Chapter 5physics.uwyo.edu/~teyu/class/Chapter5.pdfโ€ขCalculate the constructive diffraction angle,...

Preview:

Citation preview

Chapter 5The Wavelike Properties of Particles

The de Broglie Hypothesis (1925)

๐‘“ =๐ธ

โ„Ž

๐œ† =โ„Ž

๐‘

Electrons could be considered as wave and the frequency and the wavelength are related to energy and momentum as;

This gives physical interpretation of Bohrโ€™s quantization of the angular momentum of the electron in hydrogenlike atoms.

Review of E and P vs f and l

๐ธ = ๐›พ๐‘š๐‘2 = ๐‘š๐‘2 2 + ๐‘๐‘ 2

Massive particle

Massless particle (E&M wave)

๐ธ = ๐‘๐‘ ๐ธ = โ„Ž๐‘“ ๐‘ =๐ธ

๐‘=โ„Ž๐‘“

๐‘=โ„Ž

๐œ†

๐‘“ =๐ธ

โ„Ž๐œ† =

โ„Ž

๐‘

๐œ† =โ„Ž

๐‘

Non-relativistic massive particle

๐ธ โ‰ˆ ๐ธ๐‘˜ =๐‘2

2๐‘š

๐‘ = 2๐‘š๐ธ๐‘˜

Example

โ€ข Compute the de Broglie wavelength of an electron whose kinetic energy is 10 eV.

The Davisson-Germer Experiment (1927)

Interference/Diffraction with wave

d

q

๐‘›๐œ† = 2๐‘‘ ๐‘ ๐‘–๐‘›๐œƒ

Crystal lattice of atoms

D

๐‘›๐œ† = 2๐‘‘ ๐‘ ๐‘–๐‘›๐œƒ

d

d

d

d varies depend on the plane you are consideringD is a intrinsic property of a particular crystal, a single value

Electron Diffraction

๐‘›๐œ† = 2๐‘‘ ๐‘ ๐‘–๐‘›๐œƒ

๐‘›๐œ† = ๐ท ๐‘ ๐‘–๐‘›2๐›ผ

d: spacing between certain set of planes

D: spacing between lattice points

Example

โ€ข Calculate the constructive diffraction angle, ๐œ‘, of Ni (D = 0.215 nm) for this particular crystal planes (indicated by red line), when using electrons with 54 eV energy. Assuming the crystal is square/cubic.

Electron Diffraction of Al Foil (1927)

G. P. Thomson

G. P. Thomson (son of J. J. Thomson) shared the Nobel Prize in Physics in 1937 with Davisson

State-of-the-art electron diffraction instrument: Low Energy Electron Diffraction optics

400

300

200

100

0

4003002001000

Cu(001) crystal with 134 eV electron

Diffraction with Other Particles

Cu with neutronNaCl with neutron

Oxygen nuclei with proton

LiF with He

All matter has wavelike as well as particlelike properties.

Example

โ€ข Compute the wavelength of a neutron with kinetic energy of 0.0568 eV. Cu has lattice constant (atom-atom distance) of 0.36 nm. If you use this neutron beam to do the diffraction experiment, what would be the first angle you could see the diffraction?

Wave Packets

โ€ข The matter wave describe the probability of finding the particle

๐œ•2๐‘ฆ

๐œ•๐‘ฅ2=

1

๐‘ฃ2๐œ•2๐‘ฆ

๐œ•๐‘ก2Wave Equation

๐‘ฆ ๐‘ฅ, ๐‘ก = ๐‘ฆ0๐‘๐‘œ๐‘  ๐‘˜๐‘ฅ โˆ’ ๐œ”๐‘ก

๐‘˜ =2๐œ‹

๐œ†

๐œ” =2๐œ‹

๐‘‡

๐‘ฃ๐‘ = ๐‘“๐œ† =๐œ†

๐‘‡=๐œ”

๐‘˜

Wave number

Angular(phase) frequency

Phase velocity

Wave Packet

๐‘ฆ ๐‘ฅ, ๐‘ก = ๐‘ฆ0๐‘๐‘œ๐‘  ๐‘˜1๐‘ฅ โˆ’ ๐œ”1๐‘ก + ๐‘ฆ0๐‘๐‘œ๐‘  ๐‘˜2๐‘ฅ โˆ’ ๐œ”2๐‘ก

๐‘ฆ ๐‘ฅ, ๐‘ก = 2๐‘ฆ0๐‘๐‘œ๐‘ 1

2โˆ†๐‘˜๐‘ฅ โˆ’

1

2โˆ†๐œ”๐‘ก ๐‘ ๐‘–๐‘› ๐‘˜๐‘ฅ โˆ’ ๐œ”๐‘ก

http://www.acs.psu.edu/drussell/Demos/superposition/beats.gif

https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Wave_group.gif/440px-Wave_group.gif

https://upload.wikimedia.org/wikipedia/commons/c/c7/Wave_opposite-group-phase-velocity.gif

Wave Packet (adding more than two waves)

๐‘ฃ๐‘” =๐‘‘๐œ”

๐‘‘๐‘˜

Group velocity and phase velocity

๐‘ฃ๐‘ =๐œ”

๐‘˜

๐‘ฃ๐‘” =๐‘‘๐œ”

๐‘‘๐‘˜Phase velocityGroup velocity

Directly related to particle velocity

โ€ข Non-dispersive medium: phase velocity is independent of k(sound waves in air, E&M wave in vacuum)โ€ข Dispersive medium: phase velocity varies with k(E&M wave in medium, water wave, electron wave)

๐‘ฃ๐‘” = ๐‘ฃ๐‘ + ๐‘˜๐‘‘๐‘ฃ๐‘

๐‘‘๐‘˜

https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Wave_group.gif/440px-Wave_group.gif

https://upload.wikimedia.org/wikipedia/commons/c/c7/Wave_opposite-group-phase-velocity.gif

Particle Wave Packets

๐‘ฃ๐‘” =๐‘‘๐œ”

๐‘‘๐‘˜=๐‘‘๐ธ

๐‘‘๐‘=

๐‘

๐‘š=๐‘š๐‘ฃ

๐‘š= ๐‘ฃ

๐ธ = โ„Ž๐‘“ = โ„๐œ”

๐‘ =โ„Ž

๐œ†= โ„๐‘˜

๐ธ = โ„๐œ” =๐‘2

2๐‘š=โ„2๐‘˜2

2๐‘š

๐œ” =โ„๐‘˜2

2๐‘š

๐‘ฃ๐‘ =๐œ”

๐‘˜= ๐‘“๐œ† =

๐ธ

๐‘=

๐‘

2๐‘š=๐‘š๐‘ฃ

2๐‘š=๐‘ฃ

2

Probabilistic Interpretation of the Wave Function

https://www.youtube.com/watch?v=7u_UQG1La1o

Uncertainty Relation (Classical)

โˆ†๐‘˜โˆ†๐‘ฅ~1

โˆ†๐œ”โˆ†๐‘ก~1

Example

โ€ข The frequency of the alternating voltage produced at electric generating stations is carefully maintained at 60.00 Hz (in North America). The frequency is monitored on a digital frequency meter in the control room. For how long must the frequency be measured and how often can the display be updated if the reading is to be accurate to within 0.01 Hz?

Uncertainty Relation (Quantum)

โˆ†๐‘โˆ†๐‘ฅ~โ„

โˆ†๐ธโˆ†๐‘ก~โ„

โˆ†๐‘โˆ†๐‘ฅ โ‰ฅโ„

2

โˆ†๐ธโˆ†๐‘ก โ‰ฅโ„

2

Particle confined in a 1D box with length of L

โˆ†๐‘ 2 = ๐‘ โˆ’ ๐‘ ๐‘Ž๐‘ฃ๐‘’2 = ๐‘2 โˆ’ 2๐‘ ๐‘ + ๐‘2 ๐‘Ž๐‘ฃ๐‘’ = ๐‘2 โˆ’ ๐‘2

โˆ†๐‘โˆ†๐‘ฅ โ‰ฅ โ„ โˆ†๐‘ โ‰ฅโ„

๐ฟ

๐ธ =๐‘2

2๐‘š=

โˆ†๐‘ 2

2๐‘šโ‰ฅ

โ„2

2๐‘š๐ฟ2

Example

โ€ข If the particle in a one-dimensional box of length L = 0.1 nm (about the diameter of an atom) is an electron, what will be its zero-point energy?

Lifetime of an energy state

โˆ†๐ธโˆ†๐‘ก~โ„Uncertainty Principle for energy and time

If for a particular atomic spectrum transition, the lifetime, t, is in the order of 10 ns (10โˆ’8๐‘ ), there is an energy uncertainty as:

โˆ†๐ธ~โ„

๐œโ‰ˆ 10โˆ’7๐‘’๐‘‰

โˆ†๐‘“ =โˆ†๐ธ

โ„Ž~โ„

๐œ

1

โ„Ž=

1

2๐œ‹๐œโ‰ˆ 107๐ป๐‘ง

Thus, the uncertainty in frequency of the emitted light is:

ฮ”๐œ†

๐œ†โ‰ˆ

ฮ”๐ธ

๐ธ โˆ’ ๐ธ0Then, the uncertainty in wavelength is:

Example

โ€ข When you measure a spectrum emitted by He atom, you found out there is a peak width in intensity vs energy spectrum is around 0.1 meV. Assuming this peak width originates from the energy uncertainty of the excited state of He atom, find out the lifetime of the excited state of He atom.

Recommended