Bez tytułu slajdu - ifj.edu.pl · Ecutoff = 3.8 1.2GeV . HESS Collaboration, 2011 = 2.5 0.3...

Preview:

Citation preview

1

Promieniowanie gamma pulsarów

i mgławic pulsarowych

Bronisław Rudak

CAMK

Przegorzały, 4-6.03.2013

Gwiazdy neutronowe

jako narzędzia fizyki i astrofizyki:

- poznanie równania stanu materii supergęstej

(neutrony + hiperony, kwarki, kondensaty mezonów)

- badanie propagacji fotonów w silnym polu magnetycznym

- badanie zjawisk relatywistycznej magnetohydrodynamiki

- testowanie teorii grawitacji w warunkach silnego pola grawitacyjnego

- testowanie modeli wybuchów supernowych

- detekcja fal grawitacyjnych pochodzenia kosmologicznego

+ ……….

Types of sources of interest in HE and VHE

domains

Rotation Powered Pulsars (RPP)

a) Classical pulsars

- young energetic (Crab, Vela)

- middle-aged (105 yr)

b) Millisecond pulsars (MSPs)

- individual MSPs

- ensembles of MSPs (in Globular Clusters)

c) RPP and their wind zones in massive binary systems

Magnetars

SGR and AXP

(cont.)

Pulsar Wind Nebulae

Physics of leptonic and hadronic pulsar winds powering their nebulae;

re-acceleration and diffusion of particles trapped in PWN.

Cosmic Ray Origin/SNRs/Mol.Clouds

Likely contribution of pulsars to the leptonic and hadronic components of CR.

5

Diagram of neutron star populations (Harding 2013)

6

Why do pulsars radiateWhy do pulsars radiate

iinn the the high energyhigh energy domaindomain??

1) Rotating, strongly

magnetized neutron stars ->

unipolar inductors

2) Maximum potential drop (for vacuum rotator)

Vmax 6 1012 B12 P-2 Volts,

i.e. for young pulsars Vmax can exceed 1016 Volts.

Realistic potential drops are much smaller, but high enough

to accelerate charged particles to ultrarelativistic energies,

emitting in turn high energy photons.

Pulsar energy spectra and lightcurves

depend on

- location and spatial extent of accelerators,

- specific radiative processes,

- geometry (i.e. inclination and viewing angles)

8

Radiative processes in Radiative processes in pulsar magnetospherespulsar magnetospheres

1. Curvature radiation

2. Inverse Compton Scattering (resonant + non-resonant)

3. Magnetic pair creation ( 1γ e± )

4. Photon-photon pair creation ( 2γ e± )

5. Synchrotron radiation

6. Photon splitting ( 1γ 2γ )

9

3D TPC Slot Gap Model for the Crab Pulsar Harding, Stern, Dyks & Frackowiak 2008

= 45 deg

= 100 deg

CR + SR (primaries) + SR (pairs) + ICS (primaries with radio)

MAGIC

(inconsistent w. the MAGIC point)

The Crab Pulsar and 3D Outer Gap Model Hirotani, 2009

= 60 deg

= 113 deg

Synchro-curvature + ICS (pairs with IR)

Intrinsic: black line. Escaping: red line

MAGIC

11

12

MAGIC Coll.+ Hirotani, 2011

14

Abdo et al. 2009; Webb & Knoedlseder 2010

= 1.3 0.3

Ecutoff = 2.5 +1.6 -0.8 GeV

GlobularGlobular ClustersClusters withwith Fermi LATFermi LAT

((14 14 detecteddetected))

47 47 TucanaeTucanae TerzanTerzan 55 Kong et al. 2010

= 1.9 0.2

Ecutoff = 3.8 1.2GeV

HESS Collaboration, 2011

= 2.5 0.3

Discovery of VHE emission from the direction of Terzan 5

Zajczyk, Bednarek, R, 2013

17

The online catalog TeVCat as of Nov 2011 (based on H.E.S.S., MAGIC, VERITAS)

Te

E > 0.1 TeV

18

19 Aharonian, Bogovalov 2002

Pulsed

inside LC

Pulsed

outside LC

Unpulsed

20

Spectral energy distribution of the Crab Nebula HE spectrum of the Crab pulsar

Super-flare on 2011 April 15-16

AGILE

Recommended