Biofuel cells

Preview:

DESCRIPTION

Biofuel cells. Arkady A. Karyakin. Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia. Hydrogen-oxygen fuel cell. Bioelectrocatalysis. is an acceleration of electrode reactions by biological catalysts. Whole cells. Enzymes. Biofuel cells. Enzyme electrodes. - PowerPoint PPT Presentation

Citation preview

Biofuel cells

Arkady A. KaryakinArkady A. Karyakin

Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, RussiaRussia

Hydrogen-oxygen fuel cell

Bioelectrocatalysisis an acceleration of electrode reactions by biological catalysts

Enzymes Whole cells

Biofuel cells

Enzyme electrodes Intact cell based

Thermodynamics of cathode reactions

E, NHE

1.85 V

1.2 V

0.6 V

H2O2/H2O

O2/H2O

O2/H2O2

Intact cell based fuel cells

• produce oxidizable compounds;• wired to the anode via mediators;• direct bioelectrocatalysis.

Fuel cells based on bacteria producing oxidizable compounds

• separated compartment of bioreactor and fuel cell;

• same anode compartment.

Oxidizable compounds:

H2 – Clostridium, E. coli, Rhodobacter (phototrophic) etc.

H2S, S – DesulfomicrobiumFormate – Clostridium butiricum

Fuel cells based on intact cells wired with diffusion free mediators

cell wall respiratorymembrane

substrate

product

medox

medred

electrode

hexacyanoferateazines

thioninesafranineneutral redazur A

indophenolquinones

1,4-naphthoquinone1,4-benzoquinone

Microbial fuel cells based on direct bioelectrocatalysis

Gil, G. C.; Chang, I. S.; Kim, B. H.; Kim, M.; Jang, J. K.; Park, H. S.; Kim, H. J. Biosensors & Bioelectronics 2003, 18, 327-334.

Electroactivity of Shewanella putrefaciens

A – air exposed cellsB – air exposed with lactateC – no air, but at + 200 mVD – at +200 mV with lactate

Kim, B. H.; Ikeda, T.; Park, H. S.; Kim, H. J.; Hyun, M. S.; Kano, K.; Takagi, K.; Tatsumi, H. Biotechnology Techniques 1999, 13, 475-478.

Acetate enriched consortium on graphite electrode

Lee, J. Y.; Phung, N. T.; Chang, I. S.; Kim, B. H.; Sung, H. C. Fems Microbiology Letters 2003, 223, 185-191.

Current response of Desulfobulbus propionicus

Holmes, D. E.; Bond, D. R.; Lovley, D. R. Applied And Environmental Microbiology 2004, 70, 1234-1237.

Enzyme based fuel cells

How to involve enzymes in bioelectrocatalysis?

Use of mediators:

Direct bioelectrocatalysis:

e

S

P-

S u b stra te O x id izedS u b stra te

O xid o red u cta se

M M redox

E le c tro d e

B.A. Gregg, A. Heller. Anal. Chem. 62 (1990) 258

Wired glucose oxidase

G lu co se

G lu c . a c .

O s+ /2+

O s+ /2+

O s+ /2+

hyd ro g e le_O s

+ /2+

O s+ /2+

Wiring of glucose oxidase

Heller, A. Physical Chemistry Chemical Physics 2004, 6, 209-216.

E = -0.195 mV (Ag|AgCl)

Wired bilirubin oxidase

E = 0.35 V (Ag|AgCl)

Heller, A. Physical Chemistry Chemical Physics 2004, 6, 209-216.

Actual characteristics of small batteriesCell Li-MnO2 Alkaline Zn–air Glucose–air

Intended site of use External electronics

External electronics

Subcutaneous tissue

Package/case Steel Steel None

Anode Li Zn Wired GOx

Cathode C(MnO2) C(Mn) Wired BOD

Electrolyte Organic 6 M KOH pH 7.4 saline buffer

Smallest size, in mm3 200 50 0.01

Power density, in W/L 300 150 1

Specific energy, in Wh/L 650 1800 50000

Heller, A. Analytical And Bioanalytical Chemistry 2006, 385, 469-473.

Hydrogen-oxygen energy sources

Turbines effective starting from MWt

High temperature H2-O2 fuel cells

high temperature (>850 C), fragile

Alkaline H2-O2 fuel cells low energy density

Pt-based H2-O2 fuel cells require Pt as electrocatalyst

Problems with Pt-based electrodes

• Cost and availability;

• Poisoning with CO, H2S etc.;

• Low selectivity.

Fuel cell cost problems

1 kW $ 200 - 2000

$ 10 000- $ 100 000

50 kW (<$ 10 000)

Dinamics of Pt cost

1960 1970 1980 1990 200002468

10121416182022242628

Pt

pri

ce/

US

$ g

-1

year

Available amount of Pt

Annual production:

180 tonnes

Assured resources:

100 000 tonnes

every year: >60 · 106 cars

50 kW engines > 6 000 tonnes Pt

2 g of Pt per kW

Poisoning by fuel impurities

Reforming gas (H2): 12.5 % of CO

Pt electrodes: -under 0.1% CO activity irreversibly decreases 100 times after 10 min;

- inactivation by H2S is 100 times more efficient.

Solution:increase of potential Short circuit

Low selectivity problems

Contamination of electrode space

Decreased efficiency of energy conversion from 90% to 40-60%

Pt – catalyst of both H2 oxidation and O2 reduction

BIOELECTROCATALYSIS

S2P2

Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D., M.R. Tarasevich, A.I Yaropolov. Dokl.Akad.Nauk SSSR (Proc. Acad. Sci.) 240 (1978) 615-618

Direct bioelectrocatalysis

OHeHO Laccase22 244

Est = 1.2 V

A.I. Yaropolov, A.A. Karyakin, S.D. Varfolomeyev, I.V. Berezin. Bioelectrochem. Bioenerg. 12 (1984) 267-77

Direct bioelectrocatalysis

222 HeH eHydrogenas

Equilibrium H+/H2 potential

Hydrogenase electrodes on carbon filament tissue

0

500

200

(3)

(2)

(1)

j/A cm-2

Er/mV

H2 (1), Ar (2) and CFM blank electrode (3)

How to involve hydrogenases in bioelectrocatalysis?

•sorption (surface choice & pretreatment);

• promotion by polyviologens;

• surface design by conducting polymers.n

CH2

CH2

N N

Br- Br-

N

R

N N

R R

n

-e-

Direct bioelectrocatalysis

Electrode E/c activity

hydrogenase Carbon material Ео, мВ Imax, А/cm2

LSG-240 173 2 Desulfomicrobium baculatum TVS 445 5

Lamprobacter Modestogalofilum

TVS 8 115

LSG-240 12 40 Thiocapsa roseopersicina

TVS 1 600

LSG-240 16 200 Thiocapsa roseopersicina (homogeneous) TVS 1,5 700

D.baculatum

0,5

200

i/ mA cm-2

Er/mV

without promoter

Th. roseopersicina

D.baculatum

CH2

CH2

N N

n

Effect of promoter

Surface design by conductive polymers

N

R

N N

R R

n

-e-

-(CH2)12O3-N+ N+-CH3, 2PF6-

-(CH2)12-N+(C6H13)3 ,BF4-

R: -(CH2)12-N+ N+-CH3, 2PF6-

Hydrogenase electrodes(a) adsorption

2

1

100

300

j/A cm-2

Er/mV

H2 (1) and Ar (2), sweep rate 2 mV/s

Hydrogen fuel electrodes

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

E / mV

I / m

A c

m-1

T.roseopersicina 50C

Pt 50C 3000 rpm

Bioelectrocatalysis – surface modification

Hydrogenase from Thiocapsa roseopersicina

Carbon material I max, А/см2 Еo, мV

LSG direct 200 22

TVS direct 700 1,5

LSG + polyviologen 750 0

LSG + polypyrrole-viologen 1400 0

Different hydrogenases in bioelectrocatalysis

electrode E/c activity

enzyme Carbon material I max, А/см2 Еo, мV

Lamprobacter Modestogalofilum (homogeneous)

LSG + polypyrrole-viologen

1200 -6

Thiocapsa roseopersicina (homogeneous)

LSG + polypyrrole-viologen

1400 0

Desulfomicrobium baculatum

LSG + polypyrrole-viologen

1700 -6

Current-voltage curves

-20

0

20

40

60

80

100

-150 -100 -50 0 50 100 150 200

E, mV

% o

f I

max

.

D. baculatumT. roseopersicina

Kinetics of hydrogenase electrodes

RT

F

iRT

F

i

RT

F

RT

F

i

oo

1exp

1exp

1

12exp2exp

2

21

"' EEE ee

Catalytic properties

Electrode/enzyme Enzyme sorpt-

ion, pmol/cm2jo

µA/cm2

jo per active

center, A 1019

Th.roseopersicina/TVS-direct

22±3 40±4 30±5

Th.roseopersicina/LSG+polypyr.-violog. 45±4 72±3 26±3

L.modestogalofil./LSG+polypyr.-violog.

42±4 62±1 24±1

D. baculatum/ LSG+polypyr.-violog.

40±4 130±20

53±8

Pt, pH 7.0 <10 <0.1

jmax

mA/cm2

0.7±0.1

1.4±0.2

1.2±0.2

1.7±0.2

ke/c s-

1

160

160

140

220

kkin s-

1

120

120

100

450

0 20 40 60 80 1000

500

1000

1500

2000

2500

j, A

/cm

2

% H2

Dependence on H2 content

D. baculatum/ LSG+polypyr.-violog.

Pt-vulcan, 1 M H2SO4

Poisoning by fuel impuritiesReforming gas (H2): 12.5 % of CO

Pt electrodes: under 0.1% CO activity irreversibly decreases 100 times after 10 min

Hydrogenase el-ds: -not sensitive up to 1% of CO;-reversibly restore activity after inhibition;

- not sensitive to 5 mM Na2S.

Tolerance to oxygen

70

75

80

85

90

95

100

105

65707580859095100% of hydrogen

% o

f in

itia

l act

ivit

y

nitrogen

air

Stability of hydrogen enzyme electrode at 80° С

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 1 2 3 4 5 6 7 8

time, hours

I, А

/см

^2

Hydrogen-oxygen biofuel cell

H2 2H+ + 2e-

0,5

200

E r /mV

Hydrogenase

O2 + 4H+ + 4e- 2H2O

-0.4

0800 1200

i /m

A c

m-2

E/mV

Laccase

Theoretical

Hybrid enzyme-microbial fuel cell

a consumption of biogas (microbiological H2) with hydrogen enzyme electrodes

Enzyme electrode consumes H2 from microbial media

0 10 20 30 40 50 60 70-600

-400

-200

0

2

1

Pot

enti

al, m

V v

s. A

g/A

gCl

Time, h(1) – criogel PVA with microbial consortium(2) - polyperchlorvinyl with spores of C. pasterianum

Enzyme electrode consumes H2 from microbial media

0 50 100 150 2000

100

200

300j, A

cm

-2

Er, mV

1 2

Hydrogenase-C.pasterianum electrode(1) – in cultural medium(2) - in H2 saturated solution

CONCLUSIONS

Enzyme electrodes are advantageous:• a completely renewable source;• solve problems:

- selectivity;- poisoning by fuel impurities;

• activity in neutral solutions similar to Pt in sulfuric acid;

• able to consume H2 directly from microbial media.

Recommended