23 EmERgINg TRENdS ANd RESEARCh...

Preview:

Citation preview

460

23EmERgINg TRENdS ANd RESEARCh dIRECTIONS

Eyuphan Koc, Evangelos Pantazis, Lucio Soibelman, and David J. Gerber

23.1 aims

• Presentingabackgroundondiffusion of innovationintheAECindustryandanexpandeddiscussiononfactorshinderingandmotivatinginnovationhighlightingtheclashbetweenfragmentationandintegration.

• Correlatingarevisedcategorizationof4.0conceptsandtechnologiesdiscussedinprevi-ouschaptersintermsoftheircorrespondingstageofdiffusionacrossallprojectphases.

• Discussinghowtechnologicaladvancementsrevealedopportunitiesfornovelandmorecollaborative project deliverymethods such as IPD (IntegratedProjectDelivery), andhowthishasthepotentialtospeedupintegral4.0innovationsinareciprocalfeedbackmanner.

• Introducingabroadvisiononrevisingthedesignandconstructioncurriculatoallowformorecross-disciplinaryinformationflowfromdisciplinesthataretraditionallyleftoutfromtrainingandpractice.

• Suggestfuturedirectionsbothinindustryandacademiaforintroducinginterdisciplinaryresearchmethodswhichwillallowengineerstotaketheleadershipbackindevelopingtheirowndesignandengineeringtools(fromsoftwareengineers)thatwillallowthemtoleadtheAECintheinformationage.

23.2 Introduction

“Industrialrevolutions”aredifferentperiodsintimesignifyingleapsintechnology—throughdiscoveriesorrevolutionaryinnovations—beyondwhatwasorwhatcouldbeimaginedpriortotheiroccurrence.Thedesignationshavenaturallybeen“ex-post”wheretheso-calledFirstIndustrialRevolutionresultedfromtheuseofmechanizationforproduction,secondfromtheintensiveuseofelectricityandthethirdassociatedwithawidespreaddigitalizationofbuildingprojectdelivery(Lasietal.2014).Figure23.1illustratesatimelineofindustrialrevolutionsandlistsparadigmshiftingtechnologicalleapsassociatedwiththem.

Overthelastdecade,originatingfromthevisionlaidoutbytheGermangovernmentforhigh-techmanufacturing, the term“Industry4.0”waslooselycoinedtodescribeaFourth

Figu

re 2

3.1

Chronologyofindustrialrevolutions

Eyuphan Koc et al.

462

Industrial Revolution.The so-called Fourth Industrial Revolution is characterized by theparadigm-shiftingchangesinmanufacturingsincetheintroductionofprogrammablelogiccontrollers,underliningtheconceptsofincreased digitization and automation,modulariza-tion of production,mass customization and self-organization.TheAEC(architecture,engi-neering,construction)industryhasbeenlessperceptiveofthesedevelopmentsthanotherssuchastheaerospaceandautomotiveindustriesduetonumerousfactorsstemmingfromthecomplexityofbuildingdesignanddeliveryaswellasthefragmentednatureofconstructionindustrycombinedwitha technological riskaversion,allofwhicharefactors thatdonotunderpin innovation.As a consequence, the sector inmany countries continues to sufferfromlowlaborproductivity,laborshortagesduetoagingpopulation,lowsafety,timeandcostoverrunsandlogisticissues.Inasimilarvein,theconstructionindustryhasbeencrit-icizedforbeinginefficient;oftengeneratingtoomuchwaste,emittingsignificantamountsofgreenhousegases(GHG)andconsumingtoomuchenergycomparedtootherindustries(Abandaetal.2017).

SurveysinthebuildingsectorinNorthAmericasuggeststhatcompletedeploymentofgreeninnovationscanleadtoareductionofbuildingenergyconsumptionby25–30%,areductioninconstructioncostsasmuchas130billionperyear(ChoiGranadeetal.2009)andreturnsashighas20%ofthetotalconstructioncoststhroughthelifecycleofabuilding(Katsetal.2003).ItisthereforenotasecretthattheAECindustryneedstorevolutionizeitself todevelopholisticdesignandengineeringsolutionsbankingon life-cyclebenefitsthat can competewith traditional solutions that aremore cost-effective in isolation, i.e.whenconsideredfromtheperspectiveofaparticulardisciplineorphase.Inthiscontext,increaseddigitizationandautomationaswell as awidespreadadoptionof concepts andtoolsunder the Industry4.0umbrellacouldsignificantly improve thebottom-lineof theAECindustry.

Against this backdrop, research in “Construction4.0” is carried out inmanydirectionsincludingadvancementsinindividual4.0technologiesnichedintheindustrysuchasBuildingInformationModeling(BIM),adaptivebuildingsystems,roboticsinconstruction,large-scaleadditivemanufacturing, etc.Additionally, there is an increasing awarenessof thepotentialbenefitsoftechnologiessuchasartificialintelligenceandbigdataanalytics,embeddedsens-ing technologies,Virtual/Augmentedreality (VR/AR),mobile/CloudComputingaswellasblockchainmostlystemmingfromthesuccessfulapplicationanddiffusionofsuchtechnol-ogiesoutsidetheconstructionrealm.Despitethepotentialbenefitssuchasdecreaseddesignand construction durations, higher quality in projects delivered, and enhanced job safety;theindustryischaracteristicallyslowinadoptinginnovationswhichmakesitchallengingtoachieveimprovementsinmentionedareas.

The importanceof an innovative technologycanbe classifiedbasedon its effecton theexistingsupplychain,thedesign-construction-operationprocessortheactorsinvolved(clients,stakeholders,designers,engineers,contractors,andmanagers).Intheliterature,variouscate-gorizationsexistforinnovationsandresearchersdistinguishbetweenautonomousvs.systemic,boundedvs.unboundedandintegralvs.modularinnovations(Sheffer2011;Tayloretal.2006;Teece1996).Inthischapter,thelatterclassificationbetweenintegralandmodular innovationsisunderlined.Modular innovationsrefertodisruptivetechnologiesthatfitwithintheexistingdivisionsofworkanddonotcrossconventionalboundariesbetweendisciplines(e.g.energyefficient smart bulbs and switches changing the outlook in the lighting industry). Integral innovationsrefertotechnologicaladvancesthatmayintroducechangesintheinteractionofthemodulesordisrupttheoverallsystemarchitecture.Suchadvancesmayintroducechangesat theinterfacesordesigncriteriabetweentwoormoremodules,achangeintheprocesses

463

Emerging trends and research directions

(constructionsequence)oftheoverallsystem,orboth.Theauthorsperceivethedevelopmentsintheindustrythroughthislensastechnologiesandconceptsclassifiedtobeundertheumbrellaof“Construction4.0”aretriggeringbothtypesofinnovationsfortheindustry.

OesterreichandTeuteberg(2016)provideathoroughliteraturereviewofthesubjectmat-ter,andageneraltaxonomyofkey4.0technologiesandconceptsastheyrelatetotheAECindustry.Specifically,“Construction4.0”isdividedintothreecategories,namely:(1)smart construction site (smart factory), (2)simulation and modeling, (3)digitization and virtual-ization. The rapid adoption of technologies such as BIM,Digital Project Delivery, RadioFrequency Identification (RFID), and CloudComputing havemade them prevalent in thepracticethroughoutthelastdecade.Ontheotherhand,anumberoftechnologiesareadvanc-ing towardsmaturity (Artificial Intelligence andBigDataAnalytics,AutonomousRoboticConstruction,AdditiveManufacturing andVirtual/Augmented reality) and are expected toimpacttheindustryinthenextdecade(BCG2016).

Withinearlierchaptersof thisbook, state-of-the-art in individual technologies isdis-cussedindetail.Inthebackgroundsection, theobjectiveoftheauthorsis to(1)broadlydiscussfactorshinderinginnovationintheAECindustrytogetherwithfactorsmotivatinginnovation,and(2)provideasnapshotof4.0conceptsandtechnologiesascategorizedbyOesterreichandTeuteberg(2016)andanalyze their respectivestagesofadoptionfromadiffusion of innovations viewpoint.Thesewill set the stage for the followingdiscussiononemergingtrendsintheAECindustrythatareexpectedtoacceleratetheadoptionof4.0technologiesaswellastherecommendationsonfutureresearchdirections.Inthischapter,theauthors’intentionistoprovideinsightsoverarchingindividualtechnologiesthemselves.

23.3 Background

23.3.1 Innovation diffusion

“Diffusion”wascharacterizedinitiallybyFrenchsociologistGabrielTardeinthelate19thcenturytorefertothespreadingofsocialorculturalpropertiesfromonesocietyorenviron-ment to another.The termwaspickedupby rural sociologists in theUS investigating therapidlyexpandingagriculturetounderstandhowindependentfarmerswereadoptinghybridseeds,equipment,andtechniques.Initialeffortsinruralsociologyandagriculturehelpedcon-structthediffusionparadigmandDiffusion of InnovationstheorywaspopularizedbyRoger’sseminalworkthatsynthesizedhundredsofdiffusionstudiesfromvariousdomainsinfluencingthetheory(Rogers2003).

BealandBohlen(1957)intheirearlyworktitled“ProcessofDiffusion”,assertthatdiffu-sion,definedastheprocessbywhichpeopleacceptnewideas,isamentalprocessmeaningithappensthroughaseriesofcomplexactsratherthanasingleone.Accordingtotheauthors,thismentalprocesshappensinfivestages:awareness,interest,evaluation,trial,andadoption.Anindividual learnsabout the idea1duringtheawarenessstagebutmayignorethedetailsthereof.Duringtheintereststage,theindividualbecomesinterestedaboutdetailssuchashowtheideaorproductworksandwhatistheassociatedpotential.Theevaluationstageiswhentheindividualmakesamentaltrialoftheideaortheproducttoaskquestionsonhisorhercapabilityofadoptingitandifyes,whattheimpactswouldbe.Thentheindividualputstheideaortheproductintotrialandasuccessfultrialleadstoadoptionwherethereisalarge-scale, continueduse of the ideawhich builds experience.Beal andBohlen carefullywarnthatadoptionofanideadoesnotnecessitateconstantapplicationofit.Itsimplymeansthattheideaorproductisacceptedmentallyandthereisanintentiontoincludeitinthepractice.2

Eyuphan Koc et al.

464

This broad conceptualization of the stages of how innovation diffuses into the practice aswellasintosupplyandvaluechainsisausefuloneandwillbeadoptedlaterinthechaptertodemonstratethestatus-quoofIndustry4.0conceptsandtechnologiesintheAECindustry.ItisessentialtonotethatBeal’sstages of diffusiondifferfromRoger’stherate of adoptionwheretheformerreferstothestagesfromtheinceptionoftheideatoitsacceptance,andthelatteristherelativespeedwithwhichaninnovationisadoptedbymembersofasocialsystem.3Inwhatfollows,factorshinderingtheprocessofdiffusionintheindustryarebrieflydiscussed.

23.3.2 Factors hindering diffusion of Construction 4.0

Asmentioned,Industry4.0conceptsandtechnologiesmainlyoriginatedfromthemanufactur-ingindustrywhereadvancementsinbothinfrastructuresandoperationsfoundtheirinitialtestbedsandenabled large-scale industrial improvements.TheAEC industrypossessesdifferenttypesofchallengesthatareperceivedasfactorshinderingthepenetrationandadoptionof4.0conceptsandtechnologies.Constructionprojectstypicallyhavehighernumbersofinterrelatedprocesses, sub-processes andactors leading tohigher complexity (Arayici andCoates2012;DuboisandGadde2002).Theyarelocation-based,highlycustomizedbuttemporaryundertak-ings,factorsallofwhichincreaseuncertaintyandrisk.Inaddition,theconstructionsupplychainishighlyfragmentedwithahighnumberofsmallandmediumsizedenterprises(SMEs)thatlackthecapacity(financialorotherwise)toinvestinandbenefitfromnewtechnologies(Kraatzetal.2014).Specifically,fragmentationmanifestsitselfinthreedimensions;vertical fragmenta-tionacrossbuildinglifecyclephases(design-construction-operations),horizontal fragmentationacrosstradesanddisciplines(mechanical,electrical,etc.)andlongitudinal fragmentationacrossprojectscurtailingthesharingofknowledge.Figure23.2illustratesthethreetypesoffragmen-tationintheAECindustry(Fergusson1993;Sheffer2011).

Figure 23.2 Threetypesoffragmentationintheconstructionindustry

465

Emerging trends and research directions

Othersignificantfactorssuchasalong-standingriskaversiontowardsinnovationfocusingon doing what works, culture of low cost competitive bidding and a lack of computersavvyworkforce in the industry are slowing down thewide adoption of 4.0 concepts andtechnologies.Onelesspronouncedbuthighlyimpactfulcharacteristicisconflictingincentivesadverselyaffectingcollaborationbetweentheprojectstakeholders(owner,architect,contrac-tor,subcontractor,materialsupplieretc.).Inthewakeofsuchcharacteristics,aslowadoptionoftechnologiesiscurrentlyobserveddespiteclearlydemonstratedbenefits.

TheideaofrevolutionizingtheAECindustrythroughautomationhasbeentestedbefore.High riskof injury, skilled labor shortagesandanageingworkforcecreatedademand forresearch intoautomaticconstruction inJapan in the90s.Japaneseresearchers realized thatthedevelopmentofsingletaskhuman-machineconstructionsystemscouldbeanefficientandeconomicalwaytointroduceautomationinconstruction.Despiteenvisionedbenefits,roboticconstructiondidnotprovetobeviablefortheindustryatthetime.Outofover500roboticcon-structionplatformsdeveloped,lessthantenmadeittotheindustry(Bechthold2010;Obayashi1999).Themainobstacleswerereportedtobe(1)thehighcomplexityanddynamicconditionsoftheconstructionsiteswerenotprovidingastableandstructuredoperatingenvironmentforrobotsand(2)thelackofroboticcontrolframeworksandhighcostofsensorswereprohibitive(Tayloretal.2009).Today,enablingtechnologiesincludingtheadvancedModelingandSim-ulationToolssupportedbyCloudComputingandBigData,DigitalFabricationandRoboticConstructionaswellastheInternetofThingsandServices(OesterreichandTeuteberg2016)aremorematureandthuscapableoffacilitatingtheenvisioneddisruptionacrossallsectorsofAECtheindustry.

23.3.3 Factors motivating and facilitating Construction 4.0

Aboveall,thefactorsmotivatingincreasedautomationanddigitizationthrough4.0conceptsandtechnologiesaretheAchillesheelsof theAECindustrythemselvesthatarementionedabove:lowproductivity,delaysandoverruns,quality,safetyandwasteissues.Thevisionisthata4.0versionoftheindustry,ifachieved,willnotsufferfrommanyoftheseproblems(asshowninFigure23.3).

Arecent reportbyBostonConsultingGroup,concludes thatwithin tenyears, full-scaledigitalizationinnon-residentialconstructionwillleadtoannualglobalcostsavingsof13%to21%intheengineeringandconstructionphasesand10%to17%intheoperationsphase(BCG2016).Theauthorswouldliketodiscusssomeothertrendsthatareperceivedastechnologicalmotivatorsandfacilitators.

One facilitator is the fast-paced innovation in individual technologies themselves.AdvancementsinInternetofThingsandInternetofServiceshaveresultedinimprovementsthatloweredthecostsandenhancedthefunctionalities.Sensorswithpreviouslyprohibitivecostsbecamecheaperenablingtheiruseintheconstructionandoperationphases.Moreover,Cloud-Computingbenefitingfromadvanced5Gnetworkinfrastructurehasprovidedaccesstohighperformancecomputingforamuchwideraudience.Ontheotherhand,BIMhasemergedasthecentralplatformthathasthepotentialtocombineallrelated4.0technologiesthatcanlargelybenefit—both individually andcollectively—from the creationof semantically richdigitalinstancesofbuildings.Despitebeingslowearlyon,thefollowingwavesofBIMadop-tionhaspavedthewayfor thedigitizationofvarioustypesofbuildingrelatedinformationvirtuallyaffectingallphasesofprojects(design,constructionandoperation).

Intermsofprojectdelivery,amuchmorecollaborativesettingimplementedthroughInte-gratedProjectDelivery(IPD)ispromisingtobeginaddressingthehorizontal(fragmentation

Figu

re 2

3.3

Integrationintheindustrythroughtheadoptionof4.0conceptsandtechnologies

467

Emerging trends and research directions

betweendisciplinessuchaselectrical,mechanical,etc.)andverticalfragmentation(fragmen-tationbetweenlifecyclephasesdesign,constructionandoperations)issues.IPDisaprojectdeliverymethodthatintegratespeople,systems,business,structuresandpracticesintoapro-cessthatcollaborativelyharnesstalentsandinsightsofallparticipantstoreducewasteandoptimizeefficiencythroughallphasesofdesign,fabricationandconstructionofabuildingstructure(Lahdenperä2012).

Allinall,anincreasedavailabilityandaccessibilityoftechnologyaswellasthecomprehen-sionoftheneedforenhancedcollaborationinprojectdeliveryarecreatinganinnovationpull.Inthenextsection,theauthorsbegintheirdiscussionbycomingbacktothediffusionconcepttodemonstratethestatusquoregardingthe4.0conceptsandtechnologiesintheAECindustry.Itisassertedthatanumberoftrendsarerelevantgiventhisobservationoftheindustry.

23.4 Emerging 4.0 trends in the aEC industry

Intheirreview,OesterreichandTeuteberg(2016)provideacomprehensivecategorizationofkeyConstruction4.0conceptsand technologies in threeclusters:Smart Factory, Modeling and Simulation, Digitization and Virtualization.Here,theauthorsadopttheircategorizationanda)enrichitwithanumberofitemsregardedtobewithinthe4.0realmthatweremissingfromOesterreichandTeuteberg’staxonomy,b)usetheinnovationdiffusionconceptanditsfive stages (awareness, interest, evaluation, trial and adoption) todemonstrate the stageofadoptionofeachconceptandtechnologywithrespecttothedifferentlife-cyclephases.ThisisillustratedinFigure23.4.

Forexample,itisassertedthatHigh Performance Computing (HPC)iscategorizedunderModelingandSimulationandisatthestageofawarenessfortheconstructionphasewhereasitisintheintereststagefordesign.ThisisbecauselargedatabasesenablinganalyticstasksthatwouldrequireHPCarevirtuallynonexistentfortheconstructionphase.Ontheotherhand,HPChasbeenusedinalimitedfashionforspecificdesignapplicationswhichgaverisetoageneral interest for itspotential,particularly forcomputationaldesignapproaches.Readerswillalsonoticethatsomeoftheconceptsandtechnologiesthathaveverylimitedorvirtuallyzeroimpactonaspecificlife-cyclephasehavebeengrayedoutonFigure23.4accordingly.Moreover,itisessentialtonotethenon-rigidboundarybetweenon-siteandoff-siteconceptsandtechnologiesunderthesmartconstructioncluster.Almostalloftheseconceptsandtech-nologieswerediscussedindetailthroughouttheearliersectionsofthebook.Thecontributionhereisthecorrelationofadoptionwithlife-cyclephasesaswellastheconnectionmadetothediffusionconcept.

Halletal.(2014)investigatethespeedofdiffusionforproductandprocessinnovationsinthebuildingindustryandhighlightthatinnovationsthatfitthecurrentsupplychainstructure(modularinnovations)diffuseuptothreetimesfaster thantheinnovationscrossingdisci-plinary boundaries (integral innovations). Perhaps themost strikingmanifestation of thisphenomenonhasbeenBIM.Despitehavingawidespectrumof functionalities invariouscontextsfromsupportingcollaborativedesignthroughearlyinvolvementofstakeholderstoenablingbuildingperformancesimulationsandsmarterfacilitymanagement,BIMdiffusionstartedfromdesignbynotnecessarilydisturbinganyexistinginterfaceintheconstructionsupplychain. Itspromiseof improvementsuponmanyof the shortcomingsof theearlierCADmethodsdiffusedBIMintodesign,andovertimeithasproventocreatetangibleben-efitsintermsofkeyprojectobjectives(cost,quality,time).Consequently,thediffusiontootherlife-cyclephaseshappenedtothepointthatBIMiscurrentlydefinedasannD-basedmethodology,designed to integrate theentirebuilding informationalong the lifecycleof

Figu

re 2

3.4

CategorizationofconceptsandtechnologiesinConstruction4.0intotheclusterstheybelongin(e.g.SmartC

onstructionSite)andcorresponding

stagesofdiffusionwithindifferentphaseso

fthebuildinglifecycle

469

Emerging trends and research directions

buildings,fromdesigntoconstruction,tooperationandmaintenance,andtoreuseordem-olition (Cheng andMa 2013). In otherwords, themodular innovation (BIM for design)triggeredanintegralinnovationthatispromisingtoadvancetheindustrybeyondsomeofthevertical(BIMforallprojectphases)andhorizontalfragmentation(BIMfordisciplines/trades)challenges.DespitethefactthatBIMandothertechnologieshavebeenknowncon-ceptsintheAECindustry,theauthorsbelievethatotherkeyelementsthatrelatetoprojectdeliveryneedtoaccompanytechnologiestoovercomethedeeplyentrenchedfragmentationissues,leadingtothedesiredintegralinnovationsinconstruction.RecommendingIPD(Inte-gratedProjectDelivery)withasimilarmotivation,Halletal.arguethata)legal strategiessuchasincentivizedmulti-partycontractsguaranteeingcostreimbursementandprovidingfiscaltransparencyandflexibility,b)management strategiessuchasdirectownerinvolve-mentandvision,teamideagenerationandleanconstructionprinciplesaswellasc)work-place strategiessuchascolocation,collaborativedecisionmakingandteamaccountabilityarekeyelementswhichcanpromoteinnovativesolutionthatatthesametimearemorecostefficientthantraditionalprojectdeliverymethods.

ManyoftheseargumentsarealsosupportedbyDallasegaetal.(2018)intheirworkonIndustry4.0and itspotential tobe theenablerofproximity forconstructionsupplychainscomplementingHalletal.intermsoftheenvisionedsymbiosisbetweencollaborativeprojectdeliverymethods(orenhancedcollaborationingeneral)andConstruction4.0.Dallasegaet.al.highlightthatonedecisivecharacteristicofconstructionsupplychains(CSCs)isthatallinvolvedactorshavedifferentdistances,bothphysicalandcognitive,tothelocationofpro-duction.Buildingonearlierworkonproximity,4 theyassert4.0conceptsand technologieshavethepowertobridgeobjectivegeographicdistancewhilealsobeingpromisinginimprov-ing inter-organizational collaboration among actors in the construction supply chain.Theyalsoproject4.0inducedchangesinsubjectivedistancesrelatingtoorganizational,cognitive,social,cultural,institutional,andtechnologicalproximities.

AnotherimportantaspectarisingfromstudyingFigure23.4is thecouplingbetweentheadoptionof various concepts and technologies.For instance, for the adoptionofBigDataAnalytics in theconstructionphase,first richconstructiondatasetsneed tobecomeavaila-ble through the enhanced adoptionof data generators such as IoT/IoS,RIFD, etc. For therealizationofthepotentialofdataanalyticsinconstruction,thechallengeisthelackofopensource, structuredconstructiondataaswell as the scalabilityof insightsbasedon the lim-ited data available because every project is unique. In a recent collaborative effortwith a1000-employeegeneralcontractorfirminCaliforniawithasuccessfultrackrecordofservinghighprofile clients, the authors tried to applydata-driven approachesonproductivity datafromover40projects.Sofar,findingpatternshavebeenchallengingwithprojectlevelattrib-utesthatstoreaggregateddatafromweeklyprogressreports.Forexample,twoprojectswithverysimilarcharacteristics thatarebuiltby thesamecontractor in thesameneighborhooddemonstratesignificantlydifferentproductivityperformances.Thisraisedthequestionaboutthescalabilityofenvisionedresultsandthelongitudinaltransferabilityofknowledgebetweenprojectsgiventhecomplex,site-basednatureofeachundertaking.Thisresearcheffortisstillongoingwheretheauthorsareexpandingthedatacollectioneffortintermsofresolutionwhilediggingdeeperintotasksandbuildingelementsratherthanstayingatprojectlevelattributes.Eventhen,BigDataAnalytics(DeepLearning)methodsmayneverbeunlockedgiventhetotalnumberofpastprojectsdeliveredby thefirm. In this context, it is also significant torememberthatasector-widedatasharinginitiativeisneededthatwillcircumventthelackoffinancialincentivesfordata-sharinginthehighlyfragmentedindustrywherecostcompetitivebiddingstilldeterminestheprojectawardee.

Eyuphan Koc et al.

470

Anothercouplingofinterestistherelationshipbetweenroboticsandautomation,andmod-ularization/prefabrication.Advancements in roboticsandautomationareprojected toboosttheadoptionofmodularization/prefabricationmakingoff-sitemanufacturingamoreviablealternative. Bechthold (2010) emphasized that the advances in robotics lowered the costsofconstructionrobotsandenhancedthemwithcustomizedfabricationcapabilitiesthataddsignificantvalue.This isalreadybenefitingoff-sitemanufacturingofprefabricatedunitsasdiscussedbyWeinreich (2017) in his podcast titled “Tesla ofHomebuilding”.Weinreich’sinterviewwiththeGermanmachinerycompanyWeinmannrevealsthatthereareover5,000Weinmann machines operating in 150 homebuilding factories worldwide that are able toproducetimberpartswithrespecttoindividuallycustomizedhomelayouts.Theoff-sitemanu-facturingtrendalsodemonstrateditselfintheinitialundertakingofSidewalkLabsinToronto,anAlphabetGroupcompany(parentcompanyofGoogle),wheretheylaidoutavisionforaholistic,integratedmodularconstructionapproachsupportedbyastandardizedpartslibrary(apartfromvolumetricunits)toachievecostsavingsandproductimprovementsthathavenotbeencapturedbypriormodularconstruction(SidewalkLabs2018).Overall,SidewalkLab’svisiondocumentfortheTorontoQuaysideprojectdescribesacomprehensive4.0undertakingwith objectives ranging fromnet-zero energy community development to a suite of smarttransportationsystemssupportedbyautonomoustechnologies.Thisintegratedfrom the inter-net-up community development perspective could shift the paradigm enablingmuch fasteradoptionof4.0conceptsandtechnologiesinthefuture.Next,theauthorsdiscussanumberofresearchdirectionsthatareconsideredaspromisingwaystoaddressissueswithslowadoptionofinnovativetechnologiesintheAECindustry.

AmacrotrendrelatingtoConstruction4.0isthetargetsproposedbygovernmentsrelatedtooverallefficiencyoftheindustrybothfortheconstructionandoperationphases.OneofthemoreambitiousdocumentsistheUKConstructionStrategythatrequiretheindustrytodra-maticallyimproveitsperformanceinfourkeyareasby2025includingloweringgreenhousegasemissionsinthebuiltenvironmentby50%,reducingtheinitialcostofconstructionandthewholelifecostofbuiltassetsby33%,reducingtheoveralltime,frominceptiontocompletion,fornew-buildandrefurbishedassetsby50%andimprovingexportsby50%(Abandaetal.2017).Interestingly,BIMandmodularization/prefabricationarepreciselysuggestedasoppor-tunitiestoreachattheseveryambitioustargets.InCalifornia,allstatebuildingsareplannedtobezeronetenergyby2025andthestatehasstringentcodesinregardtoenergyefficiencyfornewlybuilthomes.Ingeneral,suchinitiativesenforcedormotivatedbylegislationshouldspeedupthediffusionof4.0innovationssincetheyareconsiderednecessarytoolsandcon-ceptsfordesigning,constructingandoperatingmoreefficiently.

23.5 research directions

Inthissection,anumberofresearchdirectionsarediscussedatahigherlevelthantheindivid-ualconceptsandtechnologiessincepreviouschapterswentintodetailedconsiderationswiththatpurpose.Again,perspectivespresentedonconceptsofdiffusionandfragmentationgivedirectiontothethinkingsummarizedhere.

First,thereisanobviousneedforresearchtoexpandonintegratedprojectmanagementand delivery approaches. Earlier in the chapter, IPDwasmentioned as a new promisingprojectdeliverymethodaddressingkeyhorizontalandvertical fragmentation issues.Spe-cifically in“Construction4.0”context, theauthorsassert that—byenablingvarious typesofproximitiesdiscussedinSection23.2—theconvergenceofactorsandincentivesthroughIPDwillhelpfacilitatethesharingofbenefits(throughmulti-partycontractsandguarantees

471

Emerging trends and research directions

(Henisz et al. 2012)) associatedwith the adoptionof 4.0 innovations in the industry.Forexample,intheirworkonconstructionsimulations,Abourizketal.(2011)arguethatcon-structionsimulationshavelargelybeenlimitedtoacademicapplicationsdespitethebenefi-cialusecasessuchasusingsimulationsfordesigningconstructionoperationsandprocessesorexperimentingwithdifferentscenariostoallowfacilitymanagersoptimizetheirprocessesandachievemuchhigherlevelsofefficiency.AccordingtotheAbourizketal.,asthegapbetweentherealandvirtualworldsisclosing,therealizationofaconstructionprojectmaytakeplaceinavirtualworldwithalldetailsofitsscopeandconstraintsdefinedbeforeorinparalleltoitsrealizationintherealworld.Forthis,theyemphasizethenecessityofmodelingandsimulationplatformsspanningthefulllifecycleofconstructionprojectsfromdesigntoconstructionandevenoperation,andthatcanaccommodatevirtuallyallthemodules(e.g.toolsfordesign,energysimulations,scheduling,etc.).Inthisjunction,BIMandIPDappearasnaturalpartners thatcouldunleash integrationacrossprojectphases,projectactorsandspecific4.0conceptsand technologies leveraged inaproject.However, there isa lackofinterdisciplinary research efforts and in thedevelopment of data-driven integrated frame-worksthatlookbeyondtheboundariesofspecificdisciplines.Suchframeworkscanenableseamless collaboration between stakeholders, clients, policymakers, architects, engineersandcontractors(end to end integration of engineering across the entire value chain via infor-mation technologies)bycriticallyevaluatingthestateoftheartineachdiscipline.InFigure23.5,theauthorsgraphicallyshowConstruction4.0conceptsandtechnologiesintermsoftheir“paths”acrossstagesofinnovationdiffusionintimestartingfromtheirinitialconcep-tionintotodayandtothefuture.Thegraphsuggeststhatinnovationandintegrationintheconstructionsupplychainwillgohand-in-handwiththeconvergenceoftechnologiesontointegratedprojectdeliverysettings.

Borrowingfromtheexampleoftherapidlygrowinggamingindustry,BIMsoftwareandother design platforms have the potential to be disruptive and thus to be successfulwhentheyare“simpletolearnbutimpossibletomaster”(MontfortandBogost2009).Onthecon-trary,ifdesigntoolsaredifficulttousefromthestart,userstendtobediscouragedandfind

Figure 23.5 Construction4.0conceptsandtechnologiesintermsoftheir“paths”acrossstagesofinnovationdiffusionintime,andtheenvisionedconvergenceoftechnologiesontointegratedprojectdeliverysettingsintheupcomingdecades

Eyuphan Koc et al.

472

ithardtoengagewiththemasrecenthistoryhasshown.Inthelastdecade,therehasbeenanincreaseinopensourcelibrariesanddesigntoolswhicharedevelopedfromthebottomup (i.e. architects, engineers) by using openAPIs of existing software as stepping stones.Suchattemptshavebeensuccessfulbecausetheyhavebeencreatedbycomputationallysavvyarchitectsandengineerswithintheindustry.Moreover,theyarestructuredinawaythattheiruserscanarriveattangibleresultsrelativelyquickly,albeitsomeresultsbeingnotextremelyaccurate.Throughcontinuousinteraction,usersdelveintothetooltoimproveuponprelimi-naryresultswhileadvancingtheirknowledgeonthesuiteoftoolsandeducatingthemselvesinaparticularareaofexpertise(i.e.environmentalmodeling).Overall,thedevelopmentsasso-ciatedwith Industry4.0 suggesta shift towards thedevelopmentofanecologyof toolkitsratherthana“onesolutionfitsallapproach”whichisthecurrentparadigmsetforwardbybigsoftwarecompaniesdominatingtheAECindustry.Ontheotherhand,openaccesstodatasuchasweatherorbuildingoccupants’dataarequicklychangingthestatusquoofbuildingmode-lingandsimulationasdata-drivenapproachesprovideamoredirectwayofevaluatingdesignintuitionorthedevelopmentofnewdesignversions.

Figure23.5demonstratestheauthor’spredictionofhowinnovationadoptionintheAECindustrywillprogressinasymbioticfashionwithintegrationwhichwillrapidlyfacilitatetheappropriatecircumstancesforthewideapplicationofConstruction4.0conceptsandtechnol-ogies.Thetimelineenvisionedmaynothappenexactly,butthechangeappearsinevitableandthemultiplefacetsofthetransformationoftheconstructionindustryhavebeenelaboratelydescribedinthepreviouschaptersthisbook.However,onecriticalquestionarises:Whoisgoingtobe leadingthischangeandwhatare therolesofdesignersandengineers therein?Toanswerthisquestion,theimportanceofarchitectureandcivil(construction)engineeringeducationandthecapacityofacademicinstitutionstohelpstudentsdevelopthediversesetofskillsrequiredtoaddressthechallengesofthe4.0erabecomeshighlyrelevantandneedtobeseriouslyreconsidered.Thereisanobviouseducationalshortcomingthathasnotrevealeditselfyetinasignificantmannerastheindustryhasbeenreluctantinwidelyadoptingalarge-scaledisruptionuntilnow.However,disruptionwavesarereachingtheshoresoftheindustryoftencomingfromactorsofotherindustrieswithdifferentskillsetswhoareenteringtheAECmarketwithinitiativestargetinglarge-scaledevelopmentprojects(e.g.Alphabet’sSidewalkLabs and itsTorontoQuaysideproject) andpartnerships that arebasedupon4.0 conceptsandtechnologieswiththeobjectivesofachievingmoresustainablebuildingdesigns,lowerconstructioncostsandimprovedproductivity(e.g.IKEAandSkanskapartneringtobuildlow-cost,sustainableprefabricatedhomes5).Byrapidlyadvancingtowardsdigitizingconstruction,providingend-to-endbuildingservices(usingoutsourcingifnecessary)anddesignautoma-tion/simulation,suchactorsalreadyseemtobechangingtheindustry.Theseearlywarningsofthementionedlarge-scaledisruptiontriggeredbytheforcesofdigitization,industrializationandglobalizationthatiswellunderway.Moreover,“grandchallenges”ofthe21stcenturydemandarchitectsandengineerstocrossboundariesbetweendisciplinesastheyaresolvingproblems and target holistic approaches to accommodate considerations of sustainability,resilience,cybersecurity,etc.Theabilitytodevelopadeeperunderstandingoftheories,meth-ods and tools outside their immediate domains (complexity theory, biomimetics, syntheticbiologytonameonlyafew)(Knippersetal.2016)willincreasinglybeadistinguishingfactor.

Although there are few institutes and graduate degree programs established inNorthAmericaandEuropethatarededicatedtotheinvestigationofhowaforementionedconceptsarechangingthewaywedesignandconstructinthedigitalage,thecurriculadonotsatisfytheserequirements(e.g.SantaFeInstitute,WyssInstitute/Harvard,MediatedMatterGroup/MIT,ITA/ETHZurich,InstituteforComputationalDesign/ITKEStuttgart).InFigure23.6,

Figu

re 2

3.6

Theflowso

finformation(influence)betweenindustry,academiaandvariousprojectphasestodayandthechangesenvisionedtooccurasthe

industrymovesforwardtoa4.0state.Disruptionwavesoriginatingintechindustriesasw

ellasthechallengesofthe21stcenturyaredescribingthedisciplinesto

beintegratedinthenextgenerationcurriculawillbenecessary

Eyuphan Koc et al.

474

theauthorsvisuallytellthestoryofthisinterplaybetweenindustryoftodayandofthefutureaswellasthedesiredadvancementsinacademia.Theideaisthattoday’sdesignandengi-neeringeducationneedtoallowformorecrossdisciplinaryinformationflowandwelcomesciencesthataretraditionallyleftoutintothecurriculatoenableuniquelearningopportu-nities.6Otherwise, the threat is thatarchitectsandengineerscould loseagency inprojectdevelopmenttoplatformsdevelopedbytechcompaniespenetratingintotheAECindustryandwillbecomesidelined losing theopportunity to lead the4.0 revolution. Ifdisruptiveenterprisesgrabmarketshareandshakeupexistingbusinessmodels,academicsstrivingtopreparestudentstobeemployment-readymaybelateinopeningtheireyestothebusinessmodelsthatarequitedifferentfromtraditionalconstructioncompanies(Hardie2018).

The authors perceive the rapid transformation of ride-hailing services industry as ananalogyandawarning.Taxidriverswereinitiallyabletocapitalizeontelecommunications(radio)whichexpandedtheirbusinessandmadeiteasierfortaxiriderstofindrides.How-ever,dueto theirslowadoptionoffurther innovationrequiredbythewideavailabilityofsmartphones,fullyconnectedride-hailingappsarethreateningthebareexistenceoftaxis.Capturingmajormarketsharesinhundredsofcitiesaroundtheworld,suchappsarerender-ingtaxidriversobsolete.StakeholdersintheindustryandtheacademianeedtounderstandapotentiallysimilarthreattorevealitselfshouldtheAECindustrymissthetrainontrans-formingitself.

23.6 Conclusion

“Construction4.0”conceptsand technologieswilldriveAECinnovation in thenear futureandtheindustrycouldfinallyfacethelarge-scaledisruption—fromwithinorelsewhere—ithasavoided.Inthischapter,theauthorsintendedtodrawattentiontotheneedofunderstand-ingtheprocessofinnovationdiffusionintheAECcontext.Theindustryhasitscharacteristicchallengeshinderinginnovation,however,therearealsomanyfactorscreatinganinnovationpull.Totracktheemergingtrends,thereisaneedtotakea multilevel, longitudinal perspective, and follow events implicating actors, artefacts, and institutions over time(Garudetal.2013).Inlightofthediscussionsinthischapter,innovationdiffusioncanbestudiedandperceivedfromamultiplicityofviewpoints:(1)fromtheinterfacebetweenthe“firm”andtheindustryit belongs to by understanding the dynamics and challenges of the diffusion in relation totechnologystandardsandbestpractices,(2)frominterfacebetweenthe“firm”anditsclients,andhowtheir interactioninfluencestechnologyrelateddecision-makingfor individualpro-jects,(3)fromtheinterfacebetweenthe“firm”andthetechnologyproviderstocapturetheadvancementsinindividualtechnologiesaswellashigherlevelchangesinparadigms.Themethodology tounderstand the innovationdiffusionprocess inconstructionshouldassumefromtheoutsetthatdigitalinnovationhappensthroughaseriesofcomplexactsratherthanasingleoneandthatwithinthechronologyoftheinnovationdiffusion,nonlinearityanditera-tionmaybepresentandshouldbeaccountedfor(e.g.BIMasanideabeingconceiveddecadesbeforelarge-scalediffusionhappenedinpractice).Lastly,theroleofarchitectsandengineersinthe4.0revolutionisapointofemphasisgiventhebackdropofdisruptioncreatedbyactorsofotherindustrieswhoaretryingtogainmarketsharebytacklingthelong-standingproblemsoftheAECindustry.Inthiscontext,theauthorsemphasizedthatAECeducationneedstoopendoorstotheories,methodologiesandtoolsfromotherdomains.Thisisalsonecessitatedbythegrandchallengesofthiscenturyhighlightedasforcespushingtheindustryandacademiatowardschange.

475

Emerging trends and research directions

23.7 Summary

• Wideradoptionof4.0conceptsandtechnologiesintheAECindustryincombinationwithlegislationmotivatedby“grandchallenges”aremotivatingfasterdiffusionofinnovation.Avisiononhowthiswillprogresswaspresented.

• With thedescribeddiffusion, the industrywillmove towardsmore integration—awayfromtheinefficienciesoffragmentation—acrossprojectphases,disciplinesandmultipleprojects.Morecollaborativeprojectdeliverymethodsareexpectedtoplayasignificantroleinthisintegration.

• Theroleofarchitectsandengineersin“Construction4.0”isacriticalpointofemphasisintermsofacademictraining.Thereisaneedtoopenupcurriculatoteach“data”skillsinamoreenhancedfashionaswellastoaccommodateotherfundamentalsciencesthataretraditionallyleftoutofarchitectureandengineeringeducation.Thisdiversepreparationisnecessaryforarchitectsandengineerstoleadtheevolutionoftheconstructionindustryandadapttothechallengesofthiscentury.

Notes1 Ideaislooselyusedforanewidea,product,orprocess.2 InthecaseofBIM(BuildingInformationModeling),thereisageneralconsensusintheindustryonthe

benefitsandtherearemanystudiesquantifyingsuchbenefitsforvariousprojectswithdifferentlevelsofBIMadoption.Thesearesufficientconditionsfor“adoption”underBealandBohlen’scharacterizationofthestagesanditdoesnotrequireBIMtobeusedinthemajorityoftheconstructionprojects.

3 Rateofadoptionisunderstoodasanumericindicator,e.g.numberofheavycivilcontractorsadoptingBuildingInformationModelingperyear.

4 Proximityresearchidentifiesthedistance(physicalorcognitive)betweentwoormoreentitiesasamajordeterminantofknowledgetransfer,innovation,andinter-organizationalcooperation.

5 BoKlokisahousingconcept,developedbySkanskaandIKEA,www.boklok.com/.Katerraisanothercompanyrevolutionizingtheindustrywithoff-sitemanufacturing,www.katerra.com/en.html.

6 Ananalogycouldbemadewith “Taylorism”or “scientificmanagement”approaches in theearly19thcenturywhenpioneersadoptedasimilarperspectivetoimproveeconomicefficiencyandlaborproductivity.Forinstance,thewell-knownGanntchartwasdiscoveredandbroughtintotheprojectmanagementoflargepublicinfrastructureprojectssuchastheHooverDam.

referencesAbanda,F.H.,Tah,J.H.M.,andCheung,F.K.T.(2017).“BIMinOff-siteManufacturingforBuildings.”

Journal of Building Engineering,14(October),89–102.Abourizk,S.,Halpin,D.,Mohamed,Y.,andHermann,U.(2011).“ResearchinModelingandSimulation

for Improving Construction Engineering Operations.” Journal of Construction Engineering and Management,137(10),843–852.

Arayici,Y.,andCoates,P.(2012).“ASystemEngineeringPerspectivetoKnowledgeTransfer:ACaseStudy Approach of BIM Adoption.” Virtual Reality – Human Computer Interaction, 179–206.IntechOpen,DOI:10.5772/51052.Availableat:www.intechopen.com/books/virtual-reality-human-computer-interaction/a-system-engineering-perspective-to-knowledge-transfer-a-case-study-approach-of-bim-adoption

Beal,G.M.andBohlen,J.M.(1957).“TheDiffusionProcess.”Signal Processing,1(1),1–6.Bechthold,M.(2010).“TheReturnoftheFuture:ASecondGoatRoboticConstruction.”Architectural

Design,80(4),116–121.BostonConsultingGroup.(2016).“Digital inEngineeringandConstruction.”TheBostonConsulting

Group.Cheng, J. C. and Ma, L. Y. (2013). “A BIM-Based System for Demolition and RenovationWaste

EstimationandPlanning.”Waste Management,33(6),1539–1551.

Eyuphan Koc et al.

476

ChoiGranade,H.,Creyts,J.,Derkach,A.,Farese,P.,Nyquist,S.,andOstrowski,K.(2009).Unlocking Energy Efficiency in the U.S. Economy. McKinsey Global Energy and Materials. Available at:www.mckinsey.com/~/media/mckinsey/dotcom/client_service/epng/pdfs/unlocking%20energy%20efficiency/us_energy_efficiency_exc_summary.ashx

Dallasega,P.,Rauch,E.,andLinder,C.(2018).“Industry4.0asanEnablerofProximityforConstructionSupplyChains:ASystematicLiteratureReview.”Computers in Industry,99(April),205–225.

Dubois, A. and Gadde, L. E. (2002). “The Construction Industry as a Loosely Coupled System:Implications for Productivity and Innovation.”Construction Management and Economics, 20(7),621–631.

Fergusson,K.J. (1993). Impact of Integration on Industrial Facility Quality.Stanford,CA:StanfordUniversity.

Garud,R.,Tuertscher,P.,andVandeVen,A.H.(2013).“PerspectivesonInnovationProcesses.”Academy of Management Annals,7(1),775–819.

Hall,D.,Algiers,A.,Lehtinen,T.,Levitt,R.E.,Li,C.,andPadachuri,P.(2014).“TheRoleofIntegratedProjectDelivery Elements inAdoption of Integral Innovations.” EPOC 2014Conference, (July),1–20.

Hardie, M. (2018). “Preparing Students for a Disruptive Construction Future.” InM. Lamb (ed.),AUBEA2017:AustralasianUniversitiesBuildingEducationAssociationConference2017,vol.1,pp.70–77.

Henisz,W.J.,Levitt,R.E.,andScott,W.R.(2012).“TowardaUnifiedTheoryofProjectGovernance:Economic,SociologicalandPsychologicalSupports forRelationalContracting.”The Engineering Project Organization Journal(March–June2012),2,37–55.

Kats,G.,Alevantis,L.,Berman,A.,andPerlman,J.(2003).“TheCostsandFinancialBenefitsofGreenBuildingsAReporttoCalifornia’sSustainableBuildingTaskForce.”CapitalE.

Knippers,J.,Nickel,K.G.,andSpeck,T.(2016).Biomimetic Research for Architecture and Building Construction.Basel,Switzerland:SpringerInternationalPublishing,Springer.

Kraatz,J.A.,Hampson,K.D.,andSanchez,A.X.(2014).“TheGlobalConstructionIndustryandR&D.”InJ.A.Kraatz,K.D.Hampson,andA.X.Sanchez(eds),R&D Investment and Impact in the Global Construction Industry,London:Routledge,4–23.

Lahdenperä,P.(2012).“MakingSenseoftheMulti-partyContractualArrangementsofProjectPartnering,Project Alliancing and Integrated Project Delivery.” Construction Management and Economics,30(1),57–79.

Lasi,H., Fettke, P.,Kemper,H.-G., Feld,T., andHoffmann,M. (2014). “Industry 4.0.”Business & Information Systems Engineering,6(4),239–242.

Montfort,N.,andBogost,I.(2009).Racing the Beam: The Atari Video Computer System.Cambridge,MA:MITPress.

Obayashi,S.(1999).Construction Robot System Catalogue in Japan, Council for Construction Robot Research.Tokyo:JapanRobotAssociation.

Oesterreich, T. D. and Teuteberg, F. (2016). “Understanding the Implications of Digitisation andAutomationintheContextofIndustry4.0:ATriangulationApproachandElementsofAResearchAgendafortheConstructionIndustry.”Computers in Industry,83,121–139.

Rogers,E.M.(2003).Diffusion of Innovations,5thEdition.NewYork:FreePress.Sheffer,D.A.(2011).“InnovationinModularIndustries:ImplementingEnergy-EfficientInnovationsin

USBuildings.”Dissertation.SidewalkLabs(2018).SidewalkToronto.www.sidewalktoronto.ca.Taylor,J.E.,Levitt,R.E.,andFellow,L.G.(2006).“UnderstandingandManagingSystemicInnovation

inProject-basedIndustries.”Innovations: Project Management Research, 83–99.Taylor,M.,Wamuziri,S.,andSmith,I.(2009).“AutomatedConstructioninJapan.”Proceedings of the

Institution of Civil Engineers – Civil Engineering,156(1),34–41.Teece,D.J.(1996).“FirmOrganization,IndustrialStructure,andTechnologicalInnovation.”Journal of

Economic Behavior and Organization, 31(2), 193–224.Weinreich,A.(2017).“PredictingOurFutureEpisode6:TheTeslaofHomebuilding.”Stitcher,stitcher.

com/podcast/predicting-our-future/e/49745756?autoplay=true(June5,2019).