Cold tolerance of Trissolcus japonicus and Trissolcus ... · Hamilton et al. 2014; Herlihy et al....

Preview:

Citation preview

Cold tolerance of two potential biological control agents of the brown marmorated stink bug

Erica Nystrom1, Robert Venette2, Christine Dieckhoff3, Kim Hoelmer3 and Robert L. Koch1

1Department of Entomology, University of Minnesota, Saint Paul, MN2USDA-FS, Saint Paul, MN 55108

3USDA-ARS-BIIRU, Newark, DE 1971

© Christopher Hedstrom

© Brandon Woo© Pierre Bornand

Photo by Stephen Ausmus

Halyomorpha halys (Stål) (Pentatomidae)The brown marmorated stink bug (BMSB)

BMSB detected

Nuisance problems only

Agricultural and nuisance problems

Severe agricultural and nuisance problems

Stopbmsb.org 2016

Minnesota Department of Agriculture 2016

Instar 1

Eggs

Adult

5

4

3

2

Diagram adapted from Oregon State University Extension Service

Halyomorpha halys life cycle

150+ diverse plant species are at risk,

and the value of susceptible crops exceeds $21 billion

Hoebeke and Carter 2003; Leskey et al. 2012 Photos by Ric Bessin, Doug Pfeiffer, David Wright, and Eric Day

Photo by StopBMSB.orgInkley 2012; Lee 2014

Photo from istockphoto.comLeskey et al. 2012

Hamilton et al. 2014; Herlihy et al. 2015; Ogburn et al. 2016 Photo by University of Maryland Extension

Classical biological control: “The regulation of a pest population

(insect, mite, mammal, weed, pathogen) by exotic natural enemies (parasites, predators, pathogens) that are importedfor this purpose.”

Caltagirone 1981

Natural enemy survey locations in Asia

Hymenoptera: Scelionidae• Trissolcus mitsukurii• Trissolcus itoi• Trissolcus cultratus• Trissolcus japonicus

Natural enemy survey locations in Asia

Hymenoptera: Scelionidae

Trissolcus japonicus

Trissolcus cultratus

Photos by Chris Hedstrom and Pierre Bornand

© Chris Hedstrom

© Pierre Bornand

Trissolcus spp. life cycle

Diagram adapted from Hoffman and Frodsham 1993

Larva develops in host egg

Pupa in blackened host egg

Adult emerges

Female lays egg in host egg

Photo by Mark JohnsonLee 2010

Carillo et al. 2004; Stephens et al. 2015

Carillo et al. 2004; Stephens et al. 2015

Carillo et al. 2004; Stephens et al. 2015

Supercooling point (freezing)

Time

Tem

per

atu

re °

C0°C

Temperature °C 0 °C

Pro

po

rtio

n f

reez

ing

-30 °C

100

0

Cumulative freezing curve

Lower lethal temperature (mortality)

Time

Tem

per

atu

re °

C0°C

Time

Tem

per

atu

re °

C0°C

Temperature °C 0 °C

Pro

po

rtio

n m

ort

alit

y

-30 °C

100

0

Cumulative mortality curve

How are freezing and

mortality related?

Renault et al. 2002

Temperature °C 0 °C

Pro

po

rtio

n m

ort

alit

y

-30 °C

100

0

Mortality occurs after freezing

Temperature °C 0 °C

Pro

po

rtio

n m

ort

alit

y

-30 °C

100

0

Mortality = freezing

Temperature °C 0 °C

Pro

po

rtio

n m

ort

alit

y

-30 °C

100

0

Mortality occurs before freezing

Ecological relevance of cold tolerance measurements

Renault et al. 2002

At what temperatures do T. japonicus and T. cultratus

experience freezing and mortality?

Renault et al. 2002

Trissolcus cultratusTrissolcus japonicus

Cold tolerance assays

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

Proportion freezing Proportion mortality

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

T. japonicus T. japonicus

Cold tolerance assays

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

Proportion freezing Proportion mortality

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

T. japonicus T. japonicus

Cold tolerance assays

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

Proportion freezing Proportion mortality

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

T. japonicus T. japonicus

Cold tolerance assays

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

Proportion freezing Proportion mortality

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

T. japonicus T. japonicus

Cold tolerance assays

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

Proportion freezing Proportion mortality

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

T. japonicus T. japonicus

Tsukuba 1, Japan

Tsukuba 2, Japan

T. cultratus

Cold tolerance assays

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

Proportion freezing Proportion mortality

Beijing, China

Tsukuba, Japan

Pucheon, S. Korea

Nanjing, China

T. japonicus T. japonicus

Tsukuba 1, Japan

Tsukuba 2, Japan

T. cultratus

a

a

ab

b

Supercooling point results±

SE

Population: df = 3, χ²= 9.59, p = 0.02

Freezing results (T. japonicus)

a

a

ab

b

±SE

50% of populations of T. japonicus freeze at -21 °C

Population: df = 3, χ²= 9.59, p = 0.02

a

a

a

a

< >±

SEMortality results (T. japonicus)

Population: df = 3, χ²= 0.12, p = 0.99

a

a

a

a

< >±

SE50% of populations of T. japonicus die at -19 °C

Population: df = 3, χ²= 0.12, p = 0.99

< >Comparing mortality and freezing (T. japonicus)±

SE

Assay: df = 1, Z = 6.74,p < 0.001

Assay: df = 1, Z = 3.44,p < 0.001

Assay: df = 1, Z = 2.29,p = 0.02

Assay: df = 1, Z = 6.46,p < 0.001

< >All populations of T. japonicus die before freezing±

SE

Assay: df = 1, Z = 6.74,p < 0.001

Assay: df = 1, Z = 3.44,p < 0.001

Assay: df = 1, Z = 2.29,p = 0.02

Assay: df = 1, Z = 6.46,p < 0.001

Mortality results (T. cultratus)±

SE a

a

Population: df = 1, χ²= 0.01, p = 0.98

Mortality results (T. cultratus)±

SE50% of populations of T. cultratus die at -19 °C

a

a

Population: df = 1, χ²= 0.01, p = 0.98

Conclusions?

Conclusions?

The ecologically relevant measure of cold tolerance for T. japonicus is lower lethal temperature.

Conclusions?

The ecologically relevant measure of cold tolerance for T. japonicus is lower lethal temperature.

50% of populations from both species die at -19 °C, which is below lethal temperatures for H. halys.

Conclusions?

The ecologically relevant measure of cold tolerance for T. japonicus is lower lethal temperature.

50% of populations from both species die at -19 °C, which is below lethal temperatures for H. halys.

From a cold tolerance standpoint, all populations of both species are equally suitable for introduction.

How do our laboratorymeasurements compare to

field conditions?

Plant Hardiness Zone MapAverage Annual Extreme Minimum

Temperature (1976-2005)

T. japonicus

Plant Hardiness Zone MapAverage Annual Extreme Minimum

Temperature (1976-2005)

T. japonicus

Plant Hardiness Zone MapAverage Annual Extreme Minimum

Temperature (1976-2005)

T. japonicus

T. japonicusH. halys

Plant Hardiness Zone MapAverage Annual Extreme Minimum

Temperature (1976-2005)

T. japonicusH. halys

Plant Hardiness Zone MapAverage Annual Extreme Minimum

Temperature (1976-2005)

Photo by Chuck Ingels

What about additionalmeasurements of cold

tolerance?

Longevity

Longevity

Acclimation

Longevity

Acclimation

Lower lethal time

AcknowledgementsMany people helped make this project possible through financial, technical, and moral support:

USDA-ARS-BIIRU: Kathleen TatmanMDA-MAES: Stephanie Dahl, Nik Prenevost, and Jeanne CiborowskiUMN support: The Salt Journal Group; Koch, Venette, Hutchison, and Aukema lab members. Especially Amy Morey, Theresa Cira, Lindsey Christianson, James Menger-Anderson, and Jaana Iverson.Michigan State: Paul Botch and Patricia Samota

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative‐Citizen Commission on Minnesota Resources

(LCCMR), and the Minnesota Soybean Research and Promotion Council.

Photo by Elijah Talamas

Questions?

Recommended