Current Mirrors and Biasing Prof. Ali M. Niknejad Prof...

Preview:

Citation preview

Department of EECS University of California, Berkeley

EECS 105 Spring 2017, Module 4

Prof. Ali M. Niknejad Prof. Rikky Muller

Current Mirrors and Biasing

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

2

Announcements

l  HW9 due on Friday

University of California, Berkeley

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

3

Load Impedance

Courtesy M.H. Perrott

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

4

Issue: Headroom Limitations

Courtesy M.H. Perrott

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

5

Achieving High Gain

Courtesy M.H. Perrott

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

6

Diode Connected Device

l  How do we build current sources? l  Let’s start with a “diode connected” device l  A MOS device with gate and drain shorted operates

like a diode (but not exponential) University of California, Berkeley

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

7

Diode Connected -- SS Model

l  We can derive the small-signal model by shorting out the hybrid-pi model

l  Note that a Gm generator with it’s controlling terminals connected to the Gm is more simply a …?

University of California, Berkeley

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

8

The Integrated “Current Mirror” l  M1 and M2 have the same

VGS l  If we neglect CLM (λ=0),

then the drain currents are equal

l  Since λ is small, the currents will nearly mirror one another even if Vout is not equal to VGS1

l  We say that the current IREF is mirrored into iOUT

l  Notice that the mirror works for small and large signals!

University of California, Berkeley

High Res

Low Resis

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

9

Multiplication Ratio

University of California, Berkeley

VGS1 =VGS 2

IOUT = kW2

L2(VGS 2 −VT )

22 = IINW2 / L2W1 / L1

= NIIN

IIN = kW1L1(VGS1 −VT )

2 IOUT = kW2

L2(VGS 2 −VT )

2

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

10

Current Mirror as Current Source

l  The output current of M2 is only weakly dependent on vOUT due to high output resistance of FET

l  M2 acts like a current source to the rest of the circuit l  For good current source behavior, what is the minimum vOUT?

University of California, Berkeley

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

11

Small-Signal Resistance of I-Source

University of California, Berkeley

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

12

Improved Current Sources

University of California, Berkeley

Goal: increase Ro(ut) Approach: look at amplifier output resistance results … to see topologies that boost resistance

Looks like the output impedance of a common-source amplifier with source degeneration

out oR r>>

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

13

Effect of Source Degeneration

l  Equivalent resistance loading gate is dominated by the diode resistance … assume this is a small impedance

l  Output impedance is boosted by factor University of California, Berkeley

( )St t m gs o Rv i g v r v= − +

1eq

m

Rg

Sgs Rv v≈ −

SR t Sv i R=

( )t t m S t o t Sv i g R i r i R= + +

( )1to m S o

t

vR g R ri

= ≈ +

( )1 m Sg R+

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

14

Improved Current Sources

University of California, Berkeley

How would you scale the output current?

IIN = kW1L1(VG −VS −VT )

2

VS = IIN RS

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

15

Cascode (or Stacked) Current Source

University of California, Berkeley

Insight: VGS2 = constant AND VDS2 = constant

Small-Signal Resistance Ro:

( )1o m S oR g R r≈ +

( )1o m o oR g r r≈ +

20o m oR g r r≈ >>

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

16

Drawback of Cascode I-Source

University of California, Berkeley

What is the minimum output voltage to keep all transistors in saturation?

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

17

Drawback of Cascode I-Source

University of California, Berkeley

Minimum output voltage to keep both transistors in saturation:

, 4, 2,OUT MIN DS MIN DS MINV V V= +

vOUT

iOUT

2, 2 0 2DS MIN GS T DSATV V V V> − =

4 2 4 2 4 0D DSAT GS GS GS TV V V V V V> + = + −

, 2 4 0OUT MIN GS GS TV V V V= + −

In EE140 we will learn circuit tricks to overcome this problem!

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

18

Current Sinks and Sources

University of California, Berkeley

Sink: output current goes to ground

Source: output current comes from voltage supply

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

19

Current Mirrors

University of California, Berkeley

Idea: we only need one reference current to set up all the current sources and sinks needed for a multistage amplifier.

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

20

Example: Common-Drain Amplifier

University of California, Berkeley

21 ( )2DS ox GS T

WI C V VL

µ= −

vin

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

21

Common Drain AC Schematic

University of California, Berkeley

vin

How does a REAL current source fit in to the small-signal model?

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

22

CD Voltage Gain With Real I-Source

University of California, Berkeley

RL

Ideal I-Source voutRL || ro

= gmvgs

voutRL || ro

= gm vin − vout( )

vin

Real I-Source

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

23

CD Voltage Gain (Cont.)

University of California, Berkeley

KCL at source node:

Voltage gain:

Recommended