

Protection Circuit

7.29V Clamp Circuit

MSE-100-6 (GS YUASA)

DC6.0V

100[Ah]@C10, 65[Ah]@C1

DC/DC

Converter

Vopen= (V)

Vclose= (V)

The model contains 24hr.

solar power data (example).

DC Load

VIN=4.5~9.0V

VOUT=3.3V

VLOAD = 3.3V

ILOAD 18A

Low-Voltage

Shutdown

Circuit

BP 365TS (BP Solar)*3panels

Vmp(system)=Vmp(panel)=8.7V

Imp=22.5A (7.5A3)

Pmax=195W (65W 3)

Input voltage + VF(D1)

6.69V+0.6V=7.29V

Page 16: PV Lead Acid Battery System Simulation

Time

0s 4s 8s 12s 16s 20s 24s

I(sense)

0A

5A

10A

15A

20A

25A

4.2 Short-Circuit Current vs. Time (24hr.)

• Short-circuit current vs. time characteristics of photovoltaic module BP365TS for

24hours as the solar power profile (example) is included to the model.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16

The model contains

24hr. solar power data

(example).

BP365TS_24H_TS3600

pv

pv

+

BP365TS

U4

00

pv

+

BP365TS

U2

pv

+

BP365TS

U3

0

Page 17: PV Lead Acid Battery System Simulation

4.3 PV-Battery System Simulation Circuit

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17

Solar cell model

with 24hr. solar

power data.

Lopen value is load

shutdown voltage.

Lclose value is load

reconnect voltage

SOC1 value is initial

State Of Charge of

the battery, is set as

70% of full voltage.

60W Load

(3.3Vx18.181A).

Simulation at 100W load, change I1 from 18.181A to 30.303A

Conoff1

C1

0.1n

0

Ronoff1

dchth

DC/DC Converter

Low-Voltage Shutdown Circuit

DMOD

D1

Voch7.29Vdc

0

0

0

batt

pv

batt1+

-

+

-

S2S

VON = 0.7

ROFF = 10MEGRON = 10m

0

0

Iomax

IN+

IN-

OUT+

OUT-

ecal_IomaxEVALUE 0

IN+

IN-

OUT+

OUT-

E2EVALUE

0

PARAMETERS:Lopen = 5.55

Lclose = 6.35

IN+

IN-

OUT+

OUT-

E1EVALUE

Conoff1nIC = 5

Ronoff

PARAMETERS:

n = 1

Lctrl

+ U2BP365TS_24H_TS3600

I1

18.181A

0

OUT

IN+

IN-

OUT+

OUT-

E3

EVALUE

out_dc

DMOD

D2

U1MSE-100-6

TSCALE = 3600SOC1 = 0.7

PL

US

MIN

US

IN-

OUT+

OUT-

IN+

G1

GVALUE

IN

60W

0

+ U3

0

+ U4

Page 18: PV Lead Acid Battery System Simulation

Time

4.0s 8.0s 12.0s 16.0s 20.0s 24.0s0.1s

1 V(out_dc) 2 I(IN)

0V

2.5V

5.0V1

0A

20A

30A2

>>

V(X_U1.1)*100

0V

50V

100V

1 V(batt) 2 I(U1:PLUS)

6.0V

7.0V1

-15A

5A

15A2

SEL>>SEL>>

I(pv)

0A

10A

20A

4.3.1 Simulation Result (SOC1=100, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)

• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

SOC1=100%

PV module charge the battery

Charging

time

Page 19: PV Lead Acid Battery System Simulation

Time

4.0s 8.0s 12.0s 16.0s 20.0s 24.0s0.1s

1 V(out_dc) 2 I(IN)

0V

2.5V

5.0V1

0A

20A

30A2

>>

V(X_U1.1)*100

0V

50V

100V

(100.000m,69.972)

1 V(batt) 2 I(U1:PLUS)

5.0V

6.0V

7.0V1

-20A

20A2

SEL>>SEL>> (9.584,6.3500)

(6.9550,5.5528)

I(pv)

0A

10A

20A

4.3.2 Simulation Result (SOC1=70, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)

• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

SOC1=70%

V=Lopen

V=Lclose

Shutdown

Reconnect

Fully charged,

stop charging

PV module charge the battery

Charging

time

• .Options ITL4=30

Page 20: PV Lead Acid Battery System Simulation

Time

4.0s 8.0s 12.0s 16.0s 20.0s 24.0s0.1s

1 V(out_dc) 2 I(IN)

0V

2.5V

5.0V1

0A

20A

30A2

>>

V(X_U1.1)*100

0V

50V

100V

(100.000m,30.192)

1 V(batt) 2 I(U1:PLUS)

5.0V

6.0V

7.0V1

-20A

20A2

SEL>>SEL>> (9.1927,6.3500)

(2.4428,5.5551)

I(pv)

0A

10A

20A

4.3.3 Simulation Result (SOC1=30, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)

• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 20

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

SOC1=30

V=Lopen

V=Lclose

Shutdown

Reconnect

Fully charged,

stop charging

PV module charge the battery

Charging time

Page 21: PV Lead Acid Battery System Simulation

Time

0s 4s 8s 12s 16s 20s 24s

1 V(out_dc) 2 I(IN)

0V

2.5V

5.0V1

0A

20A

30A2

>>

V(X_U1.1)*100

0V

50V

100V

(100.000u,10.999)

1 V(batt) 2 I(U1:PLUS)

5.0V

6.0V

7.0V1

-20A

20A2

SEL>>SEL>>(9.4924,6.3500)

(1.1208,5.5500)

I(pv)

0A

10A

20A

4.3.4 Simulation Result (SOC1=10, IL=18.18A or 60W load)

• Run to time: 24s (24hours in real world)

• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 21

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

SOC1=10

V=Lclose

Shutdown

Reconnect

Fully charged,

stop charging

PV module charge the battery

Charging time

V=Lopen

Page 22: PV Lead Acid Battery System Simulation

Time

0s 4s 8s 12s 16s 20s 24s

1 V(out_dc) 2 I(IN)

0V

2.5V

5.0V1

0A

20A

30A2

>>

V(X_U1.1)*100

0V

50V

100V

(10.000m,100.000)

1 V(batt) 2 I(U1:PLUS)

5.0V

6.0V

7.0V1

-20A

20A2

SEL>>SEL>>

(19.118,5.5500)

(7.7024,6.3500)

(4.8471,5.5500)

I(pv)

0A

10A

20A

4.3.5 Simulation Result (SOC1=100, IL=30.30A or 100W load)

• Run to time: 24s (24hours in real world)

• Step size: 0.01s

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 22

PV generated current

Battery current

Battery voltage

Battery SOC

DC/DC input current

DC output voltage

• .Options ITL4=30

SOC1=100

PV module charge the battery

Charging

time

V=Lopen

Shutdown

V=Lopen

Shutdown

V=Lclose

Reconnect

Page 23: PV Lead Acid Battery System Simulation

4.4 Simulation Result (Example of Conclusion)

The simulation start from midnight(time=0). The system supplies DC load 60W.

• If initial SOC is 100%,

– this system will never shutdown.

• If initial SOC is 70%,

– this system will shutdown after 6.955 hours (about 6:57AM.).

– system load will reconnect again at 9:35AM (Morning).

– With the PV Panel generated current profile, battery will fully charged in about 4.36 hours.

• If initial SOC is 30%,

– this system will shutdown after 2.443 hours (about 2:27AM.).

– system load will reconnect again at 9:12AM (Morning).

– With the PV Panel generated current profile, battery will fully charged in about 4.20 hours.

• If initial SOC is 10%,

– this system will shutdown after 1.121 hours (about 1:07AM.).

– this system will reconnect again at 9:30AM (Morning).

• With the PV Panel generated current profile, battery will fully charged in about 4.14 hours.

The simulation start from midnight(time=0). The system supplies DC load 100W.

• If initial SOC is 100%,

– this system will shutdown after 4.847 hours (about 4:51AM.).

– system load will reconnect again at 7:42AM (Morning).

– this system will shutdown again at 7:07PM (Night).

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 23

Page 24: PV Lead Acid Battery System Simulation

Simulations index

Simulations Folder name

1. PV Lead-Acid Battery Charger Circuit............................................

2. Constant Current PV Lead-Acid Battery Charger Circuit...............

3. PV-Battery System Simulation Circuit (SOC1=100, 60W).............

4. PV-Battery System Simulation Circuit (SOC1=70, 60W)...............

5. PV-Battery System Simulation Circuit (SOC1=30, 60W)...............

6. PV-Battery System Simulation Circuit (SOC1=10, 60W)...............

7. PV-Battery System Simulation Circuit (SOC1=100, 100W)...........

charge-sol

charge-sol-const

sol_24h_soc100_60W

sol_24h_soc70_60W

sol_24h_soc30_60W

sol_24h_soc10_60W

sol_24h_soc100_100W

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 24