41
Analisis spektra UV- Vis senyawa kompleks

Uv vis spektra senyawa kompleks2 penting

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Uv vis spektra senyawa kompleks2 penting

Analisis spektra UV-Vis senyawa kompleks

Page 2: Uv vis spektra senyawa kompleks2 penting

Warna senyawa kompleks

Page 3: Uv vis spektra senyawa kompleks2 penting
Page 4: Uv vis spektra senyawa kompleks2 penting

Konfigurasi elektronik atom multi-elektron

Apakah makna konfigurasi 2p2 ?

n = 2; l = 1; ml = -1, 0, +1; ms = ± 1/2

Penataan elektron yang sesuai

microstatesbeda energi karena tolakan antar elektron (inter-electronic repulsions)

Page 5: Uv vis spektra senyawa kompleks2 penting

Konfigurasi elektronik atom multi-elektron pasangan RS

Russell-Saunders (or LS) coupling

Untuk tiap elektron 2p n = 2; l = 1

ml = -1, 0, +1ms = ± 1/2

Untuk tiap atom multi-elektronL = total orbital angular momentum quantum numberS = total spin angular momentum quantum number

Spin multiplicity = 2S+1

ML = ∑ml (-L,…0,…+L)MS = ∑ms (S, S-1, …,0,…-S)

• ML/MS menyatakan microstates • L/S menyatakan states (kumpulan microstates)• Group microstates dengan energi yang sama disebut terms

Page 6: Uv vis spektra senyawa kompleks2 penting

Menentukan microstates untuk p2

Page 7: Uv vis spektra senyawa kompleks2 penting

Spin multiplicity = 2S + 1

Page 8: Uv vis spektra senyawa kompleks2 penting

Menentukan harga L, ML, S, Ms untuk terms yang berbeda

1S

2P

Page 9: Uv vis spektra senyawa kompleks2 penting

Mengklasifikasikan microstates p2

Spin multiplicity = # columns of microstates

Next largest ML is +1,so L = 1 (a P term)

and MS = 0, ±1 for ML = +1,2S +1 = 3

3P

One remaining microstate ML is 0, L = 0 (an S term)

and MS = 0 for ML = 0,2S +1 = 1

1S

Largest ML is +2,so L = 2 (a D term)

and MS = 0 for ML = +2,2S +1 = 1 (S = 0)

1D

Page 10: Uv vis spektra senyawa kompleks2 penting

Largest ML is +2,so L = 2 (a D term)

and MS = 0 for ML = +2,2S +1 = 1 (S = 0)

1D

Next largest ML is +1,so L = 1 (a P term)

and MS = 0, ±1 for ML = +1,2S +1 = 3

3P

ML is 0, L = 0 2S +1 = 1

1S

Page 11: Uv vis spektra senyawa kompleks2 penting
Page 12: Uv vis spektra senyawa kompleks2 penting

Energy of terms (Hund’s rules)

Lowest energy (ground term)Highest spin multiplicity

3P term for p2 case

If two states havethe same maximum spin multiplicity

Ground term is that of highest L

3P has S = 1, L = 1

Page 13: Uv vis spektra senyawa kompleks2 penting

before we did:

p2

ML & MS

MicrostateTable

States (S, P, D)Spin multiplicity

Terms3P, 1D, 1S

Ground state term3P

the largest ML Lspin multiplicity = Σcolumnsor 2S+1, S the largest MS

Page 14: Uv vis spektra senyawa kompleks2 penting

single e- (electronic state) multi-e- (atomic state)

Page 15: Uv vis spektra senyawa kompleks2 penting
Page 16: Uv vis spektra senyawa kompleks2 penting
Page 17: Uv vis spektra senyawa kompleks2 penting

For metal complexes we need to considerd1-d10

d2

3F, 3P, 1G, 1D, 1S

For 3 or more electrons, this is a long tedious process

But luckily this has been tabulated before…

Page 18: Uv vis spektra senyawa kompleks2 penting

Transitions between electronic terms will give rise to spectra

Page 19: Uv vis spektra senyawa kompleks2 penting

Remember what we’re after ?

Theory to explain electronic excitations/transitions observed for metal complexes

Page 20: Uv vis spektra senyawa kompleks2 penting

Selection rules(determine intensities)

Laporte rule

g g forbidden (that is, d-d forbidden)

but g u allowed (that is, d-p allowed)

Spin rule

Transitions between states of different multiplicities forbidden

Transitions between states of same multiplicities allowed

These rules are relaxed by molecular vibrations, and spin-orbit coupling

Page 21: Uv vis spektra senyawa kompleks2 penting

Breakdown of selection rules

Page 22: Uv vis spektra senyawa kompleks2 penting

Group theory analysis of term splitting

Page 23: Uv vis spektra senyawa kompleks2 penting
Page 24: Uv vis spektra senyawa kompleks2 penting

Free ion term for d2

3F, 3P, 1G, 1D, 1S

Real complexes

Page 25: Uv vis spektra senyawa kompleks2 penting

Tanabe-Sugano diagrams

d2

• show correlation of spectroscopic transitions observed for ideal Oh complexes with electronic states

• energy axes are parameterized in terms of Δo and the Racah parameter (B) which measures repulsion between terms of the same multiplicity

Page 26: Uv vis spektra senyawa kompleks2 penting

d2 complex: Electronic transitions and spectra

only 2 of 3 predicted transitions observed

Page 27: Uv vis spektra senyawa kompleks2 penting

TS diagrams Other dn configurations

d1 d9

d3

d2 d8

Page 28: Uv vis spektra senyawa kompleks2 penting

d3

Other configurations

The limit betweenhigh spin and low spin

Page 29: Uv vis spektra senyawa kompleks2 penting

the spectra of dn hexaaqua complexes of 1st row TMs

Page 30: Uv vis spektra senyawa kompleks2 penting

The d5 case

All possible transitions forbiddenVery weak signals, faint color

Page 31: Uv vis spektra senyawa kompleks2 penting

symmetry labels

Page 32: Uv vis spektra senyawa kompleks2 penting
Page 33: Uv vis spektra senyawa kompleks2 penting
Page 34: Uv vis spektra senyawa kompleks2 penting
Page 35: Uv vis spektra senyawa kompleks2 penting
Page 36: Uv vis spektra senyawa kompleks2 penting

Charge transfer spectra

LMCT

MLCT

Ligand character

Metal character

Metal character

Ligand character

Much more intense bands

Page 37: Uv vis spektra senyawa kompleks2 penting

[Cr(NH3)6]3+

Page 38: Uv vis spektra senyawa kompleks2 penting
Page 39: Uv vis spektra senyawa kompleks2 penting

Determining o from spectra

d1d9

One transition allowed of energy o

Page 40: Uv vis spektra senyawa kompleks2 penting

Lowest energy transition = o

mixing

mixing

Determining o from spectra

Page 41: Uv vis spektra senyawa kompleks2 penting

Ground state mixing

E (T1gA2g) - E (T1gT2g) = o