9 Headed Anchor Design[1]

Preview:

Citation preview

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 1/104

PCI 6th

EditionPCI 6th

Edition

Headed Concrete Anchors (HCA)

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 2/104

Presentation OutinePresentation Outine

Research Background

Steel Capacity

Concrete Tension Capacity

Tension Example

Concrete Shear Capacity

Shear Example

Interaction Example

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 3/104

Background for

Headed Concrete Anchor Design

Background for

Headed Concrete Anchor Design

 Anchorage to concrete and the design of 

welded headed studs has undergone a

significant transformation since the Fifth

Edition of the Handbook.

³Concrete Capacity Design´ (CCD) approach

has been incorporated into ACI 318-02

 Appendix D

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 4/104

Headed Concrete Anchor Design HistoryHeaded Concrete Anchor Design History

The shear capacity equations are based on

PCI sponsored research

The Tension capacity equations are based onthe ACI Appendix D equations only modified

for cracking and common PCI variable names

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 5/104

Background for

Headed Concrete Anchor Design

Background for

Headed Concrete Anchor Design

PCI sponsored an extensive research project,conducted by Wiss, Janney, Elstner 

 Associates, Inc., (WJE), to study design

criteria of headed stud groups loaded inshear and the combined effects of shear andtension

Section D.4.2 of ACI 318-02 specifically

permits alternate procedures, providing thetest results met a 5% fractile criteria

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 6/104

Supplemental ReinforcementSupplemental Reinforcement

 Appendix D, Commentary

³« supplementary reinforcement in the direction of load, confining reinforcement, or both, can greatly

enhance the strength and ductility of the anchor connection.´

³Reinforcement oriented in the direction of load andproportioned to resist the total load within thebreakout prism, and fully anchored on both side of the breakout planes, may be provided instead of calculating breakout capacity.´

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 7/104

HCA Design PrinciplesHCA Design Principles

Performance based on the location of thestud relative to the member edges

Shear design capacity can be increased withconfinement reinforcement

In tension, ductility can be provided byreinforcement that crosses the potentialfailure surfaces

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 8/104

HCA Design PrinciplesHCA Design Principles

Designed to resist

 ± Tension

 ± Shear 

 ± Interaction of the two

The design equations are applicable to studs

which are welded to steel plates or other 

structural members and embedded inunconfined concrete

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 9/104

HCA Design PrinciplesHCA Design Principles

Where feasible, connection failure should bedefined as yielding of the stud material

The groups strength is taken as the smaller of 

either the concrete or steel capacity The minimum plate thickness to which studs

are attached should be ½ the diameter of thestud

Thicker plates may be required for bendingresistance or to ensure a more uniform loaddistribution to the attached studs

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 10/104

Stainless Steel StudsStainless Steel Studs

Can be welded to either stainless steel or mild carbon steel

Fully annealed stainless steel studs are

recommended when welding stainless steelstuds to a mild carbon steel base metal

 Annealed stud use has been shown to beimperative for stainless steel studs welded to

carbon steel plates subject to repetitive or cyclic loads

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 11/104

Stud DimensionsStud Dimensions

Table 6.5.1.2

Page 6-12

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 12/104

Steel CapacitySteel Capacity

Both Shear and Tension governed by

same basic equation

Strength reduction factor is a function of shear or tension

The ultimate strength is based on F ut 

and not F y 

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 13/104

Steel CapacitySteel Capacity

JVs = JNs = J·n·Ase·f ut

Where

J = steel strength reduction factor 

= 0.65 (shear)= 0.75 (tension)

Vs = nominal shear strength steel capacity

Ns = nominal tensile strength steel capacity

n = number of headed studs in group Ase = nominal area of the headed stud shank

f ut = ultimate tensile strength of the stud steel

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 14/104

Material PropertiesMaterial Properties

 Adapted from AWS D1.1-02

Table 6.5.1.1 page 6-11

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 15/104

Concrete CapacityConcrete Capacity

 ACI 318-02, Appendix D, ³ Anchoring toConcrete´

Cover many types of anchors

In general results in more conservativedesigns than those shown in previouseditions of this handbook

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 16/104

Cracked ConcreteCracked Concrete

 ACI assumes concrete is cracked

PCI assumes concrete is cracked

 All equations contain adjustment factors for cracked and un-cracked concrete

Typical un-cracked regions of members ± Flexural compression zone

 ± Column or other compression members

 ± Typical precast concrete

Typical cracked regions of members ± Flexural tension zones

 ± Potential of cracks during handling

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 17/104

The 5% fractileThe 5% fractile

 ACI 318-02, Section D.4.2 states, in part:

³«The nominal strength shall be based on the 5

percent fractile of the basic individual anchor 

strength«´

Statistical concept that, simply stated,

 ± if a design equation

is based on tests,

5 percent of the

tests are allowedto fall below

expected

5% Failures

Capacity

Test strength

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 18/104

The 5% fractileThe 5% fractile

This allows us to say with 90 percentconfidence that 95 percent of the test actualstrengths exceed the equation thus derived

Determination of the coefficient , associatedwith the 5 percent fractile () ± Based on sample population,n number of tests

 ± x the sample mean

 ± is the standard deviation of the sample set

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 19/104

The 5% fractileThe 5% fractile

Example values of  based on sample sizeare:

n =  = 1.645n = 40  = 2.010

n = 10  = 2.568

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 20/104

Strength Reduction FactorStrength Reduction Factor

Function of supplied confinement reinforcement

J= 0.75 with reinforcement

J = 0.70 with out reinforcement

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 21/104

Notation DefinitionsNotation Definitions

Edges

 ± de1, de2, de3, de4

Stud Layout

 ± x1, x2,«

 ± y1, y2, «

 ± X, Y

Critical Dimensions

 ± BED, SED

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 22/104

Concrete Tension FailureModesConcrete Tension FailureModes

Design tensile strength is the minimum of the

following modes:

 ± Breakout

JNcb: usually the most critical failure mode

 ± Pullout

JNph: function of bearing on the head of the stud

 ± Side-Face blowout

JNsb: studs cannot be closer to an edge than 40% theeffective height of the studs

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 23/104

Concrete Tension StrengthConcrete Tension Strength

JNcb: Breakout

JNph

: Pullout

JNsb: Side-Face blowout

JTn = Minimum of 

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 24/104

Concrete Breakout StrengthConcrete Breakout Strength

Where:

Ccrb = Cracked concrete factor, 1 uncracked, 0.8 Cracked

 AN = Projected surface area for a stud or group

=ed,N =Modification for edge distance

Cbs = Breakout strength coefficient

 N

cb! N

cbg! C

bs A

N C

crb]

ed,N

 

Cbs

! 3.33 P f 'c

hef 

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 25/104

Effective Embedment DepthEffective Embedment Depth

hef = effective embedment depth

For headed studs welded to a plate

flush with the surface, it is the nominallength less the head thickness, plus the

plate thickness (if fully recessed),

deducting the stud burnoff lost during

the welding process about 1/8 in.

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 26/104

Projected Surface Area,  An

Projected Surface Area,  An

Based on 35o

 AN - calculated, or empirical equations

are provided in thePCI handbook

Critical edgedistance is 1.5hef 

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 27/104

No Edge Distance RestrictionsNo Edge Distance Restrictions

For a single stud, with de,min > 1.5hef 

2

No ef ef ef   A 2 1.5 h 2 1.5 h 9 h« » « »! ! - ½ - ½

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 28/104

Side Edge Distance, Single StudSide Edge Distance, Single Stud

de1 < 1.5hef 

N e1 ef ef   A d 1.5 h 2 1.5 h!

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 29/104

Side Edge Distance, Two StudsSide Edge Distance, Two Studs

de1 < 1.5hef 

N e1 ef ef    A d X  1.5 h 2 1.5 h!

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 30/104

Side and Bottom Edge Distance,

Multi Row and Columns

Side and Bottom Edge Distance,

Multi Row and Columns

de1 < 1.5hef 

de2< 1.5hef 

N e1 ef e2 ef   A d X  1.5 h d Y   1.5 h!

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 31/104

Edge DistanceModificationEdge DistanceModification

=ed,N = modification for edge distance

de,min = minimum edge distance, top, bottom, andsides

PCI also provides tables to directly calculate JNcb, butCbs , Ccrb, and =ed,N must still be determined for the in

situ condition

e,min

ed,N

ef 

d0.7 0.3 1.0

1.5 h

¨ ¸] ! e© ¹ª º

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 32/104

Determine Breakout Strength, J N cb

Determine Breakout Strength, J N cb

The PCI handbook

provides a design

guide to determine

the breakout area

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 33/104

Determine Breakout Strength, J N cb

Determine Breakout Strength, J N cb

First find the edge

condition that

corresponds to the

design condition

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 34/104

Eccentrically LoadedEccentrically Loaded

When the load application cannot be logicallyassumed concentric.

Where:

e N = eccentricity of the tensile force relative

to the center of the stud groupe N s/2

ec,N

N

ef 

11.0

2e '1 3 h

] ! e¨ ¸

© ¹ª º

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 35/104

Pullout StrengthPullout Strength

Nominal pullout strength

Where

 Abrg = bearing area of the stud head

= area of the head ± area of the shank

Ccrp = cracking coefficient (pullout)

= 1.0 uncracked= 0.7 cracked

 N

pn! 11.2  A

brg f '

c C

crp

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 36/104

Side-Face Blowout StrengthSide-Face Blowout Strength

For a single headed stud located close to anedge (de1 < 0.4hef )

Where

Nsb = Nominal side-face blowout strength

de1 = Distance to closest edge Abrg = Bearing area of head

 Nsb ! 160 de1  Abrg f 'c

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 37/104

Side-Face Blowout StrengthSide-Face Blowout Strength

If the single headed stud is located at a perpendicular distance, de2, less then 3de1 from an edge, Nsb, ismultiplied by:

Where:

e2

e1

d1d

4

¨ ¸© ¹

ª º

 

1 ed

e2

de1

e 3

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 38/104

Side-Face BlowoutSide-Face Blowout

For multiple headed anchors located close to anedge (de1 < 0.4hef )

Where

so = spacing of the outer anchors along the

edge in the groupNsb = nominal side-face blowout strength for 

a single anchor previously defined

o

sbg sbe1

sN 1 N

6 d

¨ ¸!

© ¹ª º

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 39/104

Example: Stud Group TensionExample: Stud Group Tension

Given:

 A flush-mounted base plate with four headed studs

embedded in a corner of a 24 in. thick foundation slab

(4) ¾ in. J headed studs welded to ½ in thick plate

Nominal stud length = 8 in

f c = 4000 psi (normal weight concrete)

f y = 60,000 psi

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 40/104

Example: Stud Group TensionExample: Stud Group Tension

Probl em:

Determine the design

tension strength of the

stud group

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 41/104

Solution StepsSolution Steps

Step 1 ± Determine effective depth

Step 2 ± Check for edge effect

Step 3 ± Check concrete strength of stud group

Step 4 ± Check steel strength of stud group

Step 5 ± Determine tension capacity

Step 6 ± Check confinement steel

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 42/104

Step 1 ± Effective DepthStep 1 ± Effective Depth

ef pl hs1

h L t t "8

31 18" " " "2 8 8

8"

!

!

!

 

hef 

! L t pl

t ns

18

  ! 8 12

38

18

  ! 8in

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 43/104

Step 2 ± Check for Edge EffectStep 2 ± Check for Edge Effect

Design aid, Case 4

X = 16 in.

Y = 8 in.

de1 = 4 in.

de3 = 6 in.

de1 and de3 > 1.5hef = 12 in.

Edge effects apply

de,min = 4 in.

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 44/104

Step 2 ± Edge FactorStep 2 ± Edge Factor

e,min

ed,N

ef 

d0.7 0.3 1.0

1.5 h

4in..7 0.3

1.5 8in

0.8

¨ ¸] ! e© ¹ª º

¨ ¸! © ¹ª º!

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 45/104

Step 3 ± Breakout StrengthStep 3 ± Breakout Strength

cbs

ef 

cbg bs e1 ef ef ed,n crb

f ' 4000C 3.33 3.33 74.5lbs

h 8

From design aid, case 4

N C d X  1.5h de3 Y   1.5h C

0.80.75 74.5 4 16 12 6 8 12 1.0

1000

37.2kips

! ! !

! J ]

¨ ¸! © ¹

ª º!

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 46/104

Step 3 ± Pullout StrengthStep 3 ± Pullout Strength

 

 Abrg

! 0.79in2 4studs

JNpn

! J (11.2)  Abrg

f 'c C

crp

  ! 0.7(11.2)(3.16)(4)(1.0)

  ! 99.1kips

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 47/104

Step 3 ± Side-Face Blowout StrengthStep 3 ± Side-Face Blowout Strength

de,min = 4 in. > 0.4hef 

= 4 in. > 0.4(8) = 3.2 in.

Therefore, it is not critical

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 48/104

Step 4 ± Steel StrengthStep 4 ± Steel Strength

 

JNs

! J n  Ase

f ut 

  ! 0.75(4)(0.44)(65)

  ! 85.8kips

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 49/104

Step 5 ± Tension CapacityStep 5 ± Tension Capacity

The controlling tension capacity for the stud

group is Breakout Strength

 JT

n! N

cbg! 37.2kips

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 50/104

Step 6 ± Check Confinement SteelStep 6 ± Check Confinement Steel

Crack plane area = 4 in. x 8 in. = 32 in.2

2

1000 32 1.41000

37,000  1.20 3.4

37.2

0.75 60 1.2

0.68

! !

!

! ! !

!

QQ

J Q

cre

u

uvf 

y e

 A

 V

 V A

in

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 51/104

Step 6 ± Confinement SteelStep 6 ± Confinement Steel

Use 2 - #6 L-bar 

around stud group.

These bars should

extend ld past thebreakout surface.

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 52/104

Concrete Shear StrengthConcrete Shear Strength

The design shear strength governed byconcrete failure is based on the testing

The in-place strength should be taken as theminimum value based on computing both theconcrete and steel

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 53/104

 

J Vc(failure mode)

! J  Vco(failure mode)

C

Vco( failure mode)

anchor strength

Cx(failure mode)

x spacing influence

Cy(failure mode)

y spacing influence

Ch(failure mode)

thickness influence

Cev(failure mode)

eccentricity influence

Cc(failure mode) corner influence

Cvcr

  cracking influence

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 54/104

Front Edge Shear Strength, Vc3Front Edge Shear Strength, Vc3

 

SED

BED" 3.0

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 55/104

Corner Edge Shear Strength, Modified  Vc3Corner Edge Shear Strength, Modified  Vc3

 0.2 e SED

BEDe 3.0

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 56/104

Side Edge Shear Strength, Vc1Side Edge Shear Strength, Vc1

 SEDBED

0.2

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 57/104

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 58/104

Front Edge Shear StrengthFront Edge Shear Strength

Where

Vco3 = Concrete breakout strength, single anchor Cx3 =X spacing coefficient

Ch3 = Member thickness coefficient

Cev3 = Eccentric shear force coefficient

Cvcr = Member cracking coefficient

 J V

c3! J V

co3 C

x3 C

h3 C

ev3 C

vcr

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 59/104

Single Anchor StrengthSingle Anchor Strength

Where:

  = lightweight concrete factor BED = distance from back row of studs to

front edge

  V

co3! 16.5 P f '

c BED 1.33

 ! de3 y§ ! de3  Y 

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 60/104

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 61/104

Thickness FactorThickness Factor

Where:

h = Member thickness

 

Ch3

! 0.75h

BEDfor h e  1.75 BED

Ch3

! 1 for h > 1.75 BED

i ii i

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 62/104

Eccentricity FactorEccentricity Factor

Where

e v = Eccentricity of shear force on a group of 

anchors

 

Cev3

!1

1 0.67 e '

v

BED

¨

ª©

 ¸

 º¹

e 1.0 when e 'v

eX 

2

C k d C FC k d C F

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 63/104

Cracked Concrete FactorCracked Concrete Factor

Uncracked concreteCvcr = 1.0

For cracked concrete,

Cvcr = 0.70 no reinforcement

or 

reinforcement < No. 4 bar 

= 0.85 reinforcement No. 4 bar 

= 1.0 reinforcement. No. 4 bar and

confined within stirrups with a

spacing 4 in.

C Sh S hC Sh S h

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 64/104

Corner Shear StrengthCorner Shear Strength

 A corner condition should

be considered when:

where the Side Edge

distance (SED) as

shown

 0.2 e

SED

BED e 3.0

C Sh St thC Sh St th

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 65/104

Corner Shear StrengthCorner Shear Strength

Where:

Ch3 = Member thickness coefficient

Cev3 = Eccentric shear coefficient

Cvcr = Member cracking coefficient

Cc3 = Corner influence coefficient

 J V

c3! J V

co3 C

c3 C

h3 C

ev3 C

vcr

C f tC f t

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 66/104

Corner factorCorner factor

For the special case of a large X-spacing studanchorage located near a corner, such thatSED/BED > 3, a corner failure may still result,

if de1 2.5BED

 C

c3! 0.7

SED

BED3 e 1.0

Sid Ed Sh St thSid Ed Sh St th

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 67/104

Side Edge Shear StrengthSide Edge Shear Strength

In this case, the shear force is applied parallelto the side edge, de1

Research determined that the corner influencecan be quite large, especially in thin panels

If the above ratio is close to the 0.2 value, it isrecommended that a corner breakout conditionbe investigated, as it may still control for largeBED values

 

0.2 eSED

BEDe 3.0

Sid Ed Sh St thSid Ed Sh St th

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 68/104

Side Edge Shear StrengthSide Edge Shear Strength

 J V

c1! J V

co1 C

X 1 C

 Y 1 C

ev1 C

vcr

Where:Vco1 = nominal concrete breakout strength for a

single studCX1 = X spacing coefficientCY1 = Y spacing coefficient

Cev1 = Eccentric shear coefficient

Si l A h St thSi l A h St th

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 69/104

Single Anchor StrengthSingle Anchor Strength

Where:

de1 = Distance from side stud to side edge (in.)

do = Stud diameter (in.)

  V

co! 87 P f '

c d

e1 1.33

do 0.75

X S i F tX S i F t

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 70/104

X Spacing FactorX Spacing Factor

Where:

nx = Number of X-rows

x = Individual X-row spacing (in.)

nsides =Number of edges or sides that influencethe X direction

 

Cx1

! nx x

2.5 de1

2 nsides

Cx1

! 1.0 when x = 0

X S i F tX S i F t

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 71/104

X Spacing FactorX Spacing Factor

For all multiple Y-row anchorages locatedadjacent to two parallel edges, such as acolumn corbel connection, the X-spacing for 

two or more studs in the row:

Cx1 = nx

Y Spacing FactorY Spacing Factor

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 72/104

Y Spacing FactorY Spacing Factor

Where:

ny = Number of Y-rows

Y = Out-to-out Y-row spacing (in) = 7y (in)

 Y 1 y

0.25

y

 Y 1 y y

e1

C 1.0 for n 1 (one Y - row)

n Y C 0.15 n for n 1

0.6 d

! !

! e "

Eccentricity FactorEccentricity Factor

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 73/104

Eccentricity FactorEccentricity Factor

Where:

ev1 = Eccentricity form shear load to

anchorage centroid

v1ev1

e1

eC 1.0 1.0

4 d

¨ ¸! e© ¹ª º

Back Edge Shear StrengthBack Edge Shear Strength

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 74/104

Back Edge Shear StrengthBack Edge Shear Strength

Under a condition of pure shear theback edge has been found throughtesting to have no influence on the

group capacity Proper concrete clear cover from the

studs to the edge must be maintained

³In the Field´ Shear Strength³In the Field´ Shear Strength

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 75/104

³In the Field´ Shear Strength³In the Field´ Shear Strength

When a headed stud anchorage is sufficiently

away from all edges, termed ³in-the-field´ of 

the member, the anchorage strength will

normally be governed by the steel strength Pry-out failure is a concrete breakout failure

that may occur when short, stocky studs are

used

³In the Field´ Shear Strength³In the Field´ Shear Strength

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 76/104

³In the Field´ Shear Strength³In the Field´ Shear Strength

For hef /de 4.5 (in normal weight concrete)

Where:

Vcp = nominal pry-out shear strength (lbs)

 J V

cp! J 215 ]

y n f '

c (d

o)1.5

(hef 

)0.5

 ] y ! y

4 do

for yd

e 20

Front Edge Failure ExampleFront Edge Failure Example

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 77/104

Front Edge Failure ExampleFront Edge Failure Example

Given:

Plate with headed studs as shown, placed in a positionwhere cracking is unlikely. The 8 in. thick panel has a28-day concrete strength of 5000 psi. The plate isloaded with an

eccentricity of 

1 ½ in from the

centerline. The

panel has #5

confinement bars.

ExampleExample

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 78/104

ExampleExample

Probl em:

Determine the design shear strength of 

the stud group.

Solution StepsSolution Steps

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 79/104

Solution StepsSolution Steps

Step 1 ± Check corner condition

Step 2 ± Calculate steel capacity

Step 3 ± Front Edge Shear StrengthStep 4 ± Calculate shear capacity coefficients

Step 5 ± Calculate shear capacity

Step 1 Check Corner ConditionStep 1 Check Corner Condition

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 80/104

Step 1 ± Check Corner ConditionStep 1 ± Check Corner Condition

Not a Corner Condition

 

SED

BEDu 3

48 412 4

! 3.25

Step 2 Calculate Steel CapacityStep 2 Calculate Steel Capacity

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 81/104

Step 2 ± Calculate Steel CapacityStep 2 ± Calculate Steel Capacity

JVns = J·ns·An·f ut

= 0.65(4)(0.20)(65) = 33.8 kips

Step 3 ± Front Edge Shear StrengthStep 3 ± Front Edge Shear Strength

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 82/104

Step 3 ± Front Edge Shear StrengthStep 3 ± Front Edge Shear Strength

Front Edge Shear Strength

 J V

c3! J V

co3 C

x3 C

h3 C

ev3 C

vcr

Step 4 ± Shear Capacity CoefficientStep 4 ± Shear Capacity Coefficient

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 83/104

Step 4 ± Shear Capacity CoefficientStep 4 ± Shear Capacity Coefficient

1.33

co3 c

1.33 V 16.5 f ' BED

16.5 1 5000 12 4 

1000

47.0kips

! P

!

!

Concrete Breakout Strength, Vco3

Step 4 ± Shear Capacity CoefficientStep 4 ± Shear Capacity Coefficient

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 84/104

Step 4  Shear Capacity CoefficientStep 4  Shear Capacity Coefficient

 

Cx3 ! 0.85 X 

3 BED e nstudsback

  ! 0.85 4

3 16! 0.93 e

  ! 0.93

X Spacing Coefficient, Cx3

Step 4 ± Shear Capacity CoefficientStep 4 ± Shear Capacity Coefficient

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 85/104

Step 4  Shear Capacity CoefficientStep 4  Shear Capacity Coefficient

 

Check if h e  1.75 BED

8 e  1.75 16 OK 

Ch3

! 0.75h

BED 

! 0.75

8

16

  ! 0.53

Member Thickness Coefficient, Ch3

Step 4 ± Shear Capacity CoefficientStep 4 ± Shear Capacity Coefficient

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 86/104

Step 4  Shear Capacity CoefficientStep 4  Shear Capacity Coefficient

 

Check if e 'v

eX 

21.5 e

4

2OK 

Cev3 ! 1

1 0.67 e '

v

BED

¨

ª©

 ¸

 º¹

e 1.0

  !

1

1 0.67 1.5

16

¨

ª© ¸

 º¹

  ! 0.94

Eccentric Shear Force Coefficient, Cev3

Step 4 ± Shear Capacity CoefficientStep 4 ± Shear Capacity Coefficient

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 87/104

Step 4  Shear Capacity CoefficientStep 4  Shear Capacity Coefficient

Member Cracking Coefficient, Cvcr 

 ± Assume uncracked region of member 

#5 Perimeter Steel

 C

vcr! 1.0

 J ! 0.75

Step 5 ± Shear Design StrengthStep 5 ± Shear Design Strength

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 88/104

Step 5  Shear Design StrengthStep 5  Shear Design Strength

JVcs = J·Vco3·Cx3·Ch3·Cev3·Cvcr 

= 0.75(47.0)(0.93)(0.53)(0.94)(1.0)

= 16.3 kips

InteractionInteraction

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 89/104

InteractionInteraction

Trilinear Solution

Unity curve with a 5/3 exponent

Interaction CurvesInteraction Curves

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 90/104

Interaction CurvesInteraction Curves

Combined Loading ExampleCombined Loading Example

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 91/104

Combined Loading ExampleCombined Loading Example

Given:

 A ½ in thick plate withheaded studs for attachment of a steel

bracket to a column asshown at the right

Probl em:

Determine if the studsare adequate for theconnection

Example ParametersExample Parameters

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 92/104

Example ParametersExample Parameters

f c = 6000 psi normal weight concrete = 1.0

(8) ± 1/2 in diameter studs

 Ase = 0.20 in.

2

Nominal stud length = 6 in.

f ut = 65,000 psi (Table 6.5.1.1)

Vu = 25 kips

Nu = 4 kipsColumn size: 18 in. x 18 in.

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 93/104

Provide ties around vertical bars in thecolumn to ensure confinement: J = 0.75

Determine effective depth

hef = L + tpl ± ths ±1/8 in

= 6 + 0.5 ± 0.3125 ± 0.125 = 6.06 in

Solution StepsSolution Steps

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 94/104

Solution StepsSolution Steps

Step 1 ± Determine applied loads

Step 2 ± Determine tension design

strengthStep 3 ± Determine shear design strength

Step 4 ± Interaction Equation

Step 1 ± Determine applied loadsStep 1 ± Determine applied loads

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 95/104

p ppp pp

Determine netTension on Tension

Stud Group

Determine net Shear 

on Shear StudGroup

 

Nhu

!

 Vu e

dc

Nu

  !

25 6 10

4

  ! 19.0kips 

 Vu

! V

u

2

  ! 252

  ! 12.5kips

Step 2 ± Concrete Tension CapacityStep 2 ± Concrete Tension Capacity

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 96/104

p p yp p y

cb bs N crb ed,N

cbs

ef 

N e1 e2 ef 

e,min

ed,N

ef 

cb

N C A C

f ' 6000C 3.33 3.33 1 104.8

h 6.06

 A d X d Y 3h 6 6 6 3 3 6.06 381.24

d 60.7 0.3 0.7 0.3 0.898

1.5h 1.5 6.06

0.75 381.24 104.8 0.898N 26.9kips1000

J ! J ]

! P ! !

! ! !

] ! ! !

J ! !

Step 2 ± Steel Tension CapacityStep 2 ± Steel Tension Capacity

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 97/104

p p yp p y

s se ut  

s

N n A f  

0.75 4 0.2 65N 39.0kips

1000

J ! J

J ! !

Step 2 ± Governing TensionStep 2 ± Governing Tension

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 98/104

p gp g

cb s

n

N 26.9kips N 39.0kips

N 26.9kips

J ! J !

J !

Step 3 ± Concrete Shear CapacityStep 3 ± Concrete Shear Capacity

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 99/104

p p yp p y

c1 co1 X 1  Y 1 ev1 vcr

1.33 0.75

co c e1 o

1.33 0.75

x1

0.25 0.25

y

 Y 1

e1

ev1

vcr

c1

 V V C C C C

 V 87 f ' d d

87 1 6000 6 0.5 43.7kips

C 2

n Y  2 3C 0.15 0.15 0.58

0.6 d 0.6 6

C 1.0

C 1.0

 V 0.75 43.7 2 0.58 1 1 38.0kips

J ! J

! P

! !

!

« »- ½! ! !

!

!

J ! !

Step 3 ± Steel Shear CapacityStep 3 ± Steel Shear Capacity

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 100/104

p p yp p y

s se ut  

s

 V n A f  

0.65 4 0.2 65 V 33.8kips1000

J ! J

J ! !

Step 3 ± Governing ShearStep 3 ± Governing Shear

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 101/104

p gp g

c s

n

 V 38.0kips V 33.8kips

 V 33.8kips

J ! J !

J !

Step 4 ± InteractionStep 4 ± Interaction

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 102/104

Check if Interaction is required

 

If Vu

0.2 J Vn Interaction is not Required

12.5 0.2 33.8

12.5 " 6.76 - Interaction Required

If Nhu

0.2 JNn Interaction is not Required

19 0.2 26.9 19 " 5.38 - Interaction Required

Step 4 ± InteractionStep 4 ± Interaction

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 103/104

 

Nhu

JNn

 V

u

J Vn

!19.0

26.9

12.5

33.8! 0.71 0.37 ! 1.08 e 1.2

OR

Nhu

JNn

¨

ª©

 ¸

 º¹

53

vu

J Vn

¨

ª©

 ¸

 º¹

53

! 0.71 53 0.37

53 ! 0.75 e 1.0

8/3/2019 9 Headed Anchor Design[1]

http://slidepdf.com/reader/full/9-headed-anchor-design1 104/104

Questions?Questions?

Recommended