DQG ZLWK 63,&( VLPXODWLRQV - TI Training...6WDQGDUG 2SHQ /RRS 63,&( &RQILJXUDWLRQ :H...

Preview:

Citation preview

Understanding OpAmp stability intuitively and with SPICE simulations

Cleveland Tech Day

September 10, 2019

Marek Lis, Senior Analog Applications Engineer

1

Stability – P1TI Precision Labs – Op Amps

2

3

Op Amp Stability Issue

Vcc

Vcc

Vcc 5

+

-

+

U1 OPA333

CLoad 1u

R1

100k

R2

100k

VREF

T

Time (s)

0.00 500.00u 1.00m

Voltag

e (V

)

0.00

2.50

5.00 T

Time (s)

0.00 500.00u 1.00m

VR

EF (V

)

0.00

2.50

5.00

Desired Measured

4

Simplified Cause of Op Amp Stability Issues

Issues happen because of too much delay from output to feedback!

V-

V+

R4 499k R5 499k

C4

25p

+

Vin

Vfb

+

-

+U2 OPA333

R6 100C3

47n

Vopa

T

Time (s)

0 125u 250u

Vopa

-2.5

0.0

2.5

Vfb

-750m

0

750m

Vin

-10m

0

ab

30p

V-

V+

R4 499k R5 499k

C4

25p

+

Vin

Vfb

+

-

+U2 OPA333

R6 100

C3

47n

Vopa

5

Delay Happens in Many Circuits

V-

V+

R1 499k RF 499k

+Vin

Vfb

Vopa

Ro 100

C_Load 47n

Vout

Cst

ray

15p

Cin 1

5p

-

+

OPA333

30p

6

Circuits with Possible Stability Issues

Output Capacitive Loads

Input Capacitance and Large Value Resistors

Transimpedance Amplifiers

Reference Buffers Cable/Shield Drive MOSFET Gate Drive

Large Value Resistors for Low-Power Circuits

-

+

IO P2

R3 4 9 9 kR4 4 9 9 k

+

V G 2

Cin 2 5 p V o u t

-

+

O PA

Cin 1 u

C1 1 u

C2 1 u

V IN 5V in

T e m p

G ND

V o u t

T r im

U1 REF5 0 2 5

C3 1 0 u

A DC_ V REF

C4 1 0 0 n

-

+

O PA

RL 2 5 0

Rf 2 0 kR g 1 k

+

V in

-

+

O PA

C_ Ca b le 1 0 nV o u t

V REF 2 .5

V REF

S h ie ld e d C a b le

-

+

O PA

V Re f 2 .5

R1 2 0 k

R2 2 0 k

V in 1 0

V Re g

Q 1

RL 2 0 0

Transient SuppressionV +

-

+

O PA

Rf 4 9 kRg 4 .9 9 M

Cd 2 0 0 p V o u t

+V in

D1

D2TV S

V o

Rf 1 M

Rd 4 .9 9 G Cd 1 0 p-

+

O PA

Id

P ho to d io d e M o d e l

Identify Stability Issues in the Lab

7

• Suggested Tools:– Oscilloscope

– Signal Generator

• Other Useful Tools:– Gain / Phase Analyzer

– Network / Spectrum Analyzer

• Oscilloscope – Time Domain Analysis:– Oscillations

– Overshoot and Ringing

– Unstable DC Voltages

– High Distortion

Identify Stability Issues in the Lab

8

Output Response to Square Wave Input

Output Response to Step Input

Sustained Output Oscillation with DC Input

Identify Stability Issues in the Lab

9

• Gain / Phase Analyzer - Frequency Domain:

- Peaking, Unexpected Gains, Rapid Phase Shifts Simulated Measured

T

Gain

(dB)

-60.00

-40.00

-20.00

0.00

20.00

Frequency (Hz)

1k 10k 100k 1M 10M

Phase

[deg]

-180.00

-90.00

0.00

T

Time (s)

0.00 2.50m 5.00m

Out

put

2.49

2.50

2.51

Vin Vload Vopa

Solving Op Amp Stability Issues

10

T

Time (s)

0.00 500.00u 1.00m

Vol

tage

(V)

1.81

2.34

2.88

Vcc

Vcc 5

+

-

+

U1 OPA333

CLoad 1u

VREF

+

Vin

Vcc

Vcc 5CLoad 1u

R3 499

R4 49k

C1 22n

Vopa

+

Vin

VloadR1

100k+

-

+U1 OPA333

Vcc

Vcc 5

CLoad 1u

R3 499

Vopa

+

Vin

R1

100k

+

-

+U1 OPA333 Vload

T

Time (s)

0.00 2.50m 5.00m

Out

put

2.50

2.51

2.53

Vin Vload Vopa

Riso 499

Riso 499

Bode Plots – Pole

11

10

f@7.5 P

10f@3.84 P

Pole Location = fP (Cutoff Freq)

Magnitude (f < fP) = Gdc (e.g. 100dB)

Magnitude (f = fP) = -3dB

Magnitude (f > fP) = -20dB/Decade

Phase (f = fP) = -45°

Phase (0.1fP < f < 10fP) = -45°/Decade

Phase (f > 10fP) = -90°

Phase (f < 0.1fP) = 0°

Gv/v =Vout

Vin=

Gdc

𝑖f

fP+ 1

As a complex number

Gv/v =Vout

Vin=

Gdc

ffP

2

+ 1

Magnitude

Θ = − tan−1f

fP Phase

GdB = 20Log Gv v⁄ Magnitude in dB

Bode Plots – Zero

12

10

f@7.5 Z

10f@3.84 Z

Zero Location = fZ

Magnitude (f < fZ) = 0dB

Magnitude (f = fZ) = +3dB

Magnitude (f > fZ) = +20dB/Decade

Phase (f = fZ) = +45°

Phase (0.1fZ < f < 10fZ) = +45°/Decade

Phase (f > 10fZ) = +90°

Phase (f < 0.1fZ) = 0°

Gv/v =Vout

Vin= Gdc 𝑖

f

fZ+ 1

As a complex number

Gv/v =Vout

Vin= Gdc

f

fZ

2

+ 1 Magnitude

Θ = tan−1f

fZ Phase

GdB = 20Log Gv v⁄ Magnitude in dB

Op Amp Open Loop Model

13

Op Amp Closed Loop Model

14

Aol = Open loop Gain

β = Feedback Factor = Vfb

Vout=

R1

R1 + Rf

Acl = Closed Loop Gain =Aol

1 + Aol β

Aol β = Loop Gain

Acl = limAol β→∞

Aol

1 + Aol β=

1

β= 1 +

Rf

R1

When is an Amplifier Unstable?

15

AOLβ = -1 when the phase at VFB has shifted 180⁰ relative to Vin

• A circuit is unstable when AOLβ = -1

• AOLβ = -1 sets the denominator of ACL = 0

• AOLβ = -1 when AOLβ(dB) = 0dB and

phase shift(AOLβ) = 180°

• Phase shift is relative to the DC phase

Phase Margin (PM)How close the system is to a 180° phase shift in AOLβ• PM = Phase(AOLβ) when Gain(AOLβ) = 0dB• Ex: 10° phase margin = 170° phase shift in AOLβ

𝐂𝐋𝐎𝐋

𝐎𝐋

Loop Gain Magnitude – AOLβ

16

1

β=

V

V=

R

R+ 1 = 10 V V⁄

1

βdB = 20log 10 = 20dB

AOL

1/β

AOLβ

Loop gain in dB:

20 log A β = 20 log A − 20 log1

βA β dB = A (dB) −

1

β(dB)

Note: A β dB = 0dB when

A and1

βintersect

fC

Loop Gain Phase – Phase(AOLβ)

17

1

β=

𝑍

𝑍+ 1

C1 introduces a zero in 1

β

At DC the capacitor is open, so gain = 10V/V. At high frequency the capacitor causes Z1 to decrease, so gain increases by +20dB/decade

Phase Margin

18

Rule of thumb:Phase margin > 45° is required for optimal stability!

Phase margin < 45° is considered “marginally stable.”This does not ensure a robust design over process variation.

Rate of Closure – Unstable Example

19

Rate of Closure = Slope A − Slope1

β

Rate of Closure = −20dB − (+20dB) = 40dB

Unstable because rate of closure > 20dB!

1

β=

V

V= 10

f

f+ 1

1/β(dB) = 20dB at DC, then increases by +20dB/decade afterthe zero frequency

Rule of thumb:Rate of closure = 20dB is required for optimal stability!

Rate of Closure – Stable Example

20

Rate of Closure = Slope A − Slope1

β

Rate of Closure = −20dB − 0dB = 20dB

Stable because rate of closure = 20dB!

1

β=

V

V=

R

R+ 1 = 10 V V⁄

1

βdB = 20log 10 = 20dB

Rule of thumb:Rate of closure = 20dB is required for optimal stability!

Rate of Closure (ROC) and Phase Margin

21

ROC(dB/decade)

Phase Margin (°)

20 45 < PM < 90

20 < ROC < 40 45

40 0 < PM < 45

Indirect Phase Margin Measurements

22

Time Domain Percent Overshoot AC Gain/Phase AC Peaking

Phase Margin can be measured indirectly on closed-loop circuits!

T

Ga

in (

dB

)

-30.00

-20.00

-10.00

0.00

10.00

Frequency (Hz)

100.00k 1.00M 10.00MP

ha

se [

de

g]

-270.00

-180.00

-90.00

0.00

T

Time (s)

2.00u 3.50u 5.00u

Vol

tage

(V

)

0.00

3.75m

7.50m

11.25m

15.00m

Indirect Phase Margin Measurements

23

T

Time (s)

2.00u 3.50u

Volta

ge (V)

0.00

2.50m

5.00m

7.50m

10.00m

12.50m

15.00m14.3mV

%Overshoot =14.3mV − 10mV

10mV∗ 100% = 𝟒𝟑%

43% overshoot 29° phase margin

Indirect Phase Margin Measurements

24

T

Frequency (Hz)

100.00k 1.00M 10.00M

Gai

n (d

B)

-30.00

-20.00

-10.00

0.00

10.00

6dB

6dB AC peaking 29° phase margin

AC peaking = 6dB − 0dB = 𝟔𝐝𝐁

Multiple-Choice Quiz

25

What are some possible signs of an unstable op amp circuit? a) oscillations

b) large overshoot and ringing

c) unpredictable or unexpected response

d) all of the above

Many common circuits inadvertently cause delay in the feedback network, resulting in stability issues.a) true

b) false

Multiple-Choice Quiz

26

Which of these is not a cause of amplifier instability? a) capacitance on the amplifier’s output to GND

b) capacitance on the amplifier’s inverting input

c) large value feedback resistors

d) low valued resistors on the amplifier’s output to GND

Which common application is most likely to have a stability issue?a) photodiode transimpedance amplifier

b) low-noise gain stage

c) summing amplifier

d) integrator

Multiple-Choice Quiz

27

Amplifiers with stability problems are __________________? a) only sensitive to transients on the input

b) sensitive to transients on the input, output, and power supplies

Amplifiers with DC inputs (eg. reference buffer) will not have stability issues.a) true

b) false

Multiple-Choice Quiz

28

• Which of the following is a common method for stability testing? a) apply a sinusoidal input signal, monitor the amplifier output with an oscilloscope

b) apply a square wave input signal, monitor the amplifier output with an oscilloscope

c) apply a triangle wave input signal, monitor the amplifier output with an oscilloscope

• Which of these is not a sign of stability issues in closed loop gain/phase analyzer measurements?a) steep magnitude roll-offs

b) rapid phase shifts

c) unexpected gains

d) AC gain peaking

QuizWhich one of these AOL and 1/β curves is unstable?

QuizWhich one of these AOL and 1/β curves is unstable?

QuizFind the phase margin of each system according to the % overshoot.

0102030405060708090

0 20 40 60 80 100

Phas

e Mar

gin (d

eg)

Percentage Overshoot (%)

Phase margin vs Percentage Overshoot

0102030405060708090

0 20 40 60 80 100Ph

ase M

argin

(deg

)Percentage Overshoot (%)

Phase margin vs Percentage Overshoot

%Overshoot =16.4mV − 10mV

20mV∗ 100% = 𝟑𝟐% %Overshoot =

19.6mV − 10mV

20mV∗ 100% = 𝟒𝟖%

38° phase margin 25° phase margin

32

0

10

20

30

40

50

60

70

0 5 10 15 20

Phas

e Mar

gin (d

eg)

ac Peaking (dB)

Phase Margin vs ac Peaking

0

10

20

30

40

50

60

70

0 5 10 15 20

Phas

e Mar

gin (d

eg)

ac Peaking (dB)

Phase Margin vs ac Peaking

QuizFind the phase margin of each system according to the AC peaking.

35° phase margin

4.4dB peaking

12° phase margin

~14dB peaking

33

QuizFind the phase margin of each system according to the Bode plot.

45° phase margin ~15° phase margin

Stability – P2TI Precision Labs – Op Amps

34

Simulating Open-Loop Circuits

35

No DC biasing produces erroneous results!

Wrong open loop response

Output saturated

V-

V+

V- V+

Vo

R2 1kR1 1k

Vfb

V1 -15 V2 15

-

+ +3

2

6

74

OP AMP

+

Vin

R3

10k

24.99nV

14.44V

Simulating Open-Loop Circuits

36

DC: closed loop needed for SPICE operationAC: open loop needed for stability analysisDC

AC

DC+ACV-

V+

Vo

R2 1kR1 1k

+

Vin

Vfb

C1

L1

-

+ +3

2

6

74

OP AMP

R6

10k

100uV

200uV

V-

V+

Vo

R2 1kR1 1k

+

Vin

Vfb

C1

L1

-

+ +3

2

6

74

OP AMP

R7

10k

V-

V+

Vo

R2 1kR1 1k

+

VG1

Vfb

-

+ +3

2

6

74

OP AMP

L1 1T

C1 1T

R5

10k

RL

R L

RL

Standard Open-Loop SPICE Configuration

37

We need an open-loop circuit (no feedback) to generate open-loop gain (AOL), 1/β, and loop gain (AOLβ) curves

AOL_LOADED = Vo / Vfb1/β = 1 / Vfb

AOLβ = Vo

V-

V+

Vo

R2 1kR1 1k

+

VG1

Vfb

-

+ +3

2

6

74

OP AMP

L1 1T

C1 1TR5

10k

AOL

AOLβ

1/β

Check DC Operating Point

38

V-

V+

Vo

R2 1kR1 1k

+

VG1

Vfb

-

+ +3

2

67

4

OP AMP

L1 1T

C1 1T

R5

10k

C3 1n

100uV

200uV

Click Analysis DC Analysis Calculate Nodal Voltages

Generating Open-Loop Curves

39

Run an AC transfer characteristic analysis over the appropriate frequency range:Click Analysis AC Analysis AC Transfer Characteristic

Generating Open-Loop Curves

40

Click the “Post-Processor” button to add the desired curves

Generating Open-Loop Curves

41

Perform math on the existing curves to create the new curves:

AOL = Vo / Vfb1/β = 1/VfbAOLβ = Vo

Generating Open-Loop Curves

42

Unformatted results with all curves:

Generating Open-Loop Curves

43

Use a cursor to determine the frequency where Aolβ = 0dB, fC, and place legend to show corresponding magnitudes and phases

Phase Margin = Aol*βPhase @ fC

fC

Why Do Capacitive Loads Cause Instability?

44

45

Simulate the Effects of Output CapacitanceRun open-loop analysis on buffer circuit with capacitive load

V-

V+

V- V+

+

Vin

-

+ +3

2

6

74

OP AMP

L1 1T

C1 1T

V1 -15 V2 15

CLoad 10n

Vfb

Vo

1/β

AOL_LOADED

AOLβ

ROC = 40dB/dec

Phase Margin = 4°

fC

Pole

Capacitive Loads – Stability Theory

V-

V+

Vo

+

Vin

CLoad 10n

Vfb

-

+

-

+

Aol 1M

Ro 100

V-

V+

Vo

+

Vin

-

+ +3

2

6

74

OP AMP

L1 1T

C1 1T

CLoad 10n

Vfb

+

Aol

Ro 100

Vo

CLoad 10n

46

(AOL_LOADED)

(AOL_LOADED)

Capacitive Loads – Stability Theory

+

Vin

Ro 100

Vo

CLoad 10n

47

V

V(s) =

1

1 + s ∗ Ro ∗ CTransfer Function:

f =1

2 ∗ π ∗ Ro ∗ CPole Equation:

Capacitive Loads – Stability Theory

X

AOL (from data sheet) AOL Load

Loaded AOL =

48

Compensation Method 1: RISO

V+

V-

VLoad

+

Vin

-

+ +3

2

67

4

OP AMPCLoad 10n

Riso 108

49

Vo

Method 1: RISO – ResultsTheory: Adds a zero to cancel the pole in loaded AOL

V-

V+

+

Vin

-

+ +3

2

6

74

OP AMP

L1 1T

C1 1T

CLoad 10n

Vfb

Riso 108

Vo

50

1/β

AOL_LOADED

AOLβ

ROC = 20dB/dec

Phase Margin = 64°

PoleZero

fC

V-

V+

Vo+

Vin

-

+ +3

2

6

74

OP AMP

L1 1T

C1 1T

CLoad 10n

Vfb

Riso 108

Method 1: RISO – Theory

V-

V+

Vo

+

Vin

CLoad 10n

Vfb

-

+

-

+

Aol 1M

Ro 100

Riso 108

+

Aol

Ro 100

Vo

CLoad 10n

Riso 108

51

(AOL_LOADED)

(AOL_LOADED)

Resistor Divider Analogy

52

+

Vin

R1 100

R2 100

Vo +

Aol

Ro 100

Vo

CLoad 10n

Riso 108

Zero: RISO & CLOAD

Pole: RO, RISO, and CLOAD

Z1

Z2Vin

V

V=

R

R + RV

V=

Z

Z + Z

V

V=

R +1

s ∗ C

R +1

s ∗ C+ R

V

V=

1 + s ∗ R ∗ C

1 + s ∗ R + R ∗ C

Method 1: RISO – Theory

X

AOL (from data sheet) AOL Load

Loaded AOL =

53

Method 1: RISO – Theory+

Vin

Ro 100

Vo

CLoad 10n

Riso 108

54

V

Vs =

1 + s ∗ R ∗ C

1 + s ∗ R + R ∗ C

f =1

2 ∗ π ∗ R ∗ C

f =1

2 ∗ π ∗ (R + R ) ∗ C

Transfer Function:

Zero Equation:

Pole Equation:

Method 1: RISO – Design

Design Steps:1.) Find the zero frequency, fZERO, where AOL_Loaded = 20 dB2.) Calculate Riso to set the zero at fZERO

This will yield between 60° and 90° degrees of phase margin

55

R =1

2 ∗ π ∗ f ∗ C

R =1

2 ∗ π ∗ 146.5kHz ∗ 10nF

R = 𝟏𝟎𝟖𝛀

RISO Equation: AOL_LOADED

1/β

fC

fZERO = 146.5kHz

20dB

1/β

AOL_LOADED

AOLβ

ROC = 20dB/dec

PoleZero

fC

Method 1: RISO – Design Summary

56

V-

V+

-

++3

2

6

74

OP AMP

+

Vin

Riso 108

Cload 10n

Vload

Vo

Phase Margin= 64°

Unstable vs. Stable Transient Results

57

No compensation - Unstable

Riso compensation - Stable

T

Time (s)

0.00 10.00u 20.00u 30.00u

Volta

ge (V)

0.00

5.00m

10.00m

15.00m

20.00m

Vin Vo

T

Time (s)

0.00 10.00u 20.00u 30.00u

Volta

ge

(V)

0.00

5.00m

10.00m

15.00m

20.00m

Vin

Vo

V-

V+

Vo

-

++3

2

6

74

OP AMP

+

Vin C1

10n

Riso 108

SW_Riso

Method 1: RISO – Disadvantage

Disadvantage:Voltage drop across RISO may not be acceptable for certain applications!

V+

V-

Vload

+

Vin

-

+ +3

2

6

74

OP AMPCLoad 10n

Riso 108

Vo

RLoad 250

58

Method 2: RISO + Dual Feedback

59

V-

V+

-

+ +3

2

6

74

OP AMP

+

Vin

Riso 108

Cload 10n

Vload

Vo

C1 470p

R1 15k

Rload 250

Cf

Rf

Method 2: RISO + Dual Feedback – TheoryDC Circuit AC Circuit

V+

V-

+

Vin

-

+ +3

2

6

74

OP AMPCLoad 10n

Riso 108

Vo

RF 15k

R2

250

VLoad

CF

Vin 1V

1V

1.43V

CF: OpenRF: Closes the feedback around RISO

VLOAD = VIN

CF: ShortRF >> ZCF, therefore RF is effectively openBehaves like RISO circuit

60

V-

V+

-

++3

2

6

74

OP AMP

+

Vin

Riso 108

Cload 10n

Vload

Vo

Rload 250

RF

CF 470p

Method 2: RISO + Dual Feedback - DesignDesign Steps:1) Set RISO using Method 1: RISO techniques2) Set RF: RF ≥ (RISO * 100)

3) Set CF: ∗ ∗ ∗ ∗

lower values of CF = faster settling, higher overshoot

Rule 3 ensures that the two feedback paths will never create a resonance that would cause instability

61

6 ∗ R ∗ C

C≤ C ≤

10 ∗ R ∗ C

C

R = 108Ω

R ≥ R ∗ 100

R ≥ 10.8kΩ

𝟒𝟐𝟎𝐩𝐅 ≤ C ≤ 𝟕𝟐𝟎𝐩𝐅

1/β

AOL_LOADED

AOLβ

ROC = 20dB/dec

PoleZero

fC

Phase Margin = 66°

𝑅𝐹 ≥ 100 × 𝑅𝑖𝑠𝑜 = 100 × 787Ω = 78.7𝑘Ω

5 × 𝑅𝑖𝑠𝑜 × 𝐶𝐿

𝑅𝐹≤ 𝐶𝐹 ≤

10 × 𝑅𝑖𝑠𝑜 × 𝐶𝐿

𝑅𝐹

𝑅𝐹 ≥ 100 × 𝑅𝑖𝑠𝑜 = 100 × 787Ω = 78

5 × 𝑅𝑖𝑠𝑜 × 𝐶𝐿

𝑅𝐹≤ 𝐶𝐹 ≤

10 × 𝑅𝑖𝑠𝑜 × 𝐶𝐿

𝑅𝐹

Method 2: RISO + Dual Feedback - Results

62

V+

V-

+

Vin

-

+ +3

2

6

74

OP AMPCLoad 10n

Riso 108

Vo

R1 15k

R2

250

C1 470p

VLoad

• VLOAD matches VIN – No voltage divider error!• This topology has some limitations on settling time and capacitive load range

T

Time (s)

0.00 2.50m 5.00m

Out

put

2.49

2.50

2.51

Vin Vload Vopa

Summary – Solving Op Amp Stability

63

T

Time (s)

0.00 500.00u 1.00m

Vol

tage

(V)

1.81

2.34

2.88

Vcc

Vcc 5

+

-

+

U1 OPA333

CLoad 1u

VREF

+

Vin

Vcc

Vcc 5CLoad 1u

R3 499

R4 49k

C1 22n

Vopa

+

Vin

VloadR1

100k+

-

+U1 OPA333

Vcc

Vcc 5

CLoad 1u

R3 499

Vopa

+

Vin

R1

100k

+

-

+U1 OPA333 Vload

T

Time (s)

0.00 2.50m 5.00m

Out

put

2.50

2.51

2.53

Vin Vload Vopa

Riso 499

Riso 499

Recommended