Estrogens in rheumatoid arthritis; the immune system and bone

Preview:

Citation preview

R

E

UC

a

ARRA

KRESIb

C

ra

U

0d

Molecular and Cellular Endocrinology 335 (2011) 14–29

Contents lists available at ScienceDirect

Molecular and Cellular Endocrinology

journa l homepage: www.e lsev ier .com/ locate /mce

eview

strogens in rheumatoid arthritis; the immune system and bone

lrika Islander ∗,1, Caroline Jochems1, Marie K. Lagerquist, Helena Forsblad-d’Elia, Hans Carlstenenter for Bone and Arthritis Research (CBAR), Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Sweden

r t i c l e i n f o

rticle history:eceived 6 November 2009eceived in revised form 28 May 2010

a b s t r a c t

Rheumatoid arthritis (RA) is an autoimmune disease that is more common in women than in men. Thepeak incidence in females coincides with menopause when the ovarian production of sex hormonesdrops markedly. RA is characterized by skeletal manifestations where production of pro-inflammatory

ccepted 29 May 2010

eywords:heumatoid arthritisstrogen

mediators, connected to the inflammation in the joint, leads to bone loss. Animal studies have revealeddistinct beneficial effects of estrogens on arthritis, and a positive effect of hormone replacement therapyhas been reported in women with postmenopausal RA. This review will focus on the influence of femalesex hormones in the pathogenesis and progression of RA.

elective estrogen receptor modulatorsmmune systemone

© 2010 Elsevier Ireland Ltd. All rights reserved.

ontents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152. Pathogenesis of rheumatoid arthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1. CD4+ and CD8+ T cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2. IL-17 producing T cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.3. Regulatory T cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.4. B cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Osteoimmunology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.1. OPG/RANK/RANKL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.2. Cytokines that influence bone metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3. Skeletal manifestations in RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Estrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.1. Estrogen receptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.2. Hormone replacement therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.3. Selective estrogen receptor modulators (SERM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Estrogens and the immune system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.1. The innate and adaptive immune system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6. Estrogens and bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196.1. Menopause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196.2. Treatment with sex steroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7. Sex steroids in RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.1. Sex steroids in animal models of arthritis . . . . . . . . . . . . . . . . . . . . . . . . . .7.2. Effects of sex steroids in human RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.3. Clinical studies on HRT in RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. Treatment of osteoporosis in RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abbreviations: BMD, bone mineral density; CII, collagen type II; CIA, collagen-induceesponse element; HRT, hormone replacement therapy; OPG, osteoprotegerin; OPGL, ostectivator of NF�B ligand; SERM, selective estrogen receptor modulator; SLE, systemic lup∗ Corresponding author at: Center for Bone and Arthritis Research (CBAR), Departmentniversity of Gothenburg, Box 480, 405 30 Göteborg, Sweden. Tel.: +46 31 342 64 11; fax

E-mail address: ulrika.islander@rheuma.gu.se (U. Islander).1 Both authors contributed equally to this work.

303-7207/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights reserved.oi:10.1016/j.mce.2010.05.018

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

d arthritis; DHEA, dihydroepiandrosterone; ER, estrogen receptor; ERE, estrogenoprotegerin-ligand; OVX, ovariectomy; RA, rheumatoid arthritis; RANKL, receptorus erythematosus; TRANCE, TNF-related activation induced cytokine.of Rheumatology and Inflammation Research, The Sahlgrenska Academy,

: +46 31 823925.

ellular

1

miaslif2pacaaopasadf1(od

t(2iiueeebrfwD

oaeop

2

ueoeul(tcsawtb

U. Islander et al. / Molecular and C

. Introduction

Rheumatoid arthritis (RA) is a progressive systemic autoim-une disease with a prevalence of ∼0.5–1% (Kvien et al., 1997) and

s characterized by symmetrical polyarthritis. Macrophages, T cellsnd B cells infiltrate the synovium that lines the joints, while theynovial fluid is dominated by neutrophils. Chronic inflammationeads to destruction of joint cartilage and bone. Several findingsndicate the involvement of sex hormones in RA. For example, theemale to male incidence ratio is 4–5:1 before 50 years of age, and:1 for patients with a later onset (Kvien et al., 1997, 2006), and theeak incidence in women coincides with menopause (Goemaere etl., 1990). It has been shown that estrogens can affect the diseaseourse of RA in humans (Forsblad-D’Elia et al., 2003a; Ostensen etl., 1983), and in animal models (Holmdahl et al., 1986; Janssonnd Holmdahl, 1989; Yamasaki et al., 2001). Mice subjected tovariectomy (OVX) have decreased levels of estrogens and dis-lay higher frequency and increased severity of collagen-inducedrthritis (CIA), as compared to OVX mice treated with estrogen orham-operated mice with intact levels of estrogen (Holmdahl etl., 1986, 1987; Jochems et al., 2005). In many women with RA theisease activity diminishes during pregnancy when the levels ofemale sex hormones are high (Ostensen et al., 1983; Barrett et al.,999). In contrast, the disease is often aggravated after deliveryOstensen et al., 1983; Barrett et al., 1999, 2000). The complex rolef estrogens in different inflammatory diseases has previously beenescribed in an extensive review by Straub (2007).

Estrogens are also main regulators of skeletal growth and main-enance, as demonstrated in both experimental and human studiesForsblad-D’Elia et al., 2003b; Riggs et al., 2002; Sinigaglia et al.,000; Vanderschueren et al., 2004; Vidal et al., 2000). Previous stud-

es have demonstrated that estrogen deprivation, such as after OVXn animal models and after menopause in women, reduces trabec-lar bone mineral density (BMD) as well as cortical BMD, whilestrogen substitution restores both bone compartments (Reckert al., 1999; Turner, 1999; Windahl et al., 1999). There are sev-ral skeletal manifestations in RA, including joint erosions andoth periarticular and generalized bone loss, due to excess boneesorption by osteoclasts (Hayward and Fiedler-Nagy, 1987). Therequency of generalized osteoporosis in postmenopausal patientsith RA has been reported to be approximately 50% (Forsblad-’Elia et al., 2003a).

This review will start by giving a background to the pathogenesisf RA and the field of osteoimmunology. Then the effects and mech-nisms of estrogen will be described, followed by the influence ofstrogen on the immune system and bone, and finally the influencef female sex hormones will be described in the pathogenesis androgression of RA.

. Pathogenesis of rheumatoid arthritis

The pathogenesis of rheumatoid arthritis (RA) is largelynknown, with genetic and environmental factors influencing dis-ase development and progression (Imboden, 2009). From studiesf animal models resembling RA it has been shown that micexpressing the MHC class II haplotype H2q can develop arthritispon immunization with collagen type II (CII). This well estab-

ished experimental model is called collagen-induced arthritis (CIA)Trentham et al., 1977). In humans it has been proposed that cer-ain HLA-DR4 molecules present peptides of CII, present in jointartilage, which results in susceptibility to develop RA. It has been

uggested that different subtypes of RA exist (Gerli et al., 2002),nd in some RA patients T cells may play the most important role,hile in others B cells are the dominant cell type (Straub, 2007). In

his section, lymphocytes involved in the pathogenesis of RA wille described.

Endocrinology 335 (2011) 14–29 15

2.1. CD4+ and CD8+ T cells

In RA, T cells represent a large proportion of the inflamma-tory cells invading the synovial tissue, and T cell activation andmigration into the synovium occurs as an early consequence of thedisease. These cells adopt a pro-inflammatory phenotype and canactivate for example B cells and synovial macrophages via cytokineproduction. In one study using B10q mice, which are highly suscep-tible to CIA, lack of CD4+ T cells resulted in decreased susceptibilityto disease and lower levels of CII antibodies, whereas lack of CD8+T cells did not significantly affect the disease (Ehinger et al., 2001).In contrast, another study in DBA/1 mice revealed that CD8+ cellswere necessary for disease development, while lack of CD4+ cellsdid not decrease the susceptibility to CIA (Tada et al., 1996). Thesedata suggest that CD4+ and CD8+ T lymphocytes may play differ-ential roles in CIA depending on the genetic background of mousestrains.

The balance of CD4+ Th1 and Th2 cells has been suggested to playa role in the pathogenesis of RA (Dolhain et al., 1996; Morita et al.,1998; Yudoh et al., 2000). The Th1 subset is defined by specific pro-duction of IFN-� and IL-2, and by the stimulation of cell-mediatedimmunity, whereas the Th2 subset specifically produces IL-4 andstimulates humoral immunity (Abbas et al., 1996; Mosmann andSad, 1996). Based on analysis of IFN-� and IL-4 production, a dom-inance of Th1 cell activity over Th2 cell activity has been shownin the inflamed joints of RA patients (Dolhain et al., 1996; Moritaet al., 1998). This imbalance of Th1/Th2 cells was shown to corre-late with disease activity scores (Yudoh et al., 2000). Although IL-4production by T cells from the peripheral blood of RA patients isincreased compared with that of healthy controls, this Th2 activityseems to be insufficient to control Th1-associated inflammation inRA (al-Janadi et al., 1996; Haddad et al., 1998; van Roon et al., 1997).

2.2. IL-17 producing T cells

A large proportion of the T cells infiltrating the joints in RAproduce the pro-inflammatory cytokine IL-17. IL-17 promotes theproduction of pro-inflammatory mediators from cells present inthe joint including synovial fibroblasts, monocytes, macrophagesand chondrocytes, which result in cartilage damage and bone ero-sion (Chabaud et al., 1999; Miossec, 2007). It has been shown thatIL-17 enhances the development of CIA, and IL-17 deficiency pro-tects against development of CIA (Chu et al., 2007; Lubberts et al.,2002a; Nakae et al., 2003). Recently, the first clinical study of RApatients treated with a monoclonal antibody against IL-17 was pub-lished, and the results showed improved signs and symptoms ofRA with no strong adverse safety signals noted (Genovese et al.,2010). IL-17 producing CD4+ T helper cells (Th17 cells) are stronglypro-inflammatory and have an important role in both systemic andorgan-specific autoimmunity (Bettelli et al., 2007). The Th17 cellpopulation was recently shown to develop in the thymus (Markset al., 2009), and the factors required for driving the differentiationof peripheral naïve cells to Th17 cells were first shown in mice tobe TGF� and IL-6, whereas in humans IL-1� and IL-23 are neededin addition to TGF� and IL-6 (Manel et al., 2008; Veldhoen et al.,2006; Volpe et al., 2008). In an experimental model of arthritis itwas shown that Th17 cell differentiation is initiated in draininglymph nodes, while the IL-17 producing cells are restricted to theinflamed synovium (Egan et al., 2008). Blockade of TNF� in CIAresults in increased numbers of Th1 and Th17 cells in lymph nodes,but inhibits their accumulation in the joints, providing an expla-

nation for the paradox that anti-TNF therapy ameliorates arthritisdespite increasing the numbers of pathogenic T cells (Notley et al.,2008).

��T cells are an innate source of IL-17, which have been shownto play an important role in CIA (Roark et al., 2007). ��T cells are

1 ellular Endocrinology 335 (2011) 14–29

tjn(

2

vsTsecciWsF2TscMiAaaAdacITce

2

deCuiatwptCAsa

3

(tnbiTt

Fig. 1. “Osteoimmunology”, represents the interplay between the immune systemand bone. RANKL is either soluble or bound to the cell membrane, and is pro-duced by many different cells including activated T cells, B cells and osteoblasts.It promotes osteoclast differentiation and activation by binding to RANK, its recep-tor on pre-osteoclasts and osteoclasts. Signalling through RANK stimulates matureosteoclasts to resorb bone and also inhibits osteoclast apoptosis. In addition toRANKL, osteoblasts also produce osteoprotegerin (OPG). OPG acts as a decoy recep-tor, binding and neutralizing soluble or membrane-bound RANKL, thus preventing

6 U. Islander et al. / Molecular and C

he predominant population of IL-17 producing cells in the swollenoints of mice with CIA (Ito et al., 2009), while in draining lymphodes the number of ��T cells is equivalent to that of Th17 cellsRoark et al., 2007; Ito et al., 2009).

.3. Regulatory T cells

Regulatory T cells (Treg) are a T cell subset involved in pre-enting both autoimmune and other inflammatory reactions, byuppression of proliferation and cytokine production from bothh1 and Th2 cells (Sakaguchi et al., 2006). Mice depleted of Treghow an accelerated and more severe form of CIA (Kelchtermanst al., 2005; Morgan et al., 2003), and activated Treg cells improvelinical symptoms of CIA (Kelchtermans et al., 2009). Treg are bothonstitutively produced as a specific cell-line in the thymus, andnduced peripherally from naïve T cells (Sakaguchi et al., 2006;

ing et al., 2005). These cells are characterized by surface expres-ion of CD25, low levels of CD127, and by intracellular expression ofOXP3 and CTLA-4 (Sakaguchi et al., 2006; Hartigan-O’Connor et al.,007). Treg produce TGF� (Oida et al., 2006), and the induction ofreg has been shown to be dependent on TGF�, while the suppres-ive function of the cells may be inhibited by pro-inflammatoryytokines such as IL-6 and TNF� (Afzali et al., 2007; Pasare andedzhitov, 2003). In RA patients, the frequency of Treg is increased

n synovial fluid compared to peripheral blood (Cao et al., 2003; vanmelsfort et al., 2004). However, the interaction of Treg cells withctivated monocytes in the joint could diminish their suppressivectivity, thus contributing to the chronic inflammation in RA (vanmelsfort et al., 2007). Interestingly, it has been shown that theevelopment of Treg cells is linked to that of Th17 cells (Bettelli etl., 2006). Naïve T cells that differentiate under influence of TGF�an develop into either Treg or Th17 cells depending on the levels ofL-6 present (Veldhoen et al., 2006; Bettelli et al., 2006). In addition,reg cells have been shown to differentiate into IL-17 producingells in both human and murine cultures (Koenen et al., 2008; Xut al., 2007).

.4. B cells

B lymphocytes are important in the pathogenesis of RA, by pro-uction of antibodies to CII, and for T cell activation (Takemurat al., 2001). Indeed, B lymphocyte deficient mice are resistant toIA (Svensson et al., 1998). Anti-CII antibodies bind to the artic-lar cartilage and initiate complement activation, which recruits

nflammatory cells to the site (Terato et al., 1992). First, neutrophilsre recruited, and then monocytes and lymphocytes. Antibodieso CII have been detected in serum and synovial fluid of patientsith RA (Morgan et al., 1987; Terato et al., 1990), and CII antibody-roducing B cells have been found in synovial fluid and synovialissue (Rudolphi et al., 1997; Tarkowski et al., 1989). Transfer ofII-antibodies can induce arthritis in mice (Terato et al., 1992).dministration of B cell-depleting anti-CD20 antibodies has beenhown to be a successful treatment for some RA patients (Emery etl., 2006; Mease et al., 2008).

. Osteoimmunology

Bone loss is common in various inflammatory conditionsGinaldi et al., 2005). In inflammatory states, infiltrating cells ofhe immune system provide cytokines that affect bone metabolism

egatively, resulting in increased bone resorption. The location ofone marrow inside the bone creates the physical opportunity for

nteraction between immune cells, bone cells and their products.hus, the bone and the immune system are connected and recentlyhe fields of bone biology and immunology merged into a niche

osteoclastogenesis and bone resorption, and increasing apoptosis of osteoclasts. Sev-eral different cytokines produced by cells in the immune system can also influenceosteoblasts and osteoclasts and thereby provide a link between activation of theimmune system and bone metabolism.

field called “osteoimmunology” (Arron and Choi, 2000; Takayanagi,2007) (Fig. 1).

3.1. OPG/RANK/RANKL

The first interactive molecule to be recognized was recep-tor activator of NF�B ligand (RANKL), also called TNF-relatedactivation induced cytokine (TRANCE), or osteoprotegerin-ligand(OPGL) (Lacey et al., 1998; Wong et al., 1997). RANKL is eithersoluble or bound to the cell membrane, and is produced byactivated T cells (Horwood et al., 1999), B cells (Manabe et al.,2001), osteoblasts (Yasuda et al., 1998), bone-lining cells (Zhanget al., 2001), macrophages (Crotti et al., 2002), synovial fibrob-lasts (Shigeyama et al., 2000), chondrocytes (Komuro et al., 2001),endothelium (Collin-Osdoby et al., 2001) and neutrophils (Poubelleet al., 2007). RANKL regulates the communication between T cellsand dendritic cells, dendritic cell survival, lymph node forma-tion and formation of lactating mammary glands (Anderson et al.,

1997; Fata et al., 2000; Kong et al., 1999a). It promotes osteo-clast differentiation and activation by binding to RANK, its receptoron pre-osteoclasts and osteoclasts (Li et al., 2000). It stimulatesmature osteoclasts to resorb bone (Burgess et al., 1999), and inhibitsosteoclast apoptosis (Lacey et al., 2000). In addition to support-

ellular

icBsaiIc

cOmbleeo

3

ta

Rnua

colae

led

is

ari1(pfae

3

ie2SpastcRb

U. Islander et al. / Molecular and C

ng osteoclastogenesis by RANKL expression, B lymphocyte lineageells can also serve as osteoclast precursors (Manabe et al., 2001).oth RANK- and RANKL-knock out mice develop grave osteopetro-is, since they have no osteoclasts (Kong et al., 1999a; Li et al., 2000),nd RANKL knock out mice can develop severe serum transfer-nduced arthritis without any bone destruction (Pettit et al., 2001).t has been shown that vitamin D3, parathyroid hormone and IL-1an induce RANKL expression on osteoblasts (Horwood et al., 1998).

In addition to RANKL, osteoblasts and bone marrow stromalells also produce osteoprotegerin (OPG) (Simonet et al., 1997).PG acts as a decoy receptor, binding and neutralizing soluble orembrane-bound RANKL, thus preventing osteoclastogenesis and

one resorption, and increasing apoptosis of osteoclasts. The pro-iferation and differentiation of B cells are inhibited by OPG (Yunt al., 2001). OPG-deficient mice develop early osteoporosis (Bucayt al., 1998). The OPG/RANKL ratio determines the net degree ofsteoclast activation (Fig. 1).

.2. Cytokines that influence bone metabolism

Several different cytokines produced by cells in the immune sys-em can influence bone cells and thereby provide a link betweenctivation of the immune system and bone metabolism (Fig. 1).

TNF� stimulates osteoporosis development by increasingANKL production in bone-lining cells leading to an increasedumber of osteoclasts (Zhang et al., 2001; Lam et al., 2000), by stim-lating osteoclast activity (Fuller et al., 2002), and by increasing thepoptosis of osteoblasts (Tsuboi et al., 1999).

IL-1� stimulates pre-osteoclast fusion (Jimi et al., 1999), osteo-last activation and survival (Jimi et al., 1998), and increasessteoblast apoptosis (Tsuboi et al., 1999), thus contributing to boneoss. IL-1 receptor antagonist is used to hamper inflammation, andlso inhibits osteoclast differentiation and bone resorption (Ljungt al., 2007).

IL-7 induces TNF� and RANKL secretion from T cells, increases Bymphopoiesis and induces bone loss (Miyaura et al., 1997; Toraldot al., 2003). IL-7 knock out mice have increased bone volume andecreased B lymphopoiesis (Miyaura et al., 1997).

IL-17 stimulates differentiation of osteoblasts (Rifas, 2006), andncreases the RANKL/OPG ratio (Nakashima et al., 2000). Th17 cellstimulate osteoclastogenesis (Sato et al., 2006).

TGF� is stored in an inactive form in the bone matrix (Bonewaldnd Dallas, 1994). Its effects are anti-osteoporotic, inhibiting boneesorption and fusion and proliferation of pre-osteoclasts, andncreasing osteoclast apoptosis (Chenu et al., 1988; Hughes et al.,996). It also stimulates osteoblast proliferation and differentationBonewald and Dallas, 1994). In addition, regulatory T cells, whichroduce TGF�, have been demonstrated to suppress osteoclastormation in vitro via direct cell–cell contact (Zaiss et al., 2007), andlso to inhibit osteoclastogenesis in vitro and in vivo (Kelchtermanst al., 2009).

.3. Skeletal manifestations in RA

RA is characterized by different skeletal manifestations includ-ng bone erosions (Scott, 2000), periarticular osteopenia (Stewartt al., 2004) and generalized osteoporosis (Forsblad-D’Elia et al.,003b; Sinigaglia et al., 2000; Haugeberg et al., 2002, 2000;ambrook et al., 1995). Joint inflammation causes production ofro-inflammatory cytokines that induce osteoclast developmentnd activation, leading to focal bone loss. In addition, the inflamed

ynovium acts like an endocrine organ, releasing these factors intohe bloodstream and causing generalized bone loss. In 1984, osteo-lasts were identified in subchondral bone in arthritic joints ofA patients (Bromley and Woolley, 1984), and have since theneen further characterized. They possess the phenotype of mature

Endocrinology 335 (2011) 14–29 17

osteoclasts, expressing TRAP, cathepsin K and calcitonin receptor(Gravallese et al., 1998, 2000). They are also found in bone erosionsof mice with CIA (Suzuki et al., 1998).

There are several factors affecting bone cells in RA. RANKL isfound at sites of bone erosion and in synovial tissue from RApatients (Pettit et al., 2006). The RANKL/OPG ratio is increased inactive RA, and correlates with increased bone resorption (Hayneset al., 2001). Increased levels of RANKL have been found in mouseand rat CIA (Lubberts et al., 2002b; Mori et al., 2002; Stolina etal., 2005), and RANKL knock out mice are protected from boneerosions in serum transfer-induced arthritis (Pettit et al., 2001).Neutrophils are abundant in joints of RA patients, and expressmembrane-bound RANKL, RANK and OPG (Poubelle et al., 2007).Treatment with OPG has been found to reduce bone loss in experi-mental arthritis (Kong et al., 1999b; Redlich et al., 2002; Romas etal., 2002; Schett et al., 2003), as well as in postmenopausal arthritisin women (Bekker et al., 2001). In RA patients, IL-17 induces RANKLexpression and decreases OPG expression in osteoblasts, as well asincreases RANKL, IL-1, IL-6 and TNF� expression in synoviocytes(Kehlen et al., 2003; Kotake et al., 1999). IL-1�, IL-6, the solubleIL-6 receptor and IL-7 are elevated in patients with RA (Forsblad-D’Elia et al., 2003b; Kotake et al., 1996; Okamoto et al., 1997; vanRoon et al., 2005). TNF� is elevated during inflammatory diseases,leading to increased bone resorption (Cenci et al., 2000). Treat-ment with monoclonal anti-TNF� antibodies has been shown topreserve the BMD in patients with RA (Lange et al., 2005; Marotteet al., 2007; Seriolo et al., 2006; Vis et al., 2006). Osteoblasts arealso affected by the inflammatory process e.g. IL-1� and TNF� bothinduce osteoblast apoptosis, and other molecules influence theirsurvival and function by inhibiting bone morphogenetic proteins(Tsuboi et al., 1999; Chen et al., 2004; Groppe et al., 2002).

4. Estrogen

The female sex hormone estrogen has many physiologicaleffects, for example the development and maturation of thereproductive system, skeleton, and immune-, nervous-, and car-diovascular systems. Estradiol is produced by the granulosa cells ofthe ovary, and to some degree by the adrenal cortex, adipose tissueand testicles, by aromatization of testosterone (Gruber et al., 2002).At menopause, most of the ovarian production of sex hormonesceases, although some production of testosterone, androstendione,dihydroepiandrosterone (DHEA), estrone and estradiol has beenshown 10 years after menopause. Ovariectomy of postmenopausalwomen significantly decreases the serum levels of estrone andtestosterone, revealing some remaining ovarian sex hormone pro-duction even after menopause (Fogle et al., 2007).

4.1. Estrogen receptors

The classical estrogen receptors (ER) ER� and ER� were clonedin 1986 and 1996, respectively (Green et al., 1986; Kuiper et al.,1996). The distribution of ER� and ER� varies in different tissues.In the classical transcription pathway the ERs bind to estrogen, forma receptor dimer and translocate into the cell nucleus (Petterssonet al., 1997). There, they form a complex with co-regulatory pro-teins and bind to the estrogen response element (ERE) to initiatetranscription (Levy et al., 2007). The EREs are located in the pro-moter regions of different genes that are regulated by estrogens(Gruber et al., 2004) (Fig. 2, pathway 1). In the non-classical tran-

scription pathway, the estrogen/ER-complex starts transcription bybinding to alternative transcription factors e.g. AP-1, SP-1 and NF�B,which bind non-ERE sites (Galien and Garcia, 1997; Krishnan et al.,1994; Kushner et al., 2000) (Fig. 2, pathway 2). There are also mem-brane associated estrogen receptors. GPR30 is a newly discovered

18 U. Islander et al. / Molecular and Cellular Endocrinology 335 (2011) 14–29

Fig. 2. Estrogen signalling. Pathway 1: In the classical transcription pathway theestrogen receptors (ER) bind to estrogen, form a receptor dimer and translocateinto the cell nucleus. There, they form a complex with co-regulatory proteins andbind to the estrogen response element (ERE) to initiate transcription. Pathway 2:In the non-classical transcription pathway, the estrogen/ER-complex starts tran-scription by binding to alternative transcription factors e.g. AP-1, SP-1 and NF�B,which bind non-ERE sites. Pathways 3 and 4: There are also membrane associatedestrogen receptors e.g. ER or GPR30. Binding of estrogen to a membrane associatedr(((

GsswFeaPvmstrom11

4

mtuimficrpIs

eceptor leads to rapid activation or repression of intracellular signalling pathwayscalcium mobilization and PI3K activation), leading either to non-genomic signallingpathway 3) or altered transcriptional activity via other transcription factors (TF)pathway 4).

-protein-coupled receptor, and this receptor has recently beenuggested to be tightly coupled to estrogen membrane receptorignalling and may thereby contribute to normal physiological asell as pathophysiological estrogenic effects (Benten et al., 2001;

ilardo et al., 2007; Levin, 2009; Pedram et al., 2006; Revankart al., 2005, 2007). Some studies have indicated that ER� maylso be membrane associated in some cells (Pedram et al., 2006;appas et al., 1995). Binding of these receptors leads to rapid acti-ation or repression of intracellular signalling pathways (calciumobilization and PI3K activation), leading either to non-genomic

ignalling or altered transcriptional activity via other transcrip-ion factors (TF) (Fig. 2, pathways 3 and 4). In addition, estrogeneceptors can be activated through phosphorylation in the absencef estrogen by dopamine, insulin-like growth factor-1, epider-al growth factor and cyclic AMP (Aronica and Katzenellenbogen,

991; Curtis et al., 1996; Newton et al., 1994; Smith et al.,993).

.2. Hormone replacement therapy

Hormone replacement therapy (HRT) with estradiol afterenopause was first started in 1941, and was successful since

he clinical symptoms from loss of estrogen could be abated. These of estrogens further increased during the 60’s and 70’s, but

n 1975 a study showed the relationship between estrogen treat-ent and endometrial cancer, which led to decreased use. The

nding that addition of progesterone protects from endometrial

ancer resulted in increased use once more. In 1984 HRT wasecommended as treatment of postmenopausal osteoporosis. Theharmacological use of estrogens is reviewed in (Stefanick, 2005).

n 2002 the Women’s Health Initiative study, which was the biggesttudy ever of the long-term effects of HRT, was prematurely inter-

Fig. 3. Molecular structures of 17�-estradiol, ICI 182,780, Tamoxifene and Ralox-ifene.

rupted due to severe side effects. The combination of conjugatedequine estrogen and progesterone was shown to increase the riskof coronary heart disease and stroke, in addition to the previ-ously known risk of venous thrombo-embolic disease and invasivebreast cancer (Rossouw et al., 2002). One and a half years later,the group taking only conjugated equine estrogen was also termi-nated due to increased risk of stroke and no evidence for benefitson coronary heart disease (Anderson et al., 2004). No increasedrisk of breast cancer was shown after taking estrogen alone(Anderson et al., 2004). Since then, the use of HRT has decreasedworldwide (Stefanick, 2005), and the search for other drugs withthe beneficial effects of estrogen, but without the side effects,continues.

4.3. Selective estrogen receptor modulators (SERM)

Selective estrogen receptor modulators (SERM) are non-steroidal molecules, which bind to the estrogen receptors anddisplay estrogen-like effects in some tissues, but antagonisticeffects in other tissues. The tissue selectivity of a SERM depends onthe relative amount of ER� and ER� in that tissue, the affinity of theSERM, and upon the availability of co-activators and co-repressors.To this date there are three SERMs used in clinical practise, Tamox-ifene, Raloxifene and ICI 182,780 (Fulvestrant) (Fig. 3). Tamoxifeneis approved for treatment of ER-positive breast cancer. It acts asan estrogen antagonist in breast tissue, but has agonistic effectson endometrium (Rutqvist et al., 1995). Raloxifene is approved asprophylaxis of invasive breast cancer (Temin, 2009) and for treat-ment of postmenopausal osteoporosis (Stefanick, 2005). It bindswith high affinity to ER� and functions as an estrogen agonist inbone and on serum lipids, but acts as an antagonist in uterus andbreast tissue (Cummings et al., 1999; Ettinger et al., 1999; Li et al.,1998; Sato et al., 1995, 1996). ICI 182,780 (Fulvestrant) is a pure ER�and ER� antagonist without any known agonistic properties, and isused as adjuvant treatment for ER-positive breast cancer (Wakelinget al., 1991).

Numerous new SERMs are currently undergoing clinical devel-opment for the prevention and/or treatment of postmenopausalosteoporosis (Miller and Derman, 2010). For example, Lasofoxifenewas recently described to be associated with reduced risks of frac-tures, ER-positive breast cancer, coronary heart disease and stroke

in patients with postmenopausal osteoporosis (Cummings et al.,2010). In addition, Bazedoxifene was shown to significantly reducethe risk of fractures in postmenopausal women with osteoporosis,as well as prevent bone loss and reduce bone turnover equally wellas Raloxifene (Miller et al., 2008; Silverman et al., 2008).

ellular

5

eieiIaltmataEsiSatCb2IdnPtsgs1

5

sape(mr2ia

b((cettwc(c(a(b(as

U. Islander et al. / Molecular and C

. Estrogens and the immune system

Estrogen affects the immune system in multiple ways. Thestrogen receptors ER� and ER� are found in cells of both thennate and the adaptive immune system in both sexes (Stygart al., 2006). Women have stronger humoral and cell-mediatedmmune responses to infections than men (Halme et al., 1998).n contrast, women have less potent innate immune responses,s measured in vitro by 30% lower TNF� secretion after stimu-ation of whole blood with LPS (Moxley et al., 2002). Because ofhese and many other dual effects on the immune system, estrogen

ay have an ameliorating or an enhancing influence in differentutoimmune diseases (Straub, 2007). We have previously shownhat estrogen inhibits T cell-dependent immune reactions whilentibody production from B cells is enhanced (Carlsten et al., 1989;rlandsson et al., 2003). Estrogen has been shown to aggravateystemic lupus erythematosus (SLE) in murine models, and tonduce flares and increased antibody production in patients withLE (Carlsten and Tarkowski, 1993; Carlsten et al., 1990; Gompelnd Piette, 2007; Grimaldi et al., 2006; Kanda et al., 1999). In con-rast, RA and multiple sclerosis as well as their murine equivalentsIA and experimental autoimmune encephalitis, are amelioratedy endogenous and exogenous estrogen (Forsblad-D’Elia et al.,003a; Holmdahl et al., 1986; Offner et al., 2000; Voskuhl, 2003).

nterestingly, the lupus-like disease is aggravated and the arthriticisease is ameliorated by estradiol in MRL/lpr mice that sponta-eously develop SLE (Carlsten et al., 1992; Ratkay et al., 1994).resently, autoimmune diseases are not classified according tohe immunological mechanisms involved, however it has beenuggested that autoimmune diseases could be divided into tworoups, one in which estrogen accelerates the disease progres-ion and another in which estrogen is beneficial (Holmdahl et al.,989).

.1. The innate and adaptive immune system

Estrogen affects cells of both the innate and adaptive immuneystem (Straub, 2007). For example it inhibits neutrophil functionnd adhesion to endothelium, and the number of neutrophils ineripheral blood (Bekesi et al., 2007; Buyon et al., 1984; Geraldest al., 2006; Josefsson et al., 1992). NK cell activity is decreasedNilsson and Carlsten, 1994). Estrogen induces apoptosis in human

onocytes, and also modulates the pro-inflammatory cytokineelease from activated monocytes and macrophages (Kramer et al.,004; Mor et al., 2003). Serum levels of IL-1, IL-6 and TNF� are

ncreased after menopause, and decreased by HRT (Pfeilschifter etl., 2002; Rachon et al., 2002).

The adaptive immune system is affected in differential waysy estrogen. In mice, the delayed type hypersensitivity reactionDTH), mediated by macrophages and T cells, is reduced by estrogenCarlsten et al., 1989; Taube et al., 1998). Treatment with estradiolauses thymic involution, and reduces T lymphopoiesis (Erlandssont al., 2001; Marotti et al., 1984; Rijhsinghani et al., 1996). Con-ribution of the GPR30 membrane receptor to estrogen-inducedhymocyte apoptosis was recently shown (Wang et al., 2008). Itas found that the levels of estrogen present during pregnancy

an stimulate proliferation and differentiation of regulatory T cellsPrieto and Rosenstein, 2006; Tai et al., 2008), and that these effectsan be inhibited by ICI 182,780, the specific inhibitor of ER� and ER�Tai et al., 2008). B lymphopoiesis is down-regulated by estrogen,nd both B and T lymphopoiesis are increased after ovariectomy

Jilka et al., 1995). In spite of this, estrogen induces increased anti-ody production from mature B cells, and stimulates B cell survivalErlandsson et al., 2003; Nilsson and Carlsten, 1994; Grimaldi etl., 2002; Masuzawa et al., 1994). Interestingly, Raloxifene has theame effects as estradiol on B lymphopiesis, but does not stimu-

Endocrinology 335 (2011) 14–29 19

late immunoglobulin production in spleen cells (Erlandsson et al.,2002).

By using ER knock out mice, the impact of estrogen signallingon the immune system has been studied. It has been shown thatmice lacking ER� have smaller thymi, and display less thymic atro-phy after exposure to estrogen compared to WT mice (Staples et al.,1999). These results were confirmed and expanded in a study show-ing that deletion of ER� alone, or ER� + ER�, results in hypoplasiaof both thymus and spleen (Erlandsson et al., 2001). Furthermore, ahigher frequency of double positive (CD4+ CD8+) T cells, but a lowerfrequency of single positive T cells, was found in thymus of micelacking ER�. Estrogen treatment of mice lacking ER� results in asimilar degree of thymic atrophy compared with WT mice, but dis-plays no alteration in the frequency of double positive thymocytes(Erlandsson et al., 2001).

In contrast to estradiol, Raloxifene does not affect the DTH reac-tion and does not induce thymic involution (Erlandsson et al., 2000).Raloxifene decreases the serum levels of IL-6 in arthritic mice, butdoes not affect IL-6 in non-arthritic mice, and Raloxifene, but notestradiol, decreases the expression of TNF� and RANKL mRNA inspleen from arthritic mice (Jochems et al., 2007).

6. Estrogens and bone

The classical estrogen receptors ER� and ER� are present inosteoblasts, osteocytes, osteoclasts and chondrocytes, mediatingestrogen effects on bone and cartilage (Komm et al., 1988; Oursler etal., 1991; Tomkinson et al., 1998; Ushiyama et al., 1999). Indeed, theclassical transcription pathway is activated in osteoblasts, osteo-cytes and chondrocytes exposed to estradiol (Windahl et al., 2007).

6.1. Menopause

The development of postmenopausal osteoporosis is associatedwith estrogen deficiency. At first, there is a phase of rapid boneloss, dominated by an increase in bone resorption and trabecu-lar thinning, leading to loss of connection between trabeculae. Aslower rate of bone loss follows and is sustained, dominated by adecrease in bone formation and trabecular thinning (Riggs et al.,2002; Eriksen et al., 1990). Estrogenic effects on bone are likely tobe mediated by both direct effects on the different cell types, andchanges of the cytokine milieu of the bone compartment (Fig. 4).Estrogen induces OPG expression in human osteoblastic cells invitro (Hofbauer et al., 1999), and OPG-treatment counteracts thedevelopment of osteoporosis after ovariectomy in rats (Simonet etal., 1997). In early menopausal women it has been demonstratedthat the expression of RANKL is up-regulated on T cells, B cellsand pre-osteoblastic bone marrow cells (Eghbali-Fatourechi et al.,2003). The net effects of estrogen deprivation are increased boneresorption due to a higher number of activated osteoclasts (Eriksenet al., 1999), deeper resorption pits due to increased osteoclast sur-vival (Hughes et al., 1996), and increased bone formation that is notsufficient to compensate for the resorption (Jilka et al., 1998). Theresponse in bone to strain is decreased by estrogen deficiency, dueto reduced ER� activity in osteocytes (Zaman et al., 2006).

The production of several cytokines is influenced by menopause.Thus, the serum levels of IL-1, IL-6, TNF� and M-CSF havebeen shown to increase after natural or surgical menopause, anddecrease upon estrogen therapy (Rachon et al., 2002; Pacifici etal., 1991, 1989; Ralston et al., 1990). Ovariectomy in mice leads toincreased serum levels of IL-6, IL-7 and TNF� (Cenci et al., 2000;

Jilka et al., 1992; Weitzmann et al., 2002). These cytokines reduceosteoblast activity (Weitzmann et al., 2002; Gilbert et al., 2000),increase osteoclast formation (Zhang et al., 2001; Lam et al., 2000),and inhibit osteoclast apoptosis (Hughes and Boyce, 1997). Micedeficient in IL-6 or TNF� do not develop ovariectomy-induced bone

20 U. Islander et al. / Molecular and Cellular Endocrinology 335 (2011) 14–29

F ge anda of regf andT

lp2el(btetep

6

s(FpDir(Rsrac

ig. 4. Actions of estrogen in arthritis and osteoporosis. Estrogen inhibits macrophand inducers of osteoblast apoptosis. Estrogen induces proliferation and maturationrom osteoblasts and bone-lining cells, which inhibits the RANK–RANKL interactionGF� from osteoblasts and osteocytes, thereby increasing osteoclast apoptosis.

oss (Poli et al., 1994; Roggia et al., 2001), and anti-TNF� treatmentreserves BMD in both experimental and human RA (Lange et al.,005; Seriolo et al., 2006; Vis et al., 2006; Saidenberg-Kermanac’ht al., 2004). IL-6 has pro-osteoporotic properties, and serumevels of IL-6 can predict bone loss in postmenopausal womenScheidt-Nave et al., 2001). Soluble IL-6 receptor acts as an agonist,y binding to IL-6, and then interacting with the same signal-ransduction pathways as the membrane-bound receptor (Tamurat al., 1993). Soluble IL-6 receptor increases after menopause, andhis increase can be prevented and reversed with HRT (Abrahamsent al., 2000). This prevention has also been reported in women withostmenopausal RA (Forsblad-D’Elia et al., 2003c).

.2. Treatment with sex steroids

Estrogen also influences the skeleton through the endocrineystem, increasing the production of insulin-like growth factor 1IGF-1), which has anabolic effects on bone (Riggs et al., 2002;orsblad-D’Elia et al., 2003c). Hormone replacement therapy in RAatients for 2 years results in increased levels of IGF-1 (Forsblad-’Elia et al., 2003c). In osteoblasts, estrogen has been shown to

ncrease the expression of OPG, BMP-6, TGF� and IGF-1, whichesults in osteoblast formation and increased osteoclast apoptosisHughes et al., 1996; Hofbauer et al., 1999; Ernst and Rodan, 1991;

ickard et al., 1998). In osteoclasts, estrogen directly decreases theecretion of lysosomal enzymes (Kremer et al., 1995), and down-egulates the sensitivity to RANKL (Srivastava et al., 2001). Estrogenlso stimulates proliferation and differentiation of regulatory Tells, which have been shown to suppress osteoclast formation

T cell secretion of IL-1 and TNF�, which are stimulators of osteoclast developmentulatory T cells, which inhibit osteoclast development. It stimulates OPG productionresults in decreased activation and development of osteoclasts. Estrogen increases

(Zaiss et al., 2007; Prieto and Rosenstein, 2006; Tai et al., 2008).Interestingly, estrogen withdrawal in women is associated withincreased osteocyte apoptosis (Tomkinson et al., 1997). Osteocytesinhibit osteoclast activity through TGF�, and estrogen enhancesthis function (Heino et al., 2002) (Fig. 4).

Using transgenic knock out mouse models, it has been shownthat signalling via ER� protects against OVX-induced trabecularbone loss (Lindberg et al., 2002a,b; Sims et al., 2002). In contrast,ER� or GPR30 are not essential for this bone-protective effect ofestrogen (Lindberg et al., 2002a,b; Sims et al., 2002; Windahl et al.,2009), although the ER� activity can be slightly modulated by ER�in bone (Lindberg et al., 2003; Windahl et al., 2001).

The SERM Raloxifene is approved for the treatment of post-menopausal osteoporosis (Stefanick, 2005). It has been shown toinfluence the serum levels of bone turnover markers in womenwith postmenopausal osteoporosis (Ozmen et al., 2007). In addi-tion, serum OPG levels are higher in postmenopausal women afterRaloxifene treatment (Messalli et al., 2007), and the RANKL/OPGratio is decreased by Raloxifene treatment of osteoblastic cells invitro (Cheung et al., 2003). Raloxifene also decreases osteocyteapoptosis both in vivo and in vitro (Huber et al., 2007; Mann etal., 2007; van Essen et al., 2007), and prevents bone loss in micewith CIA (Jochems et al., 2007). However, the effect of Raloxifenein postmenopausal RA remains to be evaluated.

7. Sex steroids in RA

The fact that the peak incidence of RA in women coincides withthe time of menopause (Goemaere et al., 1990), while in men it

ellular

occRn

7

sJteaa1WIdnta(raai

dedr2tJla

7

pt2(lnaasKofbmecssaoi1

(g

U. Islander et al. / Molecular and C

ccurs at 60–70 years of age coinciding with the fall of biologi-ally active testosterone (Goemaere et al., 1990; Doran et al., 2002),learly indicates the involvement of endogenous sex hormones inA. This section of the review will focus on the effects of endoge-ous and exogenous sex steroids in experimental and human RA.

.1. Sex steroids in animal models of arthritis

Mice subjected to OVX display a higher frequency and increasedeverity of CIA compared to controls (Holmdahl et al., 1986;ochems et al., 2005), and several studies have shown that estradiol-reatment of CIA in mice suppresses disease progression (Holmdahlt al., 1986; Jansson and Holmdahl, 1989, 1992). In addition,rthritic mice show amelioration of arthritis during pregnancynd aggravation after delivery (Bond et al., 1997; Buzas et al.,993; Gonzalez et al., 2004; Mattsson et al., 1991; Waites andhyte, 1987). Blocking of the ER� and ER� using the anti-estrogen

CI 182,780 enhances the disease (Jansson and Holmdahl, 2001)emonstrating the importance of signalling through the classicaluclear ERs in this regard. In addition, we have recently shownhat the protective effect of estrogen on development of arthritisnd bone loss in CIA is mediated via ER�, and not ER� or GPR30Engdahl et al., 2010). Raloxifene treatment of ovariectomized miceesults in a reduced frequency of CIA, suppressed disease severitynd preserved joint histology (Jochems et al., 2007). These effectsre also seen during long-term treatment, when therapy is startedn established disease (Jochems et al., 2008).

2-methoxyestradiol is an endogenous estradiol metabolite thatisplays inhibitory effects on cell proliferation and neoangiogen-sis (Straub, 2007). Its antitumor potency has previously beenemonstrated in animal models, and 2-methoxyestradiol is cur-ently being investigated in clinical trials (Mueck and Seeger, 2010).-methoxyestradiol has inhibitory effects in different experimen-al models of arthritis (Brahn et al., 2008; Issekutz and Sapru, 2008;osefsson and Tarkowski, 1997; Plum et al., 2009), and our pre-iminary data suggest a protective effect of 2-methoxyestradiol onrthritis and bone loss in OVX mice with CIA (Karlstrom et al., 2010).

.2. Effects of sex steroids in human RA

Menopause is associated with decreased production of estrogen,rogesterone and adrenal androgens such as dehydroepiandros-erone (DHEA) and DHEA-sulphate (DHEAS) (Kanik and Wilder,000), and the peak incidence of RA in women occurs at this timeGoemaere et al., 1990). On the contrary there is an increase in theevels of estrogen and many other steroid hormones during preg-ancy, and it has been shown that this can affect both the incidencend the progression of RA. In 75% of women with RA the diseasectivity diminishes during pregnancy when the levels of femaleex hormones are high (Ostensen et al., 1983; Barrett et al., 1999;anik and Wilder, 2000; Ostensen, 1999). In contrast, the disease isften aggravated after delivery (Barrett et al., 1999, 2000). Breast-eeding has been shown to increase the risk for RA, which maye due to pro-inflammatory effects of prolactin, the lactation hor-one (Brennan and Silman, 1994). The mechanisms behind these

ffects are not fully established. Oral contraceptives often involveoncomitant administration of estrogens and progestins, and expo-ure to oral contraceptives before disease outbreak has in sometudies been shown to reduce the risk of developing RA (Doran etl., 2004; van Zeben et al., 1990). However, no protective effect ofral contraceptives was demonstrated in the majority of the stud-

es (Brennan et al., 1997; del Junco et al., 1985; Moskowitz et al.,990).

The peak incidence for RA in men occurs at 60–70 years of ageGoemaere et al., 1990; Doran et al., 2002). Serum levels of estro-en in male RA patients have been found normal in some studies,

Endocrinology 335 (2011) 14–29 21

and increased in others, whereas the levels of testosterone werefound to be lower than in controls (Tengstrand et al., 2003, 2002).Increased levels of estradiol and decreased levels of androgens havebeen found in synovial fluid of both men and women with RA(Castagnetta et al., 2003). This could be due to increased periph-eral conversion of androgens to estrogens, since pro-inflammatorycytokines have been shown to stimulate the peripheral aromataseactivity (Macdiarmid et al., 1994; Nestler, 1993). Treatment withanti-TNF� antibodies in RA does not influence the hormonal home-ostasis, which is stable independently of the inflammatory level(Ernestam et al., 2007; Straub et al., 2005). In contrast, serum levelsof DHEAS are increased in patients treated with anti-TNF� antibod-ies for 2 years, which could be due to improved adrenal function(Ernestam et al., 2007). It has been suggested that the relative abun-dance of different biologically active estrogen metabolites couldbe involved in the dual pro-inflammatory and anti-inflammatoryeffects of estrogen seen in various inflammatory conditions (Straub,2007). Interestingly, a recent publication shows that precursorestrogens can be converted into estrogen metabolites with a pro-inflammatory phenotype, particularly in synovial cells from RApatients (Schmidt et al., 2009).

7.3. Clinical studies on HRT in RA

Early trials on sex hormones in RA in the 1930s were hopeful(Blais and Demers, 1962; Cohen et al., 1940; Hall, 1938), whilesubsequent reports in the 1960s using a progestogen with someestrogenic properties revealed unequivocal results (Gilbert et al.,1964). In the 1980s and 1990s some studies evaluating the effect ofHRT, composed of estrogen alone or estrogens and progestogen,indicated an anti-inflammatory effect (Bijlsma et al., 1987; Hallet al., 1994a; MacDonald et al., 1994). The effect of administra-tion of 12.5 �g ethinylestradiol to 10 female patients with activeRA was investigated in a prospective double-blind crossover 24weeks study. Some improvement during estrogen treatment wasfound in 30 m walking time, haemoglobin (Hb) concentration, andthrombocytosis (Bijlsma et al., 1987). In the largest HRT study asubgroup of patients (58.4%) who had greater increments in serumE2 whilst taking HRT, ‘compliers’, demonstrated improvements insome parameters of disease activity. After 6 months there weresignificant improvements in joint index and pain score comparedwith placebo. Comparisons between HRT ‘compliers’ and ‘poor-compliers’ confirmed significant improvements in articular index,pain score and morning stiffness in the ‘compliers’. It was alsoconcluded that HRT could be prescribed without fear of a diseaseflare (Hall et al., 1994a). In another, 48-week placebo controlleddouble-blind study of 62 women with 22 patients on placebo and40 patients on HRT, there were significant improvements in well-being as assessed by the Nottingham Health Care Profile and in thejoint index. Although no laboratory evidence was found of a diseasemodifying effect, it was concluded that due to the symptomaticbenefits and improvements in BMD, HRT could be a valuable adju-vant to conventional anti-rheumatic therapy in RA (Hunt et al.,1981). In contrast, van den Brink et al. (1993) did not find any ben-eficial effect of oral HRT on disease activity in a 1 year study of 40women with RA.

In a randomized controlled prospective 2-year trial of 88 post-menopausal women with RA, it was shown that HRT improved bothclinical and laboratory signs of disease activity (Forsblad-D’Elia etal., 2003a), although no effect on serum levels of IgM, IgG or IgAwas found (Forsblad-d’Elia and Carlsten, 2008). The disease activ-

ity score 28 (DAS 28) decreased significantly more in the HRT groupcompared to controls. In addition, the erythrocyte sedimentationrate (ESR) and orosomucoid decreased in the HRT group in par-allel with an increase in Hb and the saturation of transferrin. Theprogression of radiological joint destruction was also studied. In

2 ellular

bnpiHjHtmtlft

dtdtuo

8

R(eSelbadssbaaHDivHo2mtieirht2aecttwtlw(g

2 U. Islander et al. / Molecular and C

oth the HRT and control groups, roughly 40% of the patients didot progress radiologically at all. However, among patients withrogressive joint damage, the mean Larsen score (Larsen, 1995)

ncreased significantly more in the control group compared to theRT group (p = 0.026). This suggests a protective effect of HRT on

oint destruction in postmenopausal women with RA. In addition,RT was found to decrease markers of both bone and cartilage

urnover (Forsblad-d’Elia et al., 2004). The study proceeded for 24onths in contrast to the previously mentioned trials with dura-

ion of up to 12 months, and it seems likely that HRT requires aonger period to fully display its anti-arthritic qualities. The moreavourable outcome in this study may also be associated with theype of HRT chosen.

In most studies, the HRT treatment is a combination of estra-iol and progesterone and it is therefore not possible to evaluatehe direct effect of the individual substances given. In the trialsescribed above, different combinations of estrogens and proges-erones, as well as different modes of administration, have beensed which makes it difficult to generalize the results to all kindsf HRT.

. Treatment of osteoporosis in RA

The prevalence of generalized osteoporosis in postmenopausalA is more than 50%, resulting in increased risk of fracturesForsblad-D’Elia et al., 2003b; Sinigaglia et al., 2000; Haugebergt al., 2002, 2000; Sambrook et al., 1995; Hooyman et al., 1984;pector et al., 1993). The prevalence of osteoporosis is alsolevated in men with RA, compared to a healthy reference popu-ation (Tengstrand and Hafstrom, 2002). Different therapies haveeen used in the management of osteoporosis in RA. Today,nti-osteoporosis therapies are divided into therapies that pre-ominantly stimulate bone formation (parathyroid hormone andtrontium ranelate), or inhibit bone resorption (bisphosphonates,trontium ranelate, HRT and SERM) (Stepan et al., 2003). In addition,isphosphonates, estrogen and SERM seem to inhibit osteocytepoptosis (Plotkin et al., 2005). Both estrogen deficiency andrthritic disease have deteriorating effects on bone density, andRT was found to ameliorate arthritis in some studies (Forsblad-’Elia et al., 2003a; Hall et al., 1994a; MacDonald et al., 1994), and to

ncrease BMD (Forsblad-D’Elia et al., 2003a; MacDonald et al., 1994;an den Brink et al., 1993; Hall et al., 1994b). However, the use ofRT has decreased over the last years, due to the possibility of seri-us side effects (Rossouw et al., 2002; Anderson et al., 2004; Beral,003). Bisphosphonates are often used in osteoporosis, and inter-ittent treatment with the bisphosphonate etidronate was found

o increase BMD as well as retard the development of erosionsn RA, but in another trial radiological outcome was not influ-nced (Hasegawa et al., 2003; Valleala et al., 2003). Etidronate alsoncreased BMD in steroid treated patients with RA and polymyalgiaheumatica (Adachi et al., 1997). Both alendronate and risedronateave been shown to increase BMD in RA patients on glucocorticos-eroid therapy (Eastell et al., 2000; Saag et al., 1998; Yilmaz et al.,001). Risedronate also reduced the risk of vertebral fractures inlarge study of patients treated with corticosteroids with differ-

nt diagnoses, including RA (Wallach et al., 2000). Treatment withalcium and vitamin D3 increased BMD in the lumbar spine androchanter in RA patients on long-term low-dose glucocorticos-eroids (Buckley et al., 1996). In postmenopausal women on HRTith corticosteroid-induced osteoporosis (∼50% were RA patients)

reatment with the anabolic agent parathyroid hormone (PTH) ana-ogue improved BMD significantly more in the lumbar spine in

omen treated with both HRT and PTH as compared to only HRTLane et al., 1998). New therapeutic compounds preventing botheneralized bone loss and erosions in RA are under development,

Endocrinology 335 (2011) 14–29

such as substances influencing the RANKL/OPG/RANK system,thereby reducing osteoclast differentiation and activation (Rehmanand Lane, 2001). It has been shown that a human monoclonal anti-body to RANKL, Denosumab, increases BMD in postmenopausalwomen (McClung et al., 2006), and also increases BMD, reducesbone turnover and reduces the development of erosions in patientswith RA (Cohen et al., 2008; Dore et al., 2010). Raloxifene, whichhas both anti-arthritic and anti-osteoporotic effects in experimen-tal postmenopausal arthritis in mice, also seems to be a promisingtreatment candidate in postmenopausal RA (Jochems et al., 2007,2008).

9. Concluding remarks

Estrogens influence the immune system in a complex multi-faceted way, not yet completely understood. It has stimulatoryand inhibitory effects on different parts of the immune system,and some functions may not be the same in vivo as in vitro. BothT and B cells are important in the pathogenesis of RA, and morestudies need to be performed in order to elucidate the specificeffects of sex steroids on the inflammatory process. Clinical tri-als of postmenopausal RA patients have shown that HRT decreasesdisease activity, improves BMD, and in addition, an indication ofa joint protective effect has been found. Also, the bone and car-tilage turnover is reduced by HRT. Thus, the treatment seems tohave several important effects in postmenopausal RA. However,HRT is no longer recommended for long-term therapy due to therisk of serious side effects. Based on our studies in mice we sug-gest that selective modulation of estrogen receptors could providea way of obtaining the positive effects of estrogen therapy on RA,while avoiding the serious side effects. This area needs to be furtherstudied.

References

Abbas, A.K., Murphy, K.M., Sher, A., 1996. Functional diversity of helper T lympho-cytes. Nature 383, 787–793.

Abrahamsen, B., Bonnevie-Nielsen, V., Ebbesen, E.N., Gram, J., Beck-Nielsen, H., 2000.Cytokines and bone loss in a 5-year longitudinal study – hormone replace-ment therapy suppresses serum soluble interleukin-6 receptor and increasesinterleukin-1-receptor antagonist: the Danish Osteoporosis Prevention Study. J.Bone Miner. Res. 15, 1545–1554.

Adachi, J.D., Bensen, W.G., Brown, J., Hanley, D., Hodsman, A., Josse, R., Kendler, D.L.,Lentle, B., Olszynski, W., Ste-Marie, L.G., Tenenhouse, A., Chines, A.A., 1997. Inter-mittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N.Engl. J. Med. 337, 382–387.

Afzali, B., Lombardi, G., Lechler, R.I., Lord, G.M., 2007. The role of T helper 17 (Th17)and regulatory T cells (Treg) in human organ transplantation and autoimmunedisease. Clin. Exp. Immunol. 148, 32–46.

al-Janadi, N., al-Dalaan, A., al-Balla, S., Raziuddin, S., 1996. CD4+ T cell inducibleimmunoregulatory cytokine response in rheumatoid arthritis. J. Rheumatol. 23,809–814.

Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E.,Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D., Galibert, L., 1997. A homo-logue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cellfunction. Nature 390, 175–179.

Anderson, G.L., Limacher, M., Assaf, A.R., Bassford, T., Beresford, S.A., Black, H., Bonds,D., Brunner, R., Brzyski, R., Caan, B., Chlebowski, R., Curb, D., Gass, M., Hays, J.,Heiss, G., Hendrix, S., Howard, B.V., Hsia, J., Hubbell, A., Jackson, R., Johnson,K.C., Judd, H., Kotchen, J.M., Kuller, L., LaCroix, A.Z., Lane, D., Langer, R.D., Lasser,N., Lewis, C.E., Manson, J., Margolis, K., Ockene, J., O’Sullivan, M.J., Phillips, L.,Prentice, R.L., Ritenbaugh, C., Robbins, J., Rossouw, J.E., Sarto, G., Stefanick, M.L.,Van Horn, L., Wactawski-Wende, J., Wallace, R., Wassertheil-Smoller, S., 2004.Effects of conjugated equine estrogen in postmenopausal women with hysterec-tomy: the Women’s Health Initiative randomized controlled trial. JAMA 291,1701–1712.

Aronica, S.M., Katzenellenbogen, B.S., 1991. Progesterone receptor regulation inuterine cells: stimulation by estrogen, cyclic adenosine 3′ ,5′-monophosphate,and insulin-like growth factor I and suppression by antiestrogens and protein

kinase inhibitors. Endocrinology 128, 2045–2052.

Arron, J.R., Choi, Y., 2000. Bone versus immune system. Nature 408, 535–536.Barrett, J.H., Brennan, P., Fiddler, M., Silman, A.J., 1999. Does rheumatoid arthritis

remit during pregnancy and relapse postpartum? Results from a nationwidestudy in the United Kingdom performed prospectively from late pregnancy.Arthritis Rheum. 42, 1219–1227.

ellular

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

U. Islander et al. / Molecular and C

arrett, J.H., Brennan, P., Fiddler, M., Silman, A., 2000. Breast-feeding and postpartumrelapse in women with rheumatoid and inflammatory arthritis. Arthritis Rheum.43, 1010–1015.

ekesi, G., Tulassay, Z., Racz, K., Feher, J., Szekacs, B., Kakucs, R., Dinya, E., Riss, E., Mag-yar, Z., Rigo Jr., J., 2007. The effect of estrogens on superoxide anion generationby human neutrophil granulocytes: possible consequences of the antioxidantdefense. Gynecol. Endocrinol. 23, 451–454.

ekker, P.J., Holloway, D., Nakanishi, A., Arrighi, M., Leese, P.T., Dunstan, C.R., 2001.The effect of a single dose of osteoprotegerin in postmenopausal women. J. BoneMiner. Res. 16, 348–360.

enten, W.P., Stephan, C., Lieberherr, M., Wunderlich, F., 2001. Estradiol signalingvia sequestrable surface receptors. Endocrinology 142, 1669–1677.

eral, V., 2003. Breast cancer and hormone-replacement therapy in the MillionWomen Study. Lancet 362, 419–427.

ettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., Kuchroo,V.K., 2006. Reciprocal developmental pathways for the generation of pathogeniceffector TH17 and regulatory T cells. Nature 441, 235–238.

ettelli, E., Oukka, M., Kuchroo, V.K., 2007. T(H)-17 cells in the circle of immunityand autoimmunity. Nat. Immunol. 8, 345–350.

ijlsma, J.W., Huber-Bruning, O., Thijssen, J.H., 1987. Effect of oestrogen treatmenton clinical and laboratory manifestations of rheumatoid arthritis. Ann. Rheum.Dis. 46, 777–779.

lais, J., Demers, D., 1962. The use of norethynodrel (Envoid) in the treatment ofrheumatoid arthritis. Arthritis Rheum. 5, 284.

ond, A., Ratkay, L.G., Waterfield, J.D., Hay, F.C., 1997. Post-partum flare in MRL-lpr/lpr mice is associated with a parallel increase of N-acetylglucosamine onserum IgG. Br. J. Rheumatol. 36, 174–177.

onewald, L.F., Dallas, S.L., 1994. Role of active and latent transforming growth factorbeta in bone formation. J. Cell. Biochem. 55, 350–357.

rahn, E., Banquerigo, M.L., Lee, J.K., Park, E.J., Fogler, W.E., Plum, S.M., 2008. An angio-genesis inhibitor, 2-methoxyestradiol, involutes rat collagen-induced arthritisand suppresses gene expression of synovial vascular endothelial growth factorand basic fibroblast growth factor. J. Rheumatol. 35, 2119–2128.

rennan, P., Silman, A., 1994. Breast-feeding and the onset of rheumatoid arthritis.Arthritis Rheum. 37, 808–813.

rennan, P., Bankhead, C., Silman, A., Symmons, D., 1997. Oral contraceptives andrheumatoid arthritis: results from a primary care-based incident case-controlstudy. Semin. Arthritis Rheum. 26, 817–823.

romley, M., Woolley, D.E., 1984. Chondroclasts and osteoclasts at subchondral sitesof erosion in the rheumatoid joint. Arthritis Rheum. 27, 968–975.

ucay, N., Sarosi, I., Dunstan, C.R., Morony, S., Tarpley, J., Capparelli, C., Scully, S.,Tan, H.L., Xu, W., Lacey, D.L., Boyle, W.J., Simonet, W.S., 1998. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. GenesDev. 12, 1260–1268.

uckley, L.M., Leib, E.S., Cartularo, K.S., Vacek, P.M., Cooper, S.M., 1996. Calciumand vitamin D3 supplementation prevents bone loss in the spine secondary tolow-dose corticosteroids in patients with rheumatoid arthritis. A randomized,double-blind, placebo-controlled trial. Ann. Intern. Med. 125, 961–968.

urgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H.,Boyle, W.J., Dunstan, C.R., Hu, S., Lacey, D.L., 1999. The ligand for osteoprotegerin(OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527–538.

uyon, J.P., Korchak, H.M., Rutherford, L.E., Ganguly, M., Weissmann, G., 1984.Female hormones reduce neutrophil responsiveness in vitro. Arthritis Rheum.27, 623–630.

uzas, E.I., Hollo, K., Rubliczky, L., Garzo, M., Nyirkos, P., Glant, T.T., 1993. Effect ofpregnancy on proteoglycan-induced progressive polyarthritis in BALB/c mice:remission of disease activity. Clin. Exp. Immunol. 94, 252–260.

ao, D., Malmstrom, V., Baecher-Allan, C., Hafler, D., Klareskog, L., Trollmo, C., 2003.Isolation and functional characterization of regulatory CD25brightCD4+ T cellsfrom the target organ of patients with rheumatoid arthritis. Eur. J. Immunol. 33,215–223.

arlsten, H., Tarkowski, A., 1993. Histocompatibility complex gene products andexposure to oestrogen: two independent disease accelerating factors in murinelupus. Scand. J. Immunol. 38, 341–347.

arlsten, H., Holmdahl, R., Tarkowski, A., Nilsson, L.A., 1989. Oestradiol- andtestosterone-mediated effects on the immune system in normal and autoim-mune mice are genetically linked and inherited as dominant traits. Immunology68, 209–214.

arlsten, H., Tarkowski, A., Holmdahl, R., Nilsson, L.A., 1990. Oestrogen is a potent dis-ease accelerator in SLE-prone MRL lpr/lpr mice. Clin. Exp. Immunol. 80, 467–473.

arlsten, H., Nilsson, N., Jonsson, R., Backman, K., Holmdahl, R., Tarkowski, A., 1992.Estrogen accelerates immune complex glomerulonephritis but ameliorates Tcell-mediated vasculitis and sialadenitis in autoimmune MRL lpr/lpr mice. CellImmunol. 144, 190–202.

astagnetta, L.A., Carruba, G., Granata, O.M., Stefano, R., Miele, M., Schmidt, M.,Cutolo, M., Straub, R.H., 2003. Increased estrogen formation and estrogen toandrogen ratio in the synovial fluid of patients with rheumatoid arthritis. J.Rheumatol. 30, 2597–2605.

enci, S., Weitzmann, M.N., Roggia, C., Namba, N., Novack, D., Woodring, J., Pacifici,R., 2000. Estrogen deficiency induces bone loss by enhancing T-cell production

of TNF-alpha. J. Clin. Invest. 106, 1229–1237.

habaud, M., Durand, J.M., Buchs, N., Fossiez, F., Page, G., Frappart, L., Miossec, P.,1999. Human interleukin-17: a T cell-derived proinflammatory cytokine pro-duced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970.

hen, D., Zhao, M., Mundy, G.R., 2004. Bone morphogenetic proteins. Growth Factors22, 233–241.

Endocrinology 335 (2011) 14–29 23

Chenu, C., Pfeilschifter, J., Mundy, G.R., Roodman, G.D., 1988. Transforming growthfactor beta inhibits formation of osteoclast-like cells in long-term human mar-row cultures. Proc. Natl. Acad. Sci. USA 85, 5683–5687.

Cheung, J., Mak, Y.T., Papaioannou, S., Evans, B.A., Fogelman, I., Hampson, G., 2003.Interleukin-6 (IL-6), IL-1, receptor activator of nuclear factor kappaB ligand(RANKL) and osteoprotegerin production by human osteoblastic cells: com-parison of the effects of 17-beta oestradiol and raloxifene. J. Endocrinol. 177,423–433.

Chu, C.Q., Swart, D., Alcorn, D., Tocker, J., Elkon, K.B., 2007. Interferon-gammaregulates susceptibility to collagen-induced arthritis through suppression ofinterleukin-17. Arthritis Rheum. 56, 1145–1151.

Cohen, A., Dubbs, A., Myers, A., 1940. The treatment of atrophic arthritis with estro-genic substance. N. Engl. J. Med. 222, 140–142.

Cohen, S.B., Dore, R.K., Lane, N.E., Ory, P.A., Peterfy, C.G., Sharp, J.T., van der Heijde, D.,Zhou, L., Tsuji, W., Newmark, R., 2008. Denosumab treatment effects on struc-tural damage, bone mineral density, and bone turnover in rheumatoid arthritis:a twelve-month, multicenter, randomized, double-blind, placebo-controlled,phase II clinical trial. Arthritis Rheum. 58, 1299–1309.

Collin-Osdoby, P., Rothe, L., Anderson, F., Nelson, M., Maloney, W., Osdoby, P., 2001.Receptor activator of NF-kappa B and osteoprotegerin expression by humanmicrovascular endothelial cells, regulation by inflammatory cytokines, and rolein human osteoclastogenesis. J. Biol. Chem. 276, 20659–20672.

Crotti, T.N., Smith, M.D., Weedon, H., Ahern, M.J., Findlay, D.M., Kraan, M., Tak, P.P.,Haynes, D.R., 2002. Receptor activator NF-kappaB ligand (RANKL) expressionin synovial tissue from patients with rheumatoid arthritis, spondyloarthropa-thy, osteoarthritis, and from normal patients: semiquantitative and quantitativeanalysis. Ann. Rheum. Dis. 61, 1047–1054.

Cummings, S.R., Eckert, S., Krueger, K.A., Grady, D., Powles, T.J., Cauley, J.A., Norton,L., Nickelsen, T., Bjarnason, N.H., Morrow, M., Lippman, M.E., Black, D., Glusman,J.E., Costa, A., Jordan, V.C., 1999. The effect of raloxifene on risk of breast cancerin postmenopausal women: results from the MORE randomized trial. Multipleoutcomes of raloxifene evaluation. JAMA 281, 2189–2197.

Cummings, S.R., Ensrud, K., Delmas, P.D., LaCroix, A.Z., Vukicevic, S., Reid, D.M.,Goldstein, S., Sriram, U., Lee, A., Thompson, J., Armstrong, R.A., Thompson, D.D.,Powles, T., Zanchetta, J., Kendler, D., Neven, P., Eastell, R., 2010. Lasofoxifene inpostmenopausal women with osteoporosis. N. Engl. J. Med. 362, 686–696.

Curtis, S.W., Washburn, T., Sewall, C., DiAugustine, R., Lindzey, J., Couse, J.F.,Korach, K.S., 1996. Physiological coupling of growth factor and steroidreceptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc. Natl. Acad. Sci. USA 93,12626–12630.

del Junco, D.J., Annegers, J.F., Luthra, H.S., Coulam, C.B., Kurland, L.T., 1985. Do oralcontraceptives prevent rheumatoid arthritis? JAMA 254, 1938–1941.

Dolhain, R.J., van der Heiden, A.N., ter Haar, N.T., Breedveld, F.C., Miltenburg, A.M.,1996. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile inthe joints of patients with rheumatoid arthritis. Arthritis Rheum. 39, 1961–1969.

Doran, M.F., Pond, G.R., Crowson, C.S., O’Fallon, W.M., Gabriel, S.E., 2002. Trends inincidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over aforty-year period. Arthritis Rheum. 46, 625–631.

Doran, M.F., Crowson, C.S., O’Fallon, W.M., Gabriel, S.E., 2004. The effect of oralcontraceptives and estrogen replacement therapy on the risk of rheumatoidarthritis: a population based study. J. Rheumatol. 31, 207–213.

Dore, R.K., Cohen, S.B., Lane, N.E., Palmer, W.R., Shergy, W., Zhou, L., Wang, H.,Tsuji, W., Newmark, R., 2010. Effects of denosumab on bone mineral densityand bone turnover in patients with rheumatoid arthritis receiving concurrentglucocorticoids or bisphosphonates. Ann. Rheum. Dis. 69, 872–875.

Eastell, R., Devogelaer, J.P., Peel, N.F., Chines, A.A., Bax, D.E., Sacco-Gibson, N., Nagantde Deuxchaisnes, C., Russell, R.G., 2000. Prevention of bone loss with rise-dronate in glucocorticoid-treated rheumatoid arthritis patients. Osteoporos. Int.11, 331–337.

Egan, P.J., van Nieuwenhuijze, A., Campbell, I.K., Wicks, I.P., 2008. Promotion of thelocal differentiation of murine Th17 cells by synovial macrophages during acuteinflammatory arthritis. Arthritis Rheum. 58, 3720–3729.

Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., Boyle, W.J., Lacey, D.L., Riggs, B.L., 2003.Role of RANK ligand in mediating increased bone resorption in early post-menopausal women. J. Clin. Invest. 111, 1221–1230.

Ehinger, M., Vestberg, M., Johansson, A.C., Johannesson, M., Svensson, A., Holm-dahl, R., 2001. Influence of CD4 or CD8 deficiency on collagen-induced arthritis.Immunology 103, 291–300.

Emery, P., Fleischmann, R., Filipowicz-Sosnowska, A., Schechtman, J., Szczepanski, L.,Kavanaugh, A., Racewicz, A.J., van Vollenhoven, R.F., Li, N.F., Agarwal, S., Hessey,E.W., Shaw, T.M., 2006. The efficacy and safety of rituximab in patients withactive rheumatoid arthritis despite methotrexate treatment: results of a phaseIIB randomized, double-blind, placebo-controlled, dose-ranging trial. ArthritisRheum. 54, 1390–1400.

Engdahl, C., Jochems, C., Windahl, S.H., Borjesson, A.E., Ohlsson, C., Carlsten, H.,Lagerquist, M.K., 2010. Amelioration of collagen-induced arthritis and immune-associated bone loss through signaling via estrogen receptor alpha, and notestrogen receptor beta or G protein-coupled receptor 30. Arthritis Rheum. 62,524–533.

Eriksen, E.F., Hodgson, S.F., Eastell, R., Cedel, S.L., O’Fallon, W.M., Riggs, B.L., 1990.Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quanti-tative assessment of rates of formation, resorption, and bone loss at tissue andcellular levels. J. Bone Miner. Res. 5, 311–319.

Eriksen, E.F., Langdahl, B., Vesterby, A., Rungby, J., Kassem, M., 1999. Hormonereplacement therapy prevents osteoclastic hyperactivity: a histomorpho-

2 ellular

E

E

E

E

E

E

E

F

F

F

F

F

F

F

F

F

G

G

G

G

G

G

G

G

4 U. Islander et al. / Molecular and C

metric study in early postmenopausal women. J. Bone Miner. Res. 14,1217–1221.

rlandsson, M.C., Gomori, E., Taube, M., Carlsten, H., 2000. Effects of raloxifene, aselective estrogen receptor modulator, on thymus, T cell reactivity, and inflam-mation in mice. Cell. Immunol. 205, 103–109.

rlandsson, M.C., Ohlsson, C., Gustafsson, J.A., Carlsten, H., 2001. Role of oestrogenreceptors alpha and beta in immune organ development and in oestrogen-mediated effects on thymus. Immunology 103, 17–25.

rlandsson, M.C., Jonsson, C.A., Lindberg, M.K., Ohlsson, C., Carlsten, H., 2002.Raloxifene- and estradiol-mediated effects on uterus, bone and B lymphocytesin mice. J. Endocrinol. 175, 319–327.

rlandsson, M.C., Jonsson, C.A., Islander, U., Ohlsson, C., Carlsten, H., 2003. Oestro-gen receptor specificity in oestradiol-mediated effects on B lymphopoiesis andimmunoglobulin production in male mice. Immunology 108, 346–351.

rnestam, S., Hafstrom, I., Werner, S., Carlstrom, K., Tengstrand, B., 2007. IncreasedDHEAS levels in patients with rheumatoid arthritis after treatment with tumornecrosis factor antagonists: evidence for improved adrenal function. J. Rheuma-tol. 34, 1451–1458.

rnst, M., Rodan, G.A., 1991. Estradiol regulation of insulin-like growth factor-I expression in osteoblastic cells: evidence for transcriptional control. Mol.Endocrinol. 5, 1081–1089.

ttinger, B., Black, D.M., Mitlak, B.H., Knickerbocker, R.K., Nickelsen, T., Genant, H.K.,Christiansen, C., Delmas, P.D., Zanchetta, J.R., Stakkestad, J., Gluer, C.C., Krueger,K., Cohen, F.J., Eckert, S., Ensrud, K.E., Avioli, L.V., Lips, P., Cummings, S.R., 1999.Reduction of vertebral fracture risk in postmenopausal women with osteo-porosis treated with raloxifene: results from a 3-year randomized clinical trial.Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA 282,637–645.

ata, J.E., Kong, Y.Y., Li, J., Sasaki, T., Irie-Sasaki, J., Moorehead, R.A., Elliott, R., Scully,S., Voura, E.B., Lacey, D.L., Boyle, W.J., Khokha, R., Penninger, J.M., 2000. Theosteoclast differentiation factor osteoprotegerin-ligand is essential for mam-mary gland development. Cell 103, 41–50.

ilardo, E., Quinn, J., Pang, Y., Graeber, C., Shaw, S., Dong, J., Thomas, P., 2007. Acti-vation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) atthe plasma membrane. Endocrinology 148, 3236–3245.

ogle, R.H., Stanczyk, F.Z., Zhang, X., Paulson, R.J., 2007. Ovarian androgen productionin postmenopausal women. J. Clin. Endocrinol. Metab. 92, 3040–3043.

orsblad-d’Elia, H., Carlsten, H., 2008. The impact of hormone replacement therapyon humoral and cell-mediated immune responses in vivo in post-menopausalwomen with rheumatoid arthritis. Scand. J. Immunol. 68, 661–667.

orsblad-D’Elia, H., Larsen, A., Mattsson, L.A., Waltbrand, E., Kvist, G., Mellstrom,D., Saxne, T., Ohlsson, C., Nordborg, E., Carlsten, H., 2003a. Influence of hor-mone replacement therapy on disease progression and bone mineral density inrheumatoid arthritis. J. Rheumatol. 30, 1456–1463.

orsblad-D’Elia, H., Larsen, A., Waltbrand, E., Kvist, G., Mellstrom, D., Saxne, T.,Ohlsson, C., Nordborg, E., Carlsten, H., 2003b. Radiographic joint destruction inpostmenopausal rheumatoid arthritis is strongly associated with generalisedosteoporosis. Ann. Rheum. Dis. 62, 617–623.

orsblad-D’Elia, H., Mattsson, L.A., Ohlsson, C., Nordborg, E., Carlsten, H., 2003c. Hor-mone replacement therapy in rheumatoid arthritis is associated with lowerserum levels of soluble IL-6 receptor and higher insulin-like growth factor 1.Arthritis Res. Ther. 5, R202–R209.

orsblad-d’Elia, H., Christgau, S., Mattsson, L.A., Saxne, T., Ohlsson, C., Nordborg,E., Carlsten, H., 2004. Hormone replacement therapy, calcium and vitaminD3 versus calcium and vitamin D3 alone decreases markers of cartilageand bone metabolism in rheumatoid arthritis: a randomized controlled trial[ISRCTN46523456]. Arthritis Res. Ther. 6, R457–R468.

uller, K., Murphy, C., Kirstein, B., Fox, S.W., Chambers, T.J., 2002. TNFalpha potentlyactivates osteoclasts, through a direct action independent of and strongly syn-ergistic with RANKL. Endocrinology 143, 1108–1118.

alien, R., Garcia, T., 1997. Estrogen receptor impairs interleukin-6 expressionby preventing protein binding on the NF-kappaB site. Nucleic Acids Res. 25,2424–2429.

enovese, M.C., Van den Bosch, F., Roberson, S.A., Bojin, S., Biagini, I.M., Ryan, P.,Sloan-Lancaster, J., 2010. LY2439821, a humanized anti-interleukin-17 mono-clonal antibody, in the treatment of patients with rheumatoid arthritis: a phase Irandomized, double-blind, placebo-controlled, proof-of-concept study. ArthritisRheum. 62, 929–939.

eraldes, P., Gagnon, S., Hadjadj, S., Merhi, Y., Sirois, M.G., Cloutier, I., Tanguay, J.F.,2006. Estradiol blocks the induction of CD40 and CD40L expression on endothe-lial cells and prevents neutrophil adhesion: an ERalpha-mediated pathway.Cardiovasc. Res. 71, 566–573.

erli, R., Bistoni, O., Russano, A., Fiorucci, S., Borgato, L., Cesarotti, M.E., Lunardi, C.,2002. In vivo activated T cells in rheumatoid synovitis. Analysis of Th1- and Th2-type cytokine production at clonal level in different stages of disease. Clin. Exp.Immunol. 129, 549–555.

ilbert, M., Rotstein, J., Cunningham, C., Estrin, I., Davidson, A., Pincus, G., 1964.Norethynodrel with mestranol in treatment of rheumatoid arthritis. JAMA 190,235.

ilbert, L., He, X., Farmer, P., Boden, S., Kozlowski, M., Rubin, J., Nanes, M.S.,

2000. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha.Endocrinology 141, 3956–3964.

inaldi, L., Di Benedetto, M.C., De Martinis, M., 2005. Osteoporosis, inflammationand ageing. Immun. Ageing 2, 14.

oemaere, S., Ackerman, C., Goethals, K., De Keyser, F., Van der Straeten, C., Ver-bruggen, G., Mielants, H., Veys, E.M., 1990. Onset of symptoms of rheumatoid

Endocrinology 335 (2011) 14–29

arthritis in relation to age, sex and menopausal transition. J. Rheumatol. 17,1620–1622.

Gompel, A., Piette, J.C., 2007. Systemic lupus erythematosus and hormone replace-ment therapy. Menopause Int. 13, 65–70.

Gonzalez, D.A., de Leon, A.C., Moncholi, C.V., Cordova Jde, C., Hernandez, L.B., 2004.Arthritis in mice: allogeneic pregnancy protects more than syngeneic by atten-uating cellular immune response. J. Rheumatol. 31, 30–34.

Gravallese, E.M., Harada, Y., Wang, J.T., Gorn, A.H., Thornhill, T.S., Goldring,S.R., 1998. Identification of cell types responsible for bone resorption inrheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 152,943–951.

Gravallese, E.M., Manning, C., Tsay, A., Naito, A., Pan, C., Amento, E., Goldring, S.R.,2000. Synovial tissue in rheumatoid arthritis is a source of osteoclast differen-tiation factor. Arthritis Rheum. 43, 250–258.

Green, S., Walter, P., Greene, G., Krust, A., Goffin, C., Jensen, E., Scrace, G., Waterfield,M., Chambon, P., 1986. Cloning of the human oestrogen receptor cDNA. J. SteroidBiochem. 24, 77–83.

Grimaldi, C.M., Cleary, J., Dagtas, A.S., Moussai, D., Diamond, B., 2002. Estrogen altersthresholds for B cell apoptosis and activation. J. Clin. Invest. 109, 1625–1633.

Grimaldi, C.M., Jeganathan, V., Diamond, B., 2006. Hormonal regulation of B celldevelopment: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 176,2703–2710.

Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A.N.,Kwiatkowski, W., Affolter, M., Vale, W.W., Belmonte, J.C., Choe, S., 2002. Struc-tural basis of BMP signalling inhibition by the cystine knot protein Noggin.Nature 420, 636–642.

Gruber, C.J., Tschugguel, W., Schneeberger, C., Huber, J.C., 2002. Production andactions of estrogens. N. Engl. J. Med. 346, 340–352.

Gruber, C.J., Gruber, D.M., Gruber, I.M., Wieser, F., Huber, J.C., 2004. Anatomy of theestrogen response element. Trends Endocrinol. Metab. 15, 73–78.

Haddad, A., Bienvenu, J., Miossec, P., 1998. Increased production of a Th2 cytokineprofile by activated whole blood cells from rheumatoid arthritis patients. J. Clin.Immunol. 18, 399–403.

Hall, F., 1938. Menopausal arthralgia. N. Engl. J. Med. 219, 1015–1026.Hall, G.M., Daniels, M., Huskisson, E.C., Spector, T.D., 1994a. A randomised con-

trolled trial of the effect of hormone replacement therapy on disease activityin postmenopausal rheumatoid arthritis. Ann. Rheum. Dis. 53, 112–116.

Hall, G.M., Daniels, M., Doyle, D.V., Spector, T.D., 1994b. Effect of hormone replace-ment therapy on bone mass in rheumatoid arthritis patients treated with andwithout steroids. Arthritis Rheum. 37, 1499–1505.

Halme, S., von Hertzen, L., Bloigu, A., Kaprio, J., Koskenvuo, M., Leinonen, M.,Saikku, P., Surcel, H.M., 1998. Chlamydia pneumoniae-specific cell-mediated andhumoral immunity in healthy people. Scand. J. Immunol. 47, 517–520.

Hartigan-O’Connor, D.J., Poon, C., Sinclair, E., McCune, J.M., 2007. Human CD4+ reg-ulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127),allowing consistent identification and sorting of live cells. J. Immunol. Methods319, 41–52.

Hasegawa, J., Nagashima, M., Yamamoto, M., Nishijima, T., Katsumata, S., Yoshino,S., 2003. Bone resorption and inflammatory inhibition efficacy of intermittentcyclical etidronate therapy in rheumatoid arthritis. J. Rheumatol. 30, 474–479.

Haugeberg, G., Uhlig, T., Falch, J.A., Halse, J.I., Kvien, T.K., 2000. Bone mineral den-sity and frequency of osteoporosis in female patients with rheumatoid arthritis:results from 394 patients in the Oslo County Rheumatoid Arthritis register.Arthritis Rheum. 43, 522–530.

Haugeberg, G., Orstavik, R.E., Uhlig, T., Falch, J.A., Halse, J.I., Kvien, T.K., 2002.Bone loss in patients with rheumatoid arthritis: results from a population-based cohort of 366 patients followed up for two years. Arthritis Rheum. 46,1720–1728.

Haynes, D.R., Crotti, T.N., Loric, M., Bain, G.I., Atkins, G.J., Findlay, D.M., 2001. Osteo-protegerin and receptor activator of nuclear factor kappaB ligand (RANKL)regulate osteoclast formation by cells in the human rheumatoid arthritic joint.Rheumatology (Oxford) 40, 623–630.

Hayward, M., Fiedler-Nagy, C., 1987. Mechanisms of bone loss: rheumatoid arthritis,periodontal disease and osteoporosis. Agents Actions 22, 251–254.

Heino, T.J., Hentunen, T.A., Vaananen, H.K., 2002. Osteocytes inhibit osteoclastic boneresorption through transforming growth factor-beta: enhancement by estrogen.J. Cell. Biochem. 85, 185–197.

Hofbauer, L.C., Khosla, S., Dunstan, C.R., Lacey, D.L., Spelsberg, T.C., Riggs, B.L., 1999.Estrogen stimulates gene expression and protein production of osteoprotegerinin human osteoblastic cells. Endocrinology 140, 4367–4370.

Holmdahl, R., Jansson, L., Andersson, M., 1986. Female sex hormones suppress devel-opment of collagen-induced arthritis in mice. Arthritis Rheum. 29, 1501–1509.

Holmdahl, R., Jansson, L., Meyerson, B., Klareskog, L., 1987. Oestrogen induced sup-pression of collagen arthritis: I. Long term oestradiol treatment of DBA/1 micereduces severity and incidence of arthritis and decreases the anti type II collagenimmune response. Clin. Exp. Immunol. 70, 372–378.

Holmdahl, R., Carlsten, H., Jansson, L., Larsson, P., 1989. Oestrogen is a potentimmunomodulator of murine experimental rheumatoid disease. Br. J. Rheuma-tol. 28 (Suppl. 1), 54–58, discussion 69–71.

Hooyman, J.R., Melton 3rd, L.J., Nelson, A.M., O’Fallon, W.M., Riggs, B.L., 1984. Frac-tures after rheumatoid arthritis. A population-based study. Arthritis Rheum. 27,1353–1361.

Horwood, N.J., Elliott, J., Martin, T.J., Gillespie, M.T., 1998. Osteotropic agents reg-ulate the expression of osteoclast differentiation factor and osteoprotegerin inosteoblastic stromal cells. Endocrinology 139, 4743–4746.

ellular

H

H

H

H

H

I

I

I

J

J

J

J

J

J

J

J

J

J

J

J

J

K

K

K

K

K

U. Islander et al. / Molecular and C

orwood, N.J., Kartsogiannis, V., Quinn, J.M., Romas, E., Martin, T.J., Gillespie, M.T.,1999. Activated T lymphocytes support osteoclast formation in vitro. Biochem.Biophys. Res. Commun. 265, 144–150.

uber, C., Collishaw, S., Mosley, J.R., Reeve, J., Noble, B.S., 2007. Selective estro-gen receptor modulator inhibits osteocyte apoptosis during abrupt estrogenwithdrawal: implications for bone quality maintenance. Calcif. Tissue Int. 81,139–144.

ughes, D.E., Boyce, B.F., 1997. Apoptosis in bone physiology and disease. Mol.Pathol. 50, 132–137.

ughes, D.E., Dai, A., Tiffee, J.C., Li, H.H., Mundy, G.R., Boyce, B.F., 1996. Estrogenpromotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat. Med. 2,1132–1136.

unt, S.M., McKenna, S.P., McEwen, J., Williams, J., Papp, E., 1981. The Nottinghamhealth profile: subjective health status and medical consultations. Soc. Sci. Med.A 15, 221–229.

mboden, J.B., 2009. The immunopathogenesis of rheumatoid arthritis. Annu. Rev.Pathol. 4, 417–434.

ssekutz, A.C., Sapru, K., 2008. Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: an effect independent of an anti-angiogenic action. Int.Immunopharmacol. 8, 708–716.

to, Y., Usui, T., Kobayashi, S., Iguchi-Hashimoto, M., Ito, H., Yoshitomi, H., Naka-mura, T., Shimizu, M., Kawabata, D., Yukawa, N., Hashimoto, M., Sakaguchi, N.,Sakaguchi, S., Yoshifuji, H., Nojima, T., Ohmura, K., Fujii, T., Mimori, T., 2009.Gamma/delta T cells are the predominant source of interleukin-17 in affectedjoints in collagen-induced arthritis, but not in rheumatoid arthritis. ArthritisRheum. 60, 2294–2303.

ansson, L., Holmdahl, R., 1989. Oestrogen induced suppression of collagenarthritis. IV: Progesterone alone does not affect the course of arthritis butenhances the oestrogen-mediated therapeutic effect. J. Reprod. Immunol. 15,141–150.

ansson, L., Holmdahl, R., 1992. Oestrogen-induced suppression of collagen arthritis;17 beta-oestradiol is therapeutically active in normal and castrated F1 hybridmice of both sexes. Clin. Exp. Immunol. 89, 446–451.

ansson, L., Holmdahl, R., 2001. Enhancement of collagen-induced arthritis in femalemice by estrogen receptor blockage. Arthritis Rheum. 44, 2168–2175.

ilka, R.L., Hangoc, G., Girasole, G., Passeri, G., Williams, D.C., Abrams, J.S., Boyce, B.,Broxmeyer, H., Manolagas, S.C., 1992. Increased osteoclast development afterestrogen loss: mediation by interleukin-6. Science 257, 88–91.

ilka, R.L., Passeri, G., Girasole, G., Cooper, S., Abrams, J., Broxmeyer, H., Manolagas,S.C., 1995. Estrogen loss upregulates hematopoiesis in the mouse: a mediatingrole of IL-6. Exp. Hematol. 23, 500–506.

ilka, R.L., Takahashi, K., Munshi, M., Williams, D.C., Roberson, P.K., Manolagas, S.C.,1998. Loss of estrogen upregulates osteoblastogenesis in the murine bone mar-row. Evidence for autonomy from factors released during bone resorption. J.Clin. Invest. 101, 1942–1950.

imi, E., Nakamura, I., Ikebe, T., Akiyama, S., Takahashi, N., Suda, T., 1998. Activation ofNF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1.J. Biol. Chem. 273, 8799–8805.

imi, E., Nakamura, I., Duong, L.T., Ikebe, T., Takahashi, N., Rodan, G.A., Suda, T., 1999.Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclastsin the absence of osteoblasts/stromal cells. Exp. Cell. Res. 247, 84–93.

ochems, C., Islander, U., Erlandsson, M., Verdrengh, M., Ohlsson, C., Carlsten, H.,2005. Osteoporosis in experimental postmenopausal polyarthritis: the relativecontributions of estrogen deficiency and inflammation. Arthritis Res. Ther. 7,R837–R843.

ochems, C., Islander, U., Kallkopf, A., Lagerquist, M., Ohlsson, C., Carlsten, H., 2007.Role of raloxifene as a potent inhibitor of experimental postmenopausal pol-yarthritis and osteoporosis. Arthritis Rheum. 56, 3261–3270.

ochems, C., Lagerquist, M., Hakansson, C., Ohlsson, C., Carlsten, H., 2008. Long-termanti-arthritic and anti-osteoporotic effects of raloxifene in established experi-mental postmenopausal polyarthritis. Clin. Exp. Immunol. 152, 593–597.

osefsson, E., Tarkowski, A., 1997. Suppression of type II collagen-induced arthritisby the endogenous estrogen metabolite 2-methoxyestradiol. Arthritis Rheum.40, 154–163.

osefsson, E., Tarkowski, A., Carlsten, H., 1992. Anti-inflammatory propertiesof estrogen. I. In vivo suppression of leukocyte production in bone mar-row and redistribution of peripheral blood neutrophils. Cell. Immunol. 142,67–78.

anda, N., Tsuchida, T., Tamaki, K., 1999. Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral bloodmononuclear cells from patients with systemic lupus erythematosus. ArthritisRheum. 42, 328–337.

anik, K.S., Wilder, R.L., 2000. Hormonal alterations in rheumatoid arthritis, includ-ing the effects of pregnancy. Rheum. Dis. Clin. North Am. 26, 805–823.

arlstrom, A., Andréasson, E., Karlsson, A., Ohlsson, C., Tivesten, A., Islander, U., Carl-sten, H., 2010. 2-methoxyestradiol ameliorates arthritis and osteoporosis in amodel of postmenopausal rheumatoid arthritis. Manuscript in preparation.

ehlen, A., Pachnio, A., Thiele, K., Langner, J., 2003. Gene expression inducedby interleukin-17 in fibroblast-like synoviocytes of patients with rheumatoidarthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res. Ther.

5, R186–R192.

elchtermans, H., De Klerck, B., Mitera, T., Van Balen, M., Bullens, D., Billiau,A., Leclercq, G., Matthys, P., 2005. Defective CD4+ CD25+ regulatory T cellfunctioning in collagen-induced arthritis: an important factor in pathogen-esis, counter-regulated by endogenous IFN-gamma. Arthritis Res. Ther. 7,R402–R415.

Endocrinology 335 (2011) 14–29 25

Kelchtermans, H., Geboes, L., Mitera, T., Huskens, D., Leclercq, G., Matthys, P.,2009. Activated CD4 + CD25+ regulatory T cells inhibit osteoclastogenesis andcollagen-induced arthritis. Ann. Rheum. Dis. 68, 744–750.

Koenen, H.J., Smeets, R.L., Vink, P.M., van Rijssen, E., Boots, A.M., Joosten, I., 2008.Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producingcells. Blood 112, 2340–2352.

Komm, B.S., Terpening, C.M., Benz, D.J., Graeme, K.A., Gallegos, A., Korc, M.,Greene, G.L., O’Malley, B.W., Haussler, M.R., 1988. Estrogen binding, receptormRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241,81–84.

Komuro, H., Olee, T., Kuhn, K., Quach, J., Brinson, D.C., Shikhman, A., Valbracht, J.,Creighton-Achermann, L., Lotz, M., 2001. The osteoprotegerin/receptor activa-tor of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligandsystem in cartilage. Arthritis Rheum. 44, 2768–2776.

Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S.,Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R.,Lacey, D.L., Mak, T.W., Boyle, W.J., Penninger, J.M., 1999a. OPGL is a key regulatorof osteoclastogenesis, lymphocyte development and lymph-node organogene-sis. Nature 397, 315–323.

Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J.,Elliott, R., McCabe, S., Wong, T., Campagnuolo, G., Moran, E., Bogoch, E.R., Van,G., Nguyen, L.T., Ohashi, P.S., Lacey, D.L., Fish, E., Boyle, W.J., Penninger, J.M.,1999b. Activated T cells regulate bone loss and joint destruction in adjuvantarthritis through osteoprotegerin ligand. Nature 402, 304–309.

Kotake, S., Sato, K., Kim, K.J., Takahashi, N., Udagawa, N., Nakamura, I., Yamaguchi,A., Kishimoto, T., Suda, T., Kashiwazaki, S., 1996. Interleukin-6 and solubleinterleukin-6 receptors in the synovial fluids from rheumatoid arthritis patientsare responsible for osteoclast-like cell formation. J. Bone Miner. Res. 11, 88–95.

Kotake, S., Udagawa, N., Takahashi, N., Matsuzaki, K., Itoh, K., Ishiyama, S., Saito,S., Inoue, K., Kamatani, N., Gillespie, M.T., Martin, T.J., Suda, T., 1999. IL-17 insynovial fluids from patients with rheumatoid arthritis is a potent stimulator ofosteoclastogenesis. J. Clin. Invest. 103, 1345–1352.

Kramer, P.R., Kramer, S.F., Guan, G., 2004. 17 beta-estradiol regulates cytokinerelease through modulation of CD16 expression in monocytes and monocyte-derived macrophages. Arthritis Rheum. 50, 1967–1975.

Kremer, M., Judd, J., Rifkin, B., Auszmann, J., Oursler, M.J., 1995. Estrogen modulationof osteoclast lysosomal enzyme secretion. J. Cell. Biochem. 57, 271–279.

Krishnan, V., Wang, X., Safe, S., 1994. Estrogen receptor-Sp1 complexes mediateestrogen-induced cathepsin D gene expression in MCF-7 human breast cancercells. J. Biol. Chem. 269, 15912–15917.

Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S., Gustafsson, J.A., 1996. Cloningof a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA93, 5925–5930.

Kushner, P.J., Agard, D.A., Greene, G.L., Scanlan, T.S., Shiau, A.K., Uht, R.M., Webb,P., 2000. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74,311–317.

Kvien, T.K., Glennas, A., Knudsrod, O.G., Smedstad, L.M., Mowinckel, P., Forre, O.,1997. The prevalence and severity of rheumatoid arthritis in Oslo. Results froma county register and a population survey. Scand. J. Rheumatol. 26, 412–418.

Kvien, T.K., Uhlig, T., Odegard, S., Heiberg, M.S., 2006. Epidemiological aspects ofrheumatoid arthritis: the sex ratio. Ann. N Y Acad. Sci. 1069, 212–222.

Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R.,Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E.,Capparelli, C., Eli, A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G.,Guo, J., Delaney, J., Boyle, W.J., 1998. Osteoprotegerin ligand is a cytokine thatregulates osteoclast differentiation and activation. Cell 93, 165–176.

Lacey, D.L., Tan, H.L., Lu, J., Kaufman, S., Van, G., Qiu, W., Rattan, A., Scully, S., Fletcher,F., Juan, T., Kelley, M., Burgess, T.L., Boyle, W.J., Polverino, A.J., 2000. Osteopro-tegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J.Pathol. 157, 435–448.

Lam, J., Takeshita, S., Barker, J.E., Kanagawa, O., Ross, F.P., Teitelbaum, S.L., 2000. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposedto permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488.

Lane, N.E., Sanchez, S., Modin, G.W., Genant, H.K., Pierini, E., Arnaud, C.D., 1998.Parathyroid hormone treatment can reverse corticosteroid-induced osteo-porosis. Results of a randomized controlled clinical trial. J. Clin. Invest. 102,1627–1633.

Lange, U., Teichmann, J., Muller-Ladner, U., Strunk, J., 2005. Increase in bone min-eral density of patients with rheumatoid arthritis treated with anti-TNF-alphaantibody: a prospective open-label pilot study. Rheumatology (Oxford) 44,1546–1548.

Larsen, A., 1995. How to apply Larsen score in evaluating radiographs of rheumatoidarthritis in long-term studies. J. Rheumatol. 22, 1974–1975.

Levin, E.R., 2009. G protein-coupled receptor 30: estrogen receptor or collaborator?Endocrinology 150, 1563–1565.

Levy, N., Zhao, X., Tang, H., Jaffe, R.B., Speed, T.P., Leitman, D.C., 2007. Multiple tran-scription factor elements collaborate with estrogen receptor alpha to activatean inducible estrogen response element in the NKG2E gene. Endocrinology 148,3449–3458.

Li, X., Takahashi, M., Kushida, K., Inoue, T., 1998. The preventive and interventional

effects of raloxifene analog (LY117018 HCL) on osteopenia in ovariectomizedrats. J. Bone Miner. Res. 13, 1005–1010.

Li, J., Sarosi, I., Yan, X.Q., Morony, S., Capparelli, C., Tan, H.L., McCabe, S., Elliott, R.,Scully, S., Van, G., Kaufman, S., Juan, S.C., Sun, Y., Tarpley, J., Martin, L., Chris-tensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C.R., Lacey,D.L., Boyle, W.J., 2000. RANK is the intrinsic hematopoietic cell surface recep-

2 ellular

L

L

L

L

L

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

6 U. Islander et al. / Molecular and C

tor that controls osteoclastogenesis and regulation of bone mass and calciummetabolism. Proc. Natl. Acad. Sci. USA 97, 1566–1571.

indberg, M.K., Moverare, S., Skrtic, S., Alatalo, S., Halleen, J., Mohan, S., Gustafs-son, J.A., Ohlsson, C., 2002a. Two different pathways for the maintenance oftrabecular bone in adult male mice. J. Bone Miner. Res. 17, 555–562.

indberg, M.K., Weihua, Z., Andersson, N., Moverare, S., Gao, H., Vidal, O., Erlandsson,M., Windahl, S., Andersson, G., Lubahn, D.B., Carlsten, H., Dahlman-Wright, K.,Gustafsson, J.A., Ohlsson, C., 2002b. Estrogen receptor specificity for the effectsof estrogen in ovariectomized mice. J. Endocrinol. 174, 167–178.

indberg, M.K., Moverare, S., Skrtic, S., Gao, H., Dahlman-Wright, K., Gustafsson,J.A., Ohlsson, C., 2003. Estrogen receptor (ER)-beta reduces ERalpha-regulatedgene transcription, supporting a “ying yang” relationship between ERalpha andERbeta in mice. Mol. Endocrinol. 17, 203–208.

jung, L., Olsson, T., Engstrand, S., Wallberg-Jonsson, S., Soderberg, S., Rantapaa-Dahlqvist, S., 2007. Interleukin-1 receptor antagonist is associated with bothlipid metabolism and inflammation in rheumatoid arthritis. Clin. Exp. Rheuma-tol. 25, 617–620.

ubberts, E., Joosten, L.A., van de Loo, F.A., Schwarzenberger, P., Kolls, J., van denBerg, W.B., 2002a. Overexpression of IL-17 in the knee joint of collagen type IIimmunized mice promotes collagen arthritis and aggravates joint destruction.Inflamm. Res. 51, 102–104.

ubberts, E., Oppers-Walgreen, B., Pettit, A.R., Van Den Bersselaar, L., Joosten, L.A.,Goldring, S.R., Gravallese, E.M., Van Den Berg, W.B., 2002b. Increase in expressionof receptor activator of nuclear factor kappaB at sites of bone erosion corre-lates with progression of inflammation in evolving collagen-induced arthritis.Arthritis Rheum. 46, 3055–3064.

acdiarmid, F., Wang, D., Duncan, L.J., Purohit, A., Ghilchick, M.W., Reed, M.J., 1994.Stimulation of aromatase activity in breast fibroblasts by tumor necrosis factoralpha. Mol. Cell. Endocrinol. 106, 17–21.

acDonald, A.G., Murphy, E.A., Capell, H.A., Bankowska, U.Z., Ralston, S.H., 1994.Effects of hormone replacement therapy in rheumatoid arthritis: a double blindplacebo-controlled study. Ann. Rheum. Dis. 53, 54–57.

anabe, N., Kawaguchi, H., Chikuda, H., Miyaura, C., Inada, M., Nagai, R., Nabeshima,Y., Nakamura, K., Sinclair, A.M., Scheuermann, R.H., Kuro-o, M., 2001. Connectionbetween B lymphocyte and osteoclast differentiation pathways. J. Immunol. 167,2625–2631.

anel, N., Unutmaz, D., Littman, D.R., 2008. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclearreceptor RORgammat. Nat. Immunol. 9, 641–649.

ann, V., Huber, C., Kogianni, G., Collins, F., Noble, B., 2007. The antioxidant effect ofestrogen and selective estrogen receptor modulators in the inhibition of osteo-cyte apoptosis in vitro. Bone 40, 674–684.

arks, B.R., Nowyhed, H.N., Choi, J.Y., Poholek, A.C., Odegard, J.M., Flavell,R.A., Craft, J., 2009. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat. Immunol. 10,1125–1132.

arotte, H., Pallot-Prades, B., Grange, L., Gaudin, P., Alexandre, C., Miossec, P., 2007.A 1-year case-control study in patients with rheumatoid arthritis indicates pre-vention of loss of bone mineral density in both responders and nonrespondersto infliximab. Arthritis Res. Ther. 9, R61.

arotti, T., Sirotkovic, M., Pavelic, J., Gabrilovac, J., Pavelic, K., 1984. In vivo effect ofprogesteron and estrogen on thymus mass and T-cell functions in female mice.Horm. Metab. Res. 16, 201–203.

asuzawa, T., Miyaura, C., Onoe, Y., Kusano, K., Ohta, H., Nozawa, S., Suda, T., 1994.Estrogen deficiency stimulates B lymphopoiesis in mouse bone marrow. J. Clin.Invest. 94, 1090–1097.

attsson, R., Mattsson, A., Holmdahl, R., Whyte, A., Rook, G.A., 1991. Maintainedpregnancy levels of oestrogen afford complete protection from post-partumexacerbation of collagen-induced arthritis. Clin. Exp. Immunol. 85, 41–47.

cClung, M.R., Lewiecki, E.M., Cohen, S.B., Bolognese, M.A., Woodson, G.C., Mof-fett, A.H., Peacock, M., Miller, P.D., Lederman, S.N., Chesnut, C.H., Lain, D., Kivitz,A.J., Holloway, D.L., Zhang, C., Peterson, M.C., Bekker, P.J., 2006. Denosumab inpostmenopausal women with low bone mineral density. N. Engl. J. Med. 354,821–831.

ease, P.J., Revicki, D.A., Szechinski, J., Greenwald, M., Kivitz, A., Barile-Fabris, L.,Kalsi, J., Eames, J., Leirisalo-Repo, M., 2008. Improved health-related quality oflife for patients with active rheumatoid arthritis receiving rituximab: results ofthe dose-ranging assessment: international clinical evaluation of rituximab inrheumatoid arthritis (DANCER) trial. J. Rheumatol. 35, 20–30.

essalli, E.M., Mainini, G., Scaffa, C., Cafiero, A., Salzillo, P.L., Ragucci, A., Cobellis,L., 2007. Raloxifene therapy interacts with serum osteoprotegerin in post-menopausal women. Maturitas 56, 38–44.

iller, P.D., Derman, R.J., 2010. What is the best balance of benefits and risks amonganti-resorptive therapies for postmenopausal osteoporosis? Osteoporos. Int.[Epub ahead of print].

iller, P.D., Chines, A.A., Christiansen, C., Hoeck, H.C., Kendler, D.L., Lewiecki, E.M.,Woodson, G., Levine, A.B., Constantine, G., Delmas, P.D., 2008. Effects of baze-doxifene on BMD and bone turnover in postmenopausal women: 2-yr resultsof a randomized, double-blind, placebo-, and active-controlled study. J. BoneMiner. Res. 23, 525–535.

iossec, P., 2007. Interleukin-17 in fashion, at last: ten years after its description,its cellular source has been identified. Arthritis Rheum. 56, 2111–2115.

iyaura, C., Onoe, Y., Inada, M., Maki, K., Ikuta, K., Ito, M., Suda, T., 1997. IncreasedB-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovar-ian function: similarity to estrogen deficiency. Proc. Natl. Acad. Sci. USA 94,9360–9365.

Endocrinology 335 (2011) 14–29

Mor, G., Sapi, E., Abrahams, V.M., Rutherford, T., Song, J., Hao, X.Y., Muzaffar, S., Kohen,F., 2003. Interaction of the estrogen receptors with the Fas ligand promoter inhuman monocytes. J. Immunol. 170, 114–122.

Morgan, K., Clague, R.B., Collins, I., Ayad, S., Phinn, S.D., Holt, P.J., 1987. Incidence ofantibodies to native and denatured cartilage collagens (types II, IX, and XI) andto type I collagen in rheumatoid arthritis. Ann. Rheum. Dis. 46, 902–907.

Morgan, M.E., Sutmuller, R.P., Witteveen, H.J., van Duivenvoorde, L.M., Zanelli, E.,Melief, C.J., Snijders, A., Offringa, R., de Vries, R.R., Toes, R.E., 2003. CD25+ celldepletion hastens the onset of severe disease in collagen-induced arthritis.Arthritis Rheum. 48, 1452–1460.

Mori, H., Kitazawa, R., Mizuki, S., Nose, M., Maeda, S., Kitazawa, S., 2002. RANK lig-and, RANK, and OPG expression in type II collagen-induced arthritis mouse.Histochem. Cell. Biol. 117, 283–292.

Morita, Y., Yamamura, M., Kawashima, M., Harada, S., Tsuji, K., Shibuya, K.,Maruyama, K., Makino, H., 1998. Flow cytometric single-cell analysis of cytokineproduction by CD4+ T cells in synovial tissue and peripheral blood from patientswith rheumatoid arthritis. Arthritis Rheum. 41, 1669–1676.

Moskowitz, M.A., Jick, S.S., Burnside, S., Wallis, W.J., Dickson, J.F., Hunter, J.R., Jick,H., 1990. The relationship of oral contraceptive use to rheumatoid arthritis.Epidemiology 1, 153–156.

Mosmann, T.R., Sad, S., 1996. The expanding universe of T-cell subsets: Th1 Th2 andmore. Immunol. Today 17, 138–146.

Moxley, G., Posthuma, D., Carlson, P., Estrada, E., Han, J., Benson, L.L., Neale, M.C.,2002. Sexual dimorphism in innate immunity. Arthritis Rheum. 46, 250–258.

Mueck, A.O., Seeger, H., 2010. 2-methoxyestradiol-biology and mechanism of action.Steroids 75, 625–631.

Nakae, S., Nambu, A., Sudo, K., Iwakura, Y., 2003. Suppression of immune induction ofcollagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177.

Nakashima, T., Kobayashi, Y., Yamasaki, S., Kawakami, A., Eguchi, K., Sasaki, H., Sakai,H., 2000. Protein expression and functional difference of membrane-bound andsoluble receptor activator of NF-kappaB ligand: modulation of the expressionby osteotropic factors and cytokines. Biochem. Biophys. Res. Commun. 275,768–775.

Nestler, J.E., 1993. Interleukin-1 stimulates the aromatase activity of human placen-tal cytotrophoblasts. Endocrinology 132, 566–570.

Newton, C.J., Buric, R., Trapp, T., Brockmeier, S., Pagotto, U., Stalla, G.K., 1994. Theunliganded estrogen receptor (ER) transduces growth factor signals. J. SteroidBiochem. Mol. Biol. 48, 481–486.

Nilsson, N., Carlsten, H., 1994. Estrogen induces suppression of natural killer cellcytotoxicity and augmentation of polyclonal B cell activation. Cell. Immunol.158, 131–139.

Notley, C.A., Inglis, J.J., Alzabin, S., McCann, F.E., McNamee, K.E., Williams, R.O., 2008.Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novelimmunoregulatory pathway for Th1 and Th17 cells. J. Exp. Med. 205, 2491–2497.

Offner, H., Adlard, K., Zamora, A., Vandenbark, A.A., 2000. Estrogen potentiatestreatment with T-cell receptor protein of female mice with experimentalencephalomyelitis. J. Clin. Invest. 105, 1465–1472.

Oida, T., Xu, L., Weiner, H.L., Kitani, A., Strober, W., 2006. TGF-beta-mediated sup-pression by CD4+ CD25+ T cells is facilitated by CTLA-4 signaling. J. Immunol.177, 2331–2339.

Okamoto, H., Yamamura, M., Morita, Y., Harada, S., Makino, H., Ota, Z., 1997. Thesynovial expression and serum levels of interleukin-6, interleukin-11, leukemiainhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum. 40,1096–1105.

Ostensen, M., 1999. Sex hormones and pregnancy in rheumatoid arthritis and sys-temic lupus erythematosus. Ann. N Y Acad. Sci. 876, 131–143, discussion 144.

Ostensen, M., Aune, B., Husby, G., 1983. Effect of pregnancy and hormonal changeson the activity of rheumatoid arthritis. Scand. J. Rheumatol. 12, 69–72.

Oursler, M.J., Osdoby, P., Pyfferoen, J., Riggs, B.L., Spelsberg, T.C., 1991. Avian osteo-clasts as estrogen target cells. Proc. Natl. Acad. Sci. USA 88, 6613–6617.

Ozmen, B., Kirmaz, C., Aydin, K., Kafesciler, S.O., Guclu, F., Hekimsoy, Z., 2007. Influ-ence of the selective oestrogen receptor modulator (raloxifene hydrochloride)on IL-6, TNF-alpha, TGF-beta1 and bone turnover markers in the treatment ofpostmenopausal osteoporosis. Eur. Cytokine Netw. 18, 148–153.

Pacifici, R., Rifas, L., McCracken, R., Vered, I., McMurtry, C., Avioli, L.V., Peck,W.A., 1989. Ovarian steroid treatment blocks a postmenopausal increasein blood monocyte interleukin 1 release. Proc. Natl. Acad. Sci. USA 86,2398–2402.

Pacifici, R., Brown, C., Puscheck, E., Friedrich, E., Slatopolsky, E., Maggio, D.,McCracken, R., Avioli, L.V., 1991. Effect of surgical menopause and estrogenreplacement on cytokine release from human blood mononuclear cells. Proc.Natl. Acad. Sci. USA 88, 5134–5138.

Pappas, T.C., Gametchu, B., Watson, C.S., 1995. Membrane estrogen receptors iden-tified by multiple antibody labeling and impeded-ligand binding. FASEB J. 9,404–410.

Pasare, C., Medzhitov, R., 2003. Toll pathway-dependent blockade of CD4+ CD25+ Tcell-mediated suppression by dendritic cells. Science 299, 1033–1036.

Pedram, A., Razandi, M., Levin, E.R., 2006. Nature of functional estrogen receptors atthe plasma membrane. Mol. Endocrinol. 20, 1996–2009.

Pettersson, K., Grandien, K., Kuiper, G.G., Gustafsson, J.A., 1997. Mouse estrogen

receptor beta forms estrogen response element-binding heterodimers withestrogen receptor alpha. Mol. Endocrinol. 11, 1486–1496.

Pettit, A.R., Ji, H., von Stechow, D., Muller, R., Goldring, S.R., Choi, Y., Benoist,C., Gravallese, E.M., 2001. TRANCE/RANKL knockout mice are protected frombone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159,1689–1699.

ellular

P

P

P

P

P

P

P

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

S

U. Islander et al. / Molecular and C

ettit, A.R., Walsh, N.C., Manning, C., Goldring, S.R., Gravallese, E.M., 2006. RANKLprotein is expressed at the pannus-bone interface at sites of articular bone ero-sion in rheumatoid arthritis. Rheumatology (Oxford) 45, 1068–1076.

feilschifter, J., Koditz, R., Pfohl, M., Schatz, H., 2002. Changes in proinflammatorycytokine activity after menopause. Endocr. Rev. 23, 90–119.

lotkin, L.I., Aguirre, J.I., Kousteni, S., Manolagas, S.C., Bellido, T., 2005. Bispho-sphonates and estrogens inhibit osteocyte apoptosis via distinct molecularmechanisms downstream of extracellular signal-regulated kinase activation. J.Biol. Chem. 280, 7317–7325.

lum, S.M., Park, E.J., Strawn, S.J., Moore, E.G., Sidor, C.F., Fogler, W.E., 2009. Diseasemodifying and antiangiogenic activity of 2-methoxyestradiol in a murine modelof rheumatoid arthritis. BMC Musculoskelet. Disord. 10, 46.

oli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G.,Rodan, G.A., Costantini, F., 1994. Interleukin-6 deficient mice are protected frombone loss caused by estrogen depletion. EMBO J. 13, 1189–1196.

oubelle, P.E., Chakravarti, A., Fernandes, M.J., Doiron, K., Marceau, A.A., 2007. Dif-ferential expression of RANK, RANK-L, and osteoprotegerin by synovial fluidneutrophils from patients with rheumatoid arthritis and by healthy humanblood neutrophils. Arthritis Res. Ther. 9, R25.

rieto, G.A., Rosenstein, Y., 2006. Oestradiol potentiates the suppressive function ofhuman CD4 CD25 regulatory T cells by promoting their proliferation. Immunol-ogy 118, 58–65.

achon, D., Mysliwska, J., Suchecka-Rachon, K., Wieckiewicz, J., Mysliwski, A., 2002.Effects of oestrogen deprivation on interleukin-6 production by peripheral bloodmononuclear cells of postmenopausal women. J. Endocrinol. 172, 387–395.

alston, S.H., Russell, R.G., Gowen, M., 1990. Estrogen inhibits release of tumor necro-sis factor from peripheral blood mononuclear cells in postmenopausal women.J. Bone Miner. Res. 5, 983–988.

atkay, L.G., Zhang, D., Tonzetich, J., Levy, J.G., Waterfield, J.D., 1994. Evaluation ofa model for post-partum arthritis and the role of oestrogen in prevention ofMRL-lpr associated rheumatic conditions. Clin. Exp. Immunol. 98, 52–59.

ecker, R.R., Davies, K.M., Dowd, R.M., Heaney, R.P., 1999. The effect of low-dosecontinuous estrogen and progesterone therapy with calcium and vitamin D onbone in elderly women. A randomized, controlled trial. Ann. Intern. Med. 130,897–904.

edlich, K., Hayer, S., Maier, A., Dunstan, C.R., Tohidast-Akrad, M., Lang, S., Turk,B., Pietschmann, P., Woloszczuk, W., Haralambous, S., Kollias, G., Steiner, G.,Smolen, J.S., Schett, G., 2002. Tumor necrosis factor alpha-mediated jointdestruction is inhibited by targeting osteoclasts with osteoprotegerin. ArthritisRheum. 46, 785–792.

ehman, Q., Lane, N.E., 2001. Bone loss. Therapeutic approaches for preventing boneloss in inflammatory arthritis. Arthritis Res. 3, 221–227.

evankar, C.M., Cimino, D.F., Sklar, L.A., Arterburn, J.B., Prossnitz, E.R., 2005. A trans-membrane intracellular estrogen receptor mediates rapid cell signaling. Science307, 1625–1630.

evankar, C.M., Mitchell, H.D., Field, A.S., Burai, R., Corona, C., Ramesh, C., Sklar, L.A.,Arterburn, J.B., Prossnitz, E.R., 2007. Synthetic estrogen derivatives demonstratethe functionality of intracellular GPR30. ACS Chem. Biol. 2, 536–544.

ickard, D.J., Hofbauer, L.C., Bonde, S.K., Gori, F., Spelsberg, T.C., Riggs, B.L., 1998. Bonemorphogenetic protein-6 production in human osteoblastic cell lines. Selectiveregulation by estrogen. J. Clin. Invest. 101, 413–422.

ifas, L., 2006. T-cell cytokine induction of BMP-2 regulates human mesenchymalstromal cell differentiation and mineralization. J. Cell. Biochem. 98, 706–714.

iggs, B.L., Khosla, S., Melton 3rd, L.J., 2002. Sex steroids and the construction andconservation of the adult skeleton. Endocr. Rev. 23, 279–302.

ijhsinghani, A.G., Thompson, K., Bhatia, S.K., Waldschmidt, T.J., 1996. Estrogenblocks early T cell development in the thymus. Am. J. Reprod. Immunol. 36,269–277.

oark, C.L., French, J.D., Taylor, M.A., Bendele, A.M., Born, W.K., O’Brien, R.L.,2007. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producinggamma delta T cells. J. Immunol. 179, 5576–5583.

oggia, C., Gao, Y., Cenci, S., Weitzmann, M.N., Toraldo, G., Isaia, G., Pacifici, R., 2001.Up-regulation of TNF-producing T cells in the bone marrow: a key mechanismby which estrogen deficiency induces bone loss in vivo. Proc. Natl. Acad. Sci. USA98, 13960–13965.

omas, E., Sims, N.A., Hards, D.K., Lindsay, M., Quinn, J.W., Ryan, P.F., Dunstan, C.R.,Martin, T.J., Gillespie, M.T., 2002. Osteoprotegerin reduces osteoclast numbersand prevents bone erosion in collagen-induced arthritis. Am. J. Pathol. 161,1419–1427.

ossouw, J.E., Anderson, G.L., Prentice, R.L., LaCroix, A.Z., Kooperberg, C., Stefan-ick, M.L., Jackson, R.D., Beresford, S.A., Howard, B.V., Johnson, K.C., Kotchen,J.M., Ockene, J., 2002. Risks and benefits of estrogen plus progestin in healthypostmenopausal women: principal results from the women’s health initiativerandomized controlled trial. JAMA 288, 321–333.

udolphi, U., Rzepka, R., Batsford, S., Kaufmann, S.H., von der Mark, K., Peter, H.H.,Melchers, I., 1997. The B cell repertoire of patients with rheumatoid arthritis. II.Increased frequencies of IgG+ and IgA+ B cells specific for mycobacterial heat-shock protein 60 or human type II collagen in synovial fluid and tissue. ArthritisRheum. 40, 1409–1419.

utqvist, L.E., Johansson, H., Signomklao, T., Johansson, U., Fornander, T., Wilking,

N., 1995. Adjuvant tamoxifen therapy for early stage breast cancer and secondprimary malignancies. Stockholm Breast Cancer Study Group. J. Natl. Cancer Inst.87, 645–651.

aag, K.G., Emkey, R., Schnitzer, T.J., Brown, J.P., Hawkins, F., Goemaere, S., Thams-borg, G., Liberman, U.A., Delmas, P.D., Malice, M.P., Czachur, M., Daifotis, A.G.,1998. Alendronate for the prevention and treatment of glucocorticoid-induced

Endocrinology 335 (2011) 14–29 27

osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group.N. Engl. J. Med. 339, 292–299.

Saidenberg-Kermanac’h, N., Corrado, A., Lemeiter, D., deVernejoul, M.C., Boissier,M.C., Cohen-Solal, M.E., 2004. TNF-alpha antibodies and osteoprotegerindecrease systemic bone loss associated with inflammation through distinctmechanisms in collagen-induced arthritis. Bone 35, 1200–1207.

Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J.,Takahashi, T., Nomura, T., 2006. Foxp3+ CD25+ CD4+ natural regulatory Tcells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212,8–27.

Sambrook, P.N., Spector, T.D., Seeman, E., Bellamy, N., Buchanan, R.R., Duffy, D.L.,Martin, N.G., Prince, R., Owen, E., Silman, A.J., et al., 1995. Osteoporosis inrheumatoid arthritis. A monozygotic co-twin control study. Arthritis Rheum.38, 806–809.

Sato, M., Kim, J., Short, L.L., Slemenda, C.W., Bryant, H.U., 1995. Longitudinal andcross-sectional analysis of raloxifene effects on tibiae from ovariectomized agedrats. J. Pharmacol. Exp. Ther. 272, 1252–1259.

Sato, M., Rippy, M.K., Bryant, H.U., 1996. Raloxifene, tamoxifen, nafoxidine, or estro-gen effects on reproductive and nonreproductive tissues in ovariectomized rats.FASEB J. 10, 905–912.

Sato, K., Suematsu, A., Okamoto, K., Yamaguchi, A., Morishita, Y., Kadono, Y., Tanaka,S., Kodama, T., Akira, S., Iwakura, Y., Cua, D.J., Takayanagi, H., 2006. Th17 func-tions as an osteoclastogenic helper T cell subset that links T cell activation andbone destruction. J. Exp. Med. 203, 2673–2682.

Scheidt-Nave, C., Bismar, H., Leidig-Bruckner, G., Woitge, H., Seibel, M.J., Ziegler, R.,Pfeilschifter, J., 2001. Serum interleukin 6 is a major predictor of bone loss inwomen specific to the first decade past menopause. J. Clin. Endocrinol. Metab.86, 2032–2042.

Schett, G., Redlich, K., Hayer, S., Zwerina, J., Bolon, B., Dunstan, C., Gortz, B., Schulz,A., Bergmeister, H., Kollias, G., Steiner, G., Smolen, J.S., 2003. Osteoprotegerinprotects against generalized bone loss in tumor necrosis factor-transgenic mice.Arthritis Rheum. 48, 2042–2051.

Schmidt, M., Hartung, R., Capellino, S., Cutolo, M., Pfeifer-Leeg, A., Straub, R.H., 2009.Estrone/17beta-estradiol conversion to, and tumor necrosis factor inhibition by,estrogen metabolites in synovial cells of patients with rheumatoid arthritis andpatients with osteoarthritis. Arthritis Rheum. 60, 2913–2922.

Scott, D.L., 2000. Prognostic factors in early rheumatoid arthritis. Rheumatology(Oxford) 39 (Suppl. 1), 24–29.

Seriolo, B., Paolino, S., Sulli, A., Ferretti, V., Cutolo, M., 2006. Bone metabolism changesduring anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann.N Y Acad. Sci. 1069, 420–427.

Shigeyama, Y., Pap, T., Kunzler, P., Simmen, B.R., Gay, R.E., Gay, S., 2000. Expressionof osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 43,2523–2530.

Silverman, S.L., Christiansen, C., Genant, H.K., Vukicevic, S., Zanchetta, J.R., de Villiers,T.J., Constantine, G.D., Chines, A.A., 2008. Efficacy of bazedoxifene in reduc-ing new vertebral fracture risk in postmenopausal women with osteoporosis:results from a 3-year, randomized, placebo-, and active-controlled clinical trial.J. Bone Miner. Res. 23, 1923–1934.

Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.S., Luthy, R., Nguyen,H.Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R.,Colombero, A., Tan, H.L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg,L., Hughes, T.M., Hill, D., Pattison, W., Campbell, P., Sander, S., Van, G., Tarpley,J., Derby, P., Lee, R., Boyle, W.J., 1997. Osteoprotegerin: a novel secreted proteininvolved in the regulation of bone density. Cell 89, 309–319.

Sims, N.A., Dupont, S., Krust, A., Clement-Lacroix, P., Minet, D., Resche-Rigon, M.,Gaillard-Kelly, M., Baron, R., 2002. Deletion of estrogen receptors reveals a reg-ulatory role for estrogen receptors-beta in bone remodeling in females but notin males. Bone 30, 18–25.

Sinigaglia, L., Nervetti, A., Mela, Q., Bianchi, G., Del Puente, A., Di Munno, O., Frediani,B., Cantatore, F., Pellerito, R., Bartolone, S., La Montagna, G., Adami, S., 2000. Amulticenter cross sectional study on bone mineral density in rheumatoid arthri-tis. Italian Study Group on bone mass in rheumatoid arthritis. J. Rheumatol. 27,2582–2589.

Smith, C.L., Conneely, O.M., O’Malley, B.W., 1993. Modulation of the ligand-independent activation of the human estrogen receptor by hormone andantihormone. Proc. Natl. Acad. Sci. USA 90, 6120–6124.

Spector, T.D., Hall, G.M., McCloskey, E.V., Kanis, J.A., 1993. Risk of vertebral fracturein women with rheumatoid arthritis. BMJ 306, 558.

Srivastava, S., Toraldo, G., Weitzmann, M.N., Cenci, S., Ross, F.P., Pacifici, R., 2001.Estrogen decreases osteoclast formation by down-regulating receptor activa-tor of NF-kappa B ligand (RANKL)-induced JNK activation. J. Biol. Chem. 276,8836–8840.

Staples, J.E., Gasiewicz, T.A., Fiore, N.C., Lubahn, D.B., Korach, K.S., Silverstone, A.E.,1999. Estrogen receptor alpha is necessary in thymic development and estradiol-induced thymic alterations. J. Immunol. 163, 4168–4174.

Stefanick, M.L., 2005. Estrogens and progestins: background and history, trends inuse, and guidelines and regimens approved by the US Food and Drug Adminis-tration. Am. J. Med. 118 (Suppl. 12B), 64–73.

Stepan, J.J., Alenfeld, F., Boivin, G., Feyen, J.H., Lakatos, P., 2003. Mechanisms of action

of antiresorptive therapies of postmenopausal osteoporosis. Endocr. Regul. 37,225–238.

Stewart, A., Mackenzie, L.M., Black, A.J., Reid, D.M., 2004. Predicting erosive dis-ease in rheumatoid arthritis. A longitudinal study of changes in bone densityusing digital X-ray radiogrammetry: a pilot study. Rheumatology (Oxford) 43,1561–1564.

2 ellular

S

S

S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

U

V

v

8 U. Islander et al. / Molecular and C

tolina, M., Adamu, S., Ominsky, M., Dwyer, D., Asuncion, F., Geng, Z., Mid-dleton, S., Brown, H., Pretorius, J., Schett, G., Bolon, B., Feige, U., Zack, D.,Kostenuik, P.J., 2005. RANKL is a marker and mediator of local and systemicbone loss in two rat models of inflammatory arthritis. J. Bone Miner. Res. 20,1756–1765.

traub, R.H., 2007. The complex role of estrogens in inflammation. Endocr. Rev. 28,521–574.

traub, R.H., Harle, P., Atzeni, F., Weidler, C., Cutolo, M., Sarzi-Puttini, P., 2005. Sexhormone concentrations in patients with rheumatoid arthritis are not normal-ized during 12 weeks of anti-tumor necrosis factor therapy. J. Rheumatol. 32,1253–1258.

tygar, D., Westlund, P., Eriksson, H., Sahlin, L., 2006. Identification of wild typeand variants of oestrogen receptors in polymorphonuclear and mononuclearleucocytes. Clin. Endocrinol. (Oxf) 64, 74–81.

uzuki, Y., Nishikaku, F., Nakatuka, M., Koga, Y., 1998. Osteoclast-like cells in murinecollagen induced arthritis. J. Rheumatol. 25, 1154–1160.

vensson, L., Jirholt, J., Holmdahl, R., Jansson, L., 1998. B cell-deficient mice donot develop type II collagen-induced arthritis (CIA). Clin. Exp. Immunol. 111,521–526.

ada, Y., Ho, A., Koh, D.R., Mak, T.W., 1996. Collagen-induced arthritis in CD4- orCD8-deficient mice: CD8+ T cells play a role in initiation and regulate recoveryphase of collagen-induced arthritis. J. Immunol. 156, 4520–4526.

ai, P., Wang, J., Jin, H., Song, X., Yan, J., Kang, Y., Zhao, L., An, X., Du, X., Chen, X.,Wang, S., Xia, G., Wang, B., 2008. Induction of regulatory T cells by physiologicallevel estrogen. J. Cell. Physiol. 214, 456–464.

akayanagi, H., 2007. Osteoimmunology: shared mechanisms and crosstalk betweenthe immune and bone systems. Nat. Rev. Immunol. 7, 292–304.

akemura, S., Klimiuk, P.A., Braun, A., Goronzy, J.J., Weyand, C.M., 2001. T cellactivation in rheumatoid synovium is B cell dependent. J. Immunol. 167,4710–4718.

amura, T., Udagawa, N., Takahashi, N., Miyaura, C., Tanaka, S., Yamada, Y., Koishi-hara, Y., Ohsugi, Y., Kumaki, K., Taga, T., et al., 1993. Soluble interleukin-6receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA90, 11924–11928.

arkowski, A., Klareskog, L., Carlsten, H., Herberts, P., Koopman, W.J., 1989. Secretionof antibodies to types I and II collagen by synovial tissue cells in patients withrheumatoid arthritis. Arthritis Rheum. 32, 1087–1092.

aube, M., Svensson, L., Carlsten, H., 1998. T lymphocytes are not the target forestradiol-mediated suppression of DTH in reconstituted female severe com-bined immunodeficient (SCID) mice. Clin. Exp. Immunol. 114, 147–153.

emin, S., 2009. American society of clinical oncology clinical practice guidelineupdate on the use of pharmacologic interventions including tamoxifen, ralox-ifene, and aromatase inhibition for breast cancer risk reduction. Gynecol. Oncol.115, 132–134.

engstrand, B., Hafstrom, I., 2002. Bone mineral density in men with rheumatoidarthritis is associated with erosive disease and sulfasalazine treatment but notwith sex hormones. J. Rheumatol. 29, 2299–2305.

engstrand, B., Carlstrom, K., Hafstrom, I., 2002. Bioavailable testosterone in menwith rheumatoid arthritis-high frequency of hypogonadism. Rheumatology(Oxford) 41, 285–289.

engstrand, B., Carlstrom, K., Fellander-Tsai, L., Hafstrom, I., 2003. Abnormal levelsof serum dehydroepiandrosterone, estrone, and estradiol in men with rheuma-toid arthritis: high correlation between serum estradiol and current degree ofinflammation. J. Rheumatol. 30, 2338–2343.

erato, K., Shimozuru, Y., Katayama, K., Takemitsu, Y., Yamashita, I., Miyatsu, M.,Fujii, K., Sagara, M., Kobayashi, S., Goto, M., et al., 1990. Specificity of antibodiesto type II collagen in rheumatoid arthritis. Arthritis Rheum. 33, 1493–1500.

erato, K., Hasty, K.A., Reife, R.A., Cremer, M.A., Kang, A.H., Stuart, J.M., 1992.Induction of arthritis with monoclonal antibodies to collagen. J. Immunol. 148,2103–2108.

omkinson, A., Reeve, J., Shaw, R.W., Noble, B.S., 1997. The death of osteocytes viaapoptosis accompanies estrogen withdrawal in human bone. J. Clin. Endocrinol.Metab. 82, 3128–3135.

omkinson, A., Gevers, E.F., Wit, J.M., Reeve, J., Noble, B.S., 1998. The role of estrogenin the control of rat osteocyte apoptosis. J. Bone Miner. Res. 13, 1243–1250.

oraldo, G., Roggia, C., Qian, W.P., Pacifici, R., Weitzmann, M.N., 2003. IL-7 inducesbone loss in vivo by induction of receptor activator of nuclear factor kappa Bligand and tumor necrosis factor alpha from T cells. Proc. Natl. Acad. Sci. USA100, 125–130.

rentham, D.E., Townes, A.S., Kang, A.H., 1977. Autoimmunity to type II collagen anexperimental model of arthritis. J. Exp. Med. 146, 857–868.

suboi, M., Kawakami, A., Nakashima, T., Matsuoka, N., Urayama, S., Kawabe, Y.,Fujiyama, K., Kiriyama, T., Aoyagi, T., Maeda, K., Eguchi, K., 1999. Tumor necro-sis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis ofhuman osteoblasts. J. Lab. Clin. Med. 134, 222–231.

urner, R.T., 1999. Mice, estrogen, and postmenopausal osteoporosis. J. Bone Miner.Res. 14, 187–191.

shiyama, T., Ueyama, H., Inoue, K., Ohkubo, I., Hukuda, S., 1999. Expression ofgenes for estrogen receptors alpha and beta in human articular chondrocytes.Osteoarthritis Cartilage 7, 560–566.

alleala, H., Laasonen, L., Koivula, M.K., Mandelin, J., Friman, C., Risteli, J., Konttinen,Y.T., 2003. Two year randomized controlled trial of etidronate in rheumatoidarthritis: changes in serum aminoterminal telopeptides correlate with radio-graphic progression of disease. J. Rheumatol. 30, 468–473.

an Amelsfort, J.M., Jacobs, K.M., Bijlsma, J.W., Lafeber, F.P., Taams, L.S., 2004.CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the

Endocrinology 335 (2011) 14–29

presence, phenotype, and function between peripheral blood and synovial fluid.Arthritis Rheum. 50, 2775–2785.

van Amelsfort, J.M., van Roon, J.A., Noordegraaf, M., Jacobs, K.M., Bijlsma, J.W.,Lafeber, F.P., Taams, L.S., 2007. Proinflammatory mediator-induced reversal ofCD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis.Arthritis Rheum. 56, 732–742.

van den Brink, H.R., van Everdingen, A.A., van Wijk, M.J., Jacobs, J.W., Bijlsma,J.W., 1993. Adjuvant oestrogen therapy does not improve disease activityin postmenopausal patients with rheumatoid arthritis. Ann. Rheum. Dis. 52,862–865.

van Essen, H.W., Holzmann, P.J., Blankenstein, M.A., Lips, P., Bravenboer, N.,2007. Effect of raloxifene treatment on osteocyte apoptosis in postmenopausalwomen. Calcif. Tissue Int. 81, 183–190.

van Roon, J.A., Verhoef, C.M., van Roy, J.L., Gmelig-Meyling, F.H., Huber-Bruning, O.,Lafeber, F.P., Bijlsma, J.W., 1997. Decrease in peripheral type 1 over type 2 T cellcytokine production in patients with rheumatoid arthritis correlates with anincrease in severity of disease. Ann. Rheum. Dis. 56, 656–660.

van Roon, J.A., Verweij, M.C., Wijk, M.W., Jacobs, K.M., Bijlsma, J.W., Lafeber, F.P.,2005. Increased intraarticular interleukin-7 in rheumatoid arthritis patientsstimulates cell contact-dependent activation of CD4(+) T cells and macrophages.Arthritis Rheum. 52, 1700–1710.

van Zeben, D., Hazes, J.M., Vandenbroucke, J.P., Dijkmans, B.A., Cats, A., 1990.Diminished incidence of severe rheumatoid arthritis associated with oral con-traceptive use. Arthritis Rheum. 33, 1462–1465.

Vanderschueren, D., Vandenput, L., Boonen, S., Lindberg, M.K., Bouillon, R., Ohlsson,C., 2004. Androgens and bone. Endocr. Rev. 25, 389–425.

Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., Stockinger, B., 2006. TGFbetain the context of an inflammatory cytokine milieu supports de novo differenti-ation of IL-17-producing T cells. Immunity 24, 179–189.

Vidal, O., Lindberg, M.K., Hollberg, K., Baylink, D.J., Andersson, G., Lubahn, D.B.,Mohan, S., Gustafsson, J.A., Ohlsson, C., 2000. Estrogen receptor specificity inthe regulation of skeletal growth and maturation in male mice. Proc. Natl. Acad.Sci. USA 97, 5474–5479.

Vis, M., Havaardsholm, E.A., Haugeberg, G., Uhlig, T., Voskuyl, A.E., van de Stadt, R.J.,Dijkmans, B.A., Woolf, A.D., Kvien, T.K., Lems, W.F., 2006. Evaluation of bonemineral density, bone metabolism, osteoprotegerin and receptor activator ofthe NFkappaB ligand serum levels during treatment with infliximab in patientswith rheumatoid arthritis. Ann. Rheum. Dis. 65, 1495–1499.

Volpe, E., Servant, N., Zollinger, R., Bogiatzi, S.I., Hupe, P., Barillot, E., Soumelis,V., 2008. A critical function for transforming growth factor-beta, interleukin23 and proinflammatory cytokines in driving and modulating human T(H)-17responses. Nat. Immunol. 9, 650–657.

Voskuhl, R.R., 2003. Hormone-based therapies in MS. Int. MS J. 10, 60–66.Waites, G.T., Whyte, A., 1987. Effect of pregnancy on collagen-induced arthritis in

mice. Clin. Exp. Immunol. 67, 467–476.Wakeling, A.E., Dukes, M., Bowler, J., 1991. A potent specific pure antiestrogen with

clinical potential. Cancer Res. 51, 3867–3873.Wallach, S., Cohen, S., Reid, D.M., Hughes, R.A., Hosking, D.J., Laan, R.F., Doherty,

S.M., Maricic, M., Rosen, C., Brown, J., Barton, I., Chines, A.A., 2000. Effects ofrisedronate treatment on bone density and vertebral fracture in patients oncorticosteroid therapy. Calcif. Tissue Int. 67, 277–285.

Wang, C., Dehghani, B., Magrisso, I.J., Rick, E.A., Bonhomme, E., Cody, D.B., Elenich,L.A., Subramanian, S., Murphy, S.J., Kelly, M.J., Rosenbaum, J.S., Vandenbark, A.A.,Offner, H., 2008. GPR30 contributes to estrogen-induced thymic atrophy. Mol.Endocrinol. 22, 636–648.

Weitzmann, M.N., Roggia, C., Toraldo, G., Weitzmann, L., Pacifici, R., 2002. Increasedproduction of IL-7 uncouples bone formation from bone resorption during estro-gen deficiency. J. Clin. Invest. 110, 1643–1650.

Windahl, S.H., Vidal, O., Andersson, G., Gustafsson, J.A., Ohlsson, C., 1999. Increasedcortical bone mineral content but unchanged trabecular bone mineral densityin female ERbeta(−/−) mice. J. Clin. Invest. 104, 895–901.

Windahl, S.H., Hollberg, K., Vidal, O., Gustafsson, J.A., Ohlsson, C., Andersson, G.,2001. Female estrogen receptor beta−/− mice are partially protected againstage-related trabecular bone loss. J. Bone Miner. Res. 16, 1388–1398.

Windahl, S.H., Lagerquist, M.K., Andersson, N., Jochems, C., Kallkopf, A., Hakansson,C., Inzunza, J., Gustafsson, J.A., van der Saag, P.T., Carlsten, H., Pettersson, K., Ohls-son, C., 2007. Identification of target cells for the genomic effects of estrogens inbone. Endocrinology 148, 5688–5695.

Windahl, S.H., Andersson, N., Chagin, A.S., Martensson, U.E., Carlsten, H., Olde, B.,Swanson, C., Moverare-Skrtic, S., Savendahl, L., Lagerquist, M.K., Leeb-Lundberg,L.M., Ohlsson, C., 2009. The role of the G protein-coupled receptor GPR30 in theeffects of estrogen in ovariectomized mice. Am. J. Physiol. Endocrinol. Metab.296, E490–E496.

Wing, K., Larsson, P., Sandstrom, K., Lundin, S.B., Suri-Payer, E., Rudin, A., 2005. CD4+CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppressantigen-specific T cell responses. Immunology 115, 516–525.

Wong, B.R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachikov, S., Cayani,E., Bartlett 3rd, F.S., Frankel, W.N., Lee, S.Y., Choi, Y., 1997. TRANCE is a novel lig-and of the tumor necrosis factor receptor family that activates c-Jun N-terminalkinase in T cells. J. Biol. Chem. 272, 25190–25194.

Xu, L., Kitani, A., Fuss, I., Strober, W., 2007. Cutting edge: regulatory T cells induceCD4 + CD25-Foxp3- T cells or are self-induced to become Th17 cells in theabsence of exogenous TGF-beta. J. Immunol. 178, 6725–6729.

Yamasaki, D., Enokida, M., Okano, T., Hagino, H., Teshima, R., 2001. Effects of ovariec-tomy and estrogen replacement therapy on arthritis and bone mineral densityin rats with collagen-induced arthritis. Bone 28, 634–640.

ellular

Y

Y

Y

Y

U. Islander et al. / Molecular and C

asuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S.,Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio,K., Udagawa, N., Takahashi, N., Suda, T., 1998. Osteoclast differentiation factor is aligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identicalto TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.

ilmaz, L., Ozoran, K., Gunduz, O.H., Ucan, H., Yucel, M., 2001. Alendronate inrheumatoid arthritis patients treated with methotrexate and glucocorticoids.

Rheumatol. Int. 20, 65–69.

udoh, K., Matsuno, H., Nakazawa, F., Yonezawa, T., Kimura, T., 2000. Reducedexpression of the regulatory CD4+ T cell subset is related to Th1/Th2 balanceand disease severity in rheumatoid arthritis. Arthritis Rheum. 43, 617–627.

un, T.J., Tallquist, M.D., Aicher, A., Rafferty, K.L., Marshall, A.J., Moon, J.J., Ewings,M.E., Mohaupt, M., Herring, S.W., Clark, E.A., 2001. Osteoprotegerin, a crucial

Endocrinology 335 (2011) 14–29 29

regulator of bone metabolism, also regulates B cell development and function.J. Immunol. 166, 1482–1491.

Zaiss, M.M., Axmann, R., Zwerina, J., Polzer, K., Guckel, E., Skapenko, A., Schulze-Koops, H., Horwood, N., Cope, A., Schett, G., 2007. Treg cells suppress osteoclastformation: a new link between the immune system and bone. Arthritis Rheum.56, 4104–4112.

Zaman, G., Jessop, H.L., Muzylak, M., De Souza, R.L., Pitsillides, A.A., Price, J.S., Lanyon,

L.L., 2006. Osteocytes use estrogen receptor alpha to respond to strain but theirERalpha content is regulated by estrogen. J. Bone Miner. Res. 21, 1297–1306.

Zhang, Y.H., Heulsmann, A., Tondravi, M.M., Mukherjee, A., Abu-Amer, Y., 2001.Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastoge-nesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol.Chem. 276, 563–568.

Recommended