Combined analysis of polarized and unpolarized PDFs and fragmentation … · PDFs and fragmentation...

Preview:

Citation preview

1 / 20

Combined analysis of polarized and unpolarizedPDFs and fragmentation functions

Nobuo SatoUniversity of ConnecticutSpin18, (Spin physics in Nuclear Reactions and Nuclei)Ferrara, 2018

2 / 20

Motivations

Motivations

3 / 20

SIDIS data from JLab 12 brings new challenges

+ Quantitative limits of x,Q2, z, ... where factorizationtheorems are applicable

+ Universality of non perturbative objects→ predictive power

+ QCD analysis framework that extracts simultaneouslyall non-perturbative objects (including TMDs)

+ Framework with the same theory assumptions

Motivations

4 / 20

Inclusion of modern data analysis techniques

+ Bayesian likelihood analysis

P(f |data) = L(data, f)π(f)

+ Estimation of expectation values and variances:

o maximum likelihood + Hessian (+tolerance)o maximum likelihood + Lagrange multiplierso nested samplingo data resamplingo partition and cross validationo iterative Monte Carlo (IMC)

5 / 20

History

JAM15: ∆PDFs (NS, Melnitchouk, Kuhn, Ethier, Accardi)

6 / 20

10−3 10−2

0.1

0.2

0.3

0.4

0.5JAM15

JAM13

DSSV09

NNPDF14

BB10

AAC09

LSS10

0.1 0.3 0.5 0.7

x∆u+

10−3 10−2

−0.14

−0.10

−0.06

−0.02

x∆d+

0.1 0.3 0.5 0.7 x

10−3 10−2

−0.04

−0.02

0.00

0.02

0.1 0.3 0.5 0.7

x∆s+

10−3 10−2

−0.1

0.0

0.1

0.2

0.1 0.3 0.5 0.7 x

x∆g

+ Inclusion of all the JLab 6GeV data

+ Determination of twist 3 g2

+ SU2, SU3 constraints imposed:

+ DSSV and JAM ∆s+ isinconsistent

JAM16: FFs (NS, Ethier, Melnitchouk, Hirai, Kumano, Accardi)

7 / 20

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

zD(z

)

u+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

d+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

s+ JAM

HKNS

DSS

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

zD(z

)

c+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

b+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

g

π+

K+

+ π and K Belle, BaBar up to LEP energies+ JAM and DSS DK

s+ consistent

JAM17: ∆PDF +FF (Ethier, NS, Melnitchouk)

8 / 20

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4 x∆u+

JAM17

JAM15

0 0.2 0.4 0.6 0.8 1

−0.15

−0.10

−0.05

0 x∆d+

0.4 0.810−3 10−2 10−1

−0.04

−0.02

0

0.02

0.04 x(∆u + ∆d)

DSSV09

0.4 0.810−3 10−2 10−1

−0.04

−0.02

0

0.02

0.04

x(∆u−∆d)

0.4 0.8x

10−3 10−2 10−1

−0.04

−0.02

0

0.02

0.04 x∆s+

JAM17 + SU(3)0.4 0.8

x10−3 10−2 10−1

−0.1

−0.05

0

0.05

0.1 x∆s−

+ No SU(3) constraints

+ Sea polarizationconsistent with zero

+ Precision of ∆SIDIS isnot sufficient todetermine seapolarization

9 / 20

Present

JAM18: Universal analysis (preliminary)

10 / 20

Data sets

+ DIS, SIDIS(π,K), DY+ ∆DIS, ∆SIDIS(π,K)+ e+e−(π,K)

Theory setup

+ Observables computed at NLO in pQCD+ DIS structure functions only at leading twist (W 2 > 10 GeV2)

Likelihood analysis (first steps)+ Use maximum likelihood to find a candidate solution+ Use resampling to check for stability and estimate uncertainties+ 80 shape parameters and 91 data normalization parameters:

171 dimensional space+ Sampling to be extended with IMC/Nested Sampling

Andres, Ethier, Melnitchouk, NS, Rogers

JAM18: PDFs (preliminary)

11 / 20

10−3 10−2 10−1 x0.0

0.2

0.4

0.6

xf

(x)

SIDIS

g/10

u−

d−

10−3 10−2 10−1 x0.0

0.2

0.4

SIDIS

d

u

10−3 10−2 10−1 x0.0

0.1

0.2

0.3

SIDIS

Q2 = 10 GeV2

s

s d− u constrained mainly by DY

SIDIS is in agreement with DY’sd− u

s− s 6= 0

JAM18: PDFs (preliminary)

12 / 20

10−3 10−2 10−1 x0.0

0.2

0.4

0.6

xf

(x)

SIDIS

g

u−

d−

10−3 10−2 10−1 x0.0

0.2

0.4

SIDIS

d

u

10−3 10−2 10−1 x0.0

0.1

0.2

0.3

SIDIS

s

s Comparison with other groups+ dashed: MMHT14+ dashed-dotted: CT14+ dotted: CJ15+ dot-dot-dash: ABMP16

Big differences for s, s distributions

JAM18: upolarized sea (preliminary)

13 / 20

10−2 10−1 x0.8

1.0

1.2

1.4

1.6

d/u

SIDIS

10−2 10−1 x0.0

0.2

0.4

0.6

0.8

1.0

(s+s)/(u

+d

)

SIDIS

JAM18

CT14

MMHT14

CJ15

ABMP16

10−2 10−1 x

−0.02

0.00

0.02

x(s−s)

SIDIS

For CJ and CT, s = s

MMHT uses neutrino DIS

SIDIS favors a strange suppression

and a larger s, s asymmetry

JAM18: ∆PDFs (preliminary)

14 / 20

10−3 10−2 10−1 x−0.2

0.0

0.2

0.4

0.6

x∆f

(x)

∆SIDIS

∆g

∆u+

∆d+

10−3 10−2 10−1 x−0.002

−0.001

0.000

0.001

0.002

∆SIDIS

∆d

∆u

10−3 10−2 10−1 x−0.002

−0.001

0.000

0.001

0.002

∆SIDIS

∆s

∆s Recall no SU2,SU3 imposed

∆s,∆u,∆d are much betterknown than ∆s

It means, most of the uncertaintyon ∆s+ is from ∆s

JAM18: polarized sea (preliminary)

15 / 20

∆f/f → 1 only realized for u

Polarized sea asymmetry isconsistent with zero

JAM18: helicity PDFs (preliminary)

16 / 20

0.2 0.4 x0.0

0.2

0.4

0.6

0.8

1.0

f↓ /f↑

u0.2 0.4 x

0

1

2

3

4

d0.2 0.4 x

0.8

0.9

1.0

1.1

1.2

s

0.2 0.4 x0.8

0.9

1.0

1.1

1.2

u0.2 0.4 x

0.8

0.9

1.0

1.1

1.2

d0.2 0.4 x

0.8

0.9

1.0

1.1

1.2

s

Helicity distributions seems to be the same for the sea

JAM18: moments (preliminary)

17 / 20

obs. JAM15 JAM17 JAM18 JAM18 [truncated]gA 1.269(3) 1.24(4) 1.163(5) 1.107(5)g8 0.59(3) 0.4(2) 0.5(4) 0.39(2)

∆Σ 0.28(4) 0.36(9) 0.3(2) 0.386(7)∆u−∆d 0 0.05(8) 0.0002(6) −0.0001(5)

∆g 1(15) – 0.22(1) 0.172(9)

Large uncertainties on the full ∆Σ stem from

JAM18 [truncated] means integration over ∆DIS and ∆SIDISkinematics ∆s

JAM18: ∆g (preliminary)

18 / 20

JAM18

∫ 10.05 dx∆g(x) = 0.145(5)

∫ 0.050.001 dx∆g(x) = 0.229(9)

Not so bad for a prediction?

DSSV14

JAM18: FFs (preliminary)

19 / 20

0.2 0.4 0.6 0.8 z0.0

0.2

0.4

0.6

0.8

1.0

zD(z

)

π+

SIDIS

0.2 0.4 0.6 0.8 z0.0

0.1

0.2

0.3

0.4

SIDIS

K+ g

u

d

s

c

d

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

zD(z

)

u+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

d+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

s+ JAM

HKNS

DSS

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

zD(z

)

c+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

b+

π+

K+

0.2 0.4 0.6 0.8 z

0.2

0.6

1.0

1.4

g

π+

K+

JAM16

gluon FFs are significantlyaffected by SIDIS

This feature is key for pTdifferential SIDIS → see mytalk “3D Structure of theNucleon: TMDs”

Summary and outlook

20 / 20

First universal analysis of PDFs, ∆PDF and FFs

+ New insights on nucleon sea distributions (s, s asymmetry)

+ π and K gluon FFs are required by SIDIS to peak at larger z→ relevant for TMD physics

+ The universal analysis will to be extend to TMD analysis

Next steps

+ Perform additional checks using IMC and Nested Sampling

+ Make predictions to high energy observables and check the genuinepredictive power of the universal analysis

Recommended