Astroparticle physics with large neutrino detectors Existing detectors Physics motivation Antares...

Preview:

DESCRIPTION

Point to sun e-e-  sun e 4p  4 He + 2e e + 25 MeV Atomic electron! Earth

Citation preview

Astroparticle physics with large neutrino detectors

Existing detectors Physics motivation Antares project KM3NeT proposal

M. de Jong

Super-Kamiokiande detector

50 kT water Cherenkov detector

Point to sun

e-

sun e

4p 4He + 2e+ + 2e + 25 MeV

Atomic electron!

Earth

Super Nova 1987A

Time correlation

All particle cosmic ray spectrum

= E-2.7 (m

2 s

r s

GeV

)-1

E (GeV)

1 / km2 /year

Where do they come from?

Pierre Auger Observatory

Emax = 1021 eV > 5 x 1019 eV (GZK)

1 GeV 1010 GeV

Neutrino detection

Neutral point back Weak interaction no absorption

Need huge detector

XN

1.5deg.θE TeV

1960 Markov’s idea:

Range of muon:

Detect Cherenkov light:

Transparency of water:

R 1 km at 200 GeV

Use sea water as target/detector

c90 AN sin θcm 2 d

λ 50 100 m

Amanda neutrino sky map

Atmospheric muonshorizon

No point sources discovered yet

Active Galaxy(e.g. M87)

Black hole with108 x mass of sun

104 ly

extra-galactic

Microquasar(SS433 etc.)

Black hole with mass of sun

1 ly

galactic

Neutrino source candidates

Supernova remnant(Crab nebula)

Neutrino production Acceleration:

Decay:

0accp (p) X

ee

ee

0X qq

Astrophysics– Neutrino astronomy– Composition of jets– Engine of cosmic accelerators

Particle physics– Origin of UHE cosmic rays– Massive particles (GUT)– Dark matter– Neutrino properties (, )

Physics motivation

Diffuse neutrino fluxes

atmospheric neutrinos

W&B

MPR

DUMAND

+ NT-200

AMANDA-II/ANTARES

IceCube/KM3NeT

NT-200AMANDA-B10

GRB

Antares detector

Equipped volume 0.1 km2 x 0.4 km (=800 x SuperK)

42° 50’ N 6° 10’ E

Atlas

Detection principle

c(tj - t0) = lj + dj tan(c)

+ N + X

= 0.2 deg.x = 20 cmt = 1 ns

mediumproperties

“All-data-to-shore” conceptpo

sitio

n

time

10 ms

DataFilter

2 s

offline reconstruction

1 MB/s

determination of trajectory

1 GB/s

events

GRB alert systems

GRBs are detected by satellites

Distribution of GRB alerts that follow the detection of a GRB within tens of seconds

Possibly messages will followwith the location of the burst

Data taking in case of a GRB alert

GRB alert

DataFilterDataFilterDataFilterDataFilterDataFilterDataFilterDataFilterDataFilterDataFilterDataFilterDataFilter

alert trigger

events from the known direction

looks for correlations in thedata for the given direction

write all data to disk, including all data in memory

all data

100 DataFilter nodes with each 1 GB RAM

location of the GRB

detector

data filtered offline100 s of unfiltered data

prior to the alert+

few minutes of unfiltered data after the alert

disk

disk

specialised data filter

Effective volume

log10 E (GeV)

effe

ctiv

e vo

lum

e (k

m3 )

Detection efficiencies

clustering and reconstruction using direction information

standard clustering and reconstruction

Improved detection efficiency

GRB detection Source tracking Monopole detection Periodic signals

“All-data-to-shore” options:

KM3NeT

Main objectives– Equipped volume 1 km3 (25 x Antares)– Cost/Volume x 0.5– 4 Field Of View– Angular resolution 0.1 deg.

FP6 Design Study proposal March 2004– NIKHEF leading partner IT– PMT & readout developments– Detector parts assembly in the Netherlands

KM3NeT

Summary

Water Cherenkov: Large neutrino detectors Antares: “All-data-to-shore” concept KM3NeT initiative 2004 - 2008 Astroparticle physics with neutrinos

Recommended