EE155/255 Green Electronics - Stanford University · EE155/255 Green Electronics Power Circuits...

Preview:

Citation preview

EE155/255 Green Electronics

Power CircuitsPhotovoltaics

10/5/16

Prof. William DallyComputer Systems Laboratory

Stanford University

Course Logistics• HW2 due Monday 10/10• Lab1 signed off this week• Lab2 out

EE155/255 Lecture 4 - Power Circuits

Course to Date• We need sustainable energy systems• At the core they are voltage converters• Periodic steady-state analysis, buck and boost• Intelligent control + power path• Intelligent control done with event-driven embedded software• Real devices have switching and conduction loss

EE155/255 Lecture 4 - Power Circuits

Last Time• DC and AC characteristics of MOSFETs, Diodes, and IGBTs• Switches in pairs• One switch does the work• Turn on transient• Diode reverse recovery• Parasitics• Gate drive and Miller capacitance• “Dead time” and “shoot through”

EE155/255 Lecture 4 - Power Circuits

Review - Turn-On Loss

EE155/255 Lecture 4 - Power Circuits

IP

ILQRR QD

ID

VDS

s

t1 t2 t3

Review - Effect of Miller Cap on Rise Time

M1

iG

CDG

dVDdt

=iGCDG

Δt = ΔVDCDG

iG

Example: iG = 0.5A, C = 100pF, DV = 400V

EE155/255 Lecture 4 - Power Circuits

Snubbers

EE155/255 Lecture 4 - Power Circuits

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Dampen Ringing Nodes

LD and Cj resonate when M is on

Parallel RS dampens tank

Series CS limits dissipation

EE155/255 Lecture 4 - Power Circuits

Inductance on Drain

8uJ turn-on

42uJ turn-off

EE155/255 Lecture 4 - Power Circuits

With Snubber (1nF, 5W)

8uJ turn-on

2uJ in snubber

42uJ turn-off

EE155/255 Lecture 4 - Power Circuits

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Design Procedure

Pick RS ~ 1/wCj

Pick CS so t >= p/w

OrEs = CSV2/2

EE155/255 Lecture 4 - Power Circuits

G 50V+-

40A

RS

CS

D

M

DS

Move Turn-Off Dissipation to Passive Device

CS slows rise time of drain

CSV2/2RS dissipated in RS when CS discharges

Rarely used today

Other forms slow fall time and rising/falling currentEE155/255 Lecture 4 - Power Circuits

Critical Loop

EE155/255 Lecture 4 - Power Circuits

Critical Loop

EE155/255 Lecture 4 - Power Circuits

M1G1

ii

M2

V1

+-

G2

(a)

M1G1

M2G2

V1

+-

(b)

Lab Half-Bridge Module

EE155/255 Lecture 4 - Power Circuits

The Half-Bridge Module

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 4 - Power Circuits

Bootstrap Supply

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 4 - Power Circuits

Bootstrap Supply

EE155/255 Lecture 4 - Power Circuits

Drain Voltage Filter

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 4 - Power Circuits

Drain Voltage Filter300nH Input Inductance

EE155/255 Lecture 4 - Power Circuits

SPICE

EE155/255 Lecture 4 - Power Circuits

SPICE Example – A Voltage Doubler

EE155/255 Lecture 4 - Power Circuits

A Voltage Doubler* Simple voltage "doubler".include "gel.lib".param td=100n tr=100n tf=100n tw=2.5u tcy=5u ncy=2.param l1=22uH c1=10uF r1=10

* call half-bridge subcircuitxhb vd mid g g 0 v12 gel_hb

* circuitl1 vin mid {l1}c1 vd 0 {c1}r1 vd 0 {r1}

* suppliesv12 v12 0 12vin vin 0 24

* stimulusVG g 0 PULSE(0 5 {td} {tr} {tf} {tw} {tcy} {ncy})

.ic i(l1)=9.2

.ic v(vd)=42.8

.tran {ncy*tcy}

EE155/255 Lecture 4 - Power Circuits

Turn-On Transient

EE155/255 Lecture 4 - Power Circuits

Steady State

EE155/255 Lecture 4 - Power Circuits

Close up of Drain Current

EE155/255 Lecture 4 - Power Circuits

With PID Control

EE155/255 Lecture 4 - Power Circuits

A Warning• SPICE (or any simulator) is a Verification tool, not a Design tool• Design your circuit first

– Use Excel, Matlab, a calculator etc… to calculate component values• Then simulate your circuit to check operation and fine-tune parameters• Don’t try to design your circuit using SPICE

• Simulation is not a substitute for thinking

EE155/255 Lecture 4 - Power Circuits

Summary of Power Circuits• Real switches have limitations

– Conduction losses (RON for FETs, VCE for IGBTs, Diode drop)– Switching losses (finite ton, toff, trr)

• With current source load, current ramps, then voltage falls • And voltage rises before current falls• May be dominated by reverse recovery time• Complicated by inductance

– Parasitic L and C• Power MOSFETs

– Switch quickly, have linear I-V, integral diode• IGBTs

– Diode-like I-V, slower switching• Diodes

– Have reverse recovery time• Switches operate in pairs

– For one-way converters, one switch may be a diode– Synchronous rectification – make both switches FETs to reduce loss– Need “dead time” to avoid “shoot through” current

• Gate-drive circuits control rise and fall times– Supply Miller capacitance

• Bootstrap supply needed for high-side driver• Snubbers dampen voltage and current transients• Use SPICE as a verification tool, not a design tool

Photovoltaics

EE155/255 Lecture 4 - Power Circuits

Energy Conversion

EE155/255 Lecture 4 - Power Circuits

EE155/255 Lecture 4 - Power Circuits

Photovoltaic System

Solar Panel

Solar Panel

Solar Panel

Solar Panel

Solar Panel

Solar Panel

Photovoltaic Array

PV Controller and Inverter

Batteries

400V DC 240V AC60 Hz

48V DC

To Grid

EE155/255 Lecture 4 - Power Circuits

EE155/255 Lecture 4 - Power Circuits

M

215 Installation and Operation

C

opyright � 2012 Enphase Energy

141-00012 Rev 04

29

Sam

ple Wiring D

iagram – M

215, 240 VA

C

EE155/255 Lecture 4 - Power Circuits

Electrons absorb energy from photons

EE155/255 Lecture 4 - Power Circuits

Equivalent Circuit

RSHISC

RS

D1 VC

+

_

D2

EE155/255 Lecture 4 - Power Circuits

IV-Curve

EE155/255 Lecture 4 - Power Circuits

Typical Module CS6P60 cells in series

~0.5V per cell

3 strings of 20 with bypass diode on each string

EE155/255 Lecture 4 - Power Circuits

Typical Module

… … …EE155/255 Lecture 4 - Power Circuits

IV Curve from SPICE Model

EE155/255 Lecture 4 - Power Circuits

Peak-Power Tracking• Find point on IV curve where power is maximized.

Start at any point (v(0),i(0))“Dither” v, v(i+1) = v(i) + DvCheck result: if(p(i+1) < p(i)) v(i+1) = v(i)Try both directions: Dv = -Dv

EE155/255 Lecture 4 - Power Circuits

MPP Tracking – The Movie

EE155/255 Lecture 4 - Power Circuits

Start at (35 V, 5.5A) P=192.5

EE155/255 Lecture 4 - Power Circuits

Dither by DV = 0.5V to V = 35.5V(35.5V, 4.7A) P=166.9 < 192.5

EE155/255 Lecture 4 - Power Circuits

(35.5V, 4.7A) P=166.9 < 192.5Bad Move – Go Back to (35, 5.5)

EE155/255 Lecture 4 - Power Circuits

Dither by -0.5V to 34.5V(34.5, 6.2) P=213.9 > 192.5

EE155/255 Lecture 4 - Power Circuits

(34.5, 6.2) P=213.9 > 192.5Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

Move to 34.0(34.0, 6.7) P=227.8 > 213.9

EE155/255 Lecture 4 - Power Circuits

(34.0, 6.7) P=227.8 > 213.9Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

(33.5, 7.0) P=234.5> 227.8 Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

(33.0, 7.3) P=240.9 > 234.5Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

(32.5, 7.5) P=243.75 > 240.9 Keep move and keep going

EE155/255 Lecture 4 - Power Circuits

(32.0, 7.6) P=243.2 < 243.75 Abandon Move and Go Back!

EE155/255 Lecture 4 - Power Circuits

Operate at (32.5, 7.5) P=243.8With occasional forays to 32.0 and 33.0

EE155/255 Lecture 4 - Power Circuits

“Hillclimbing” On the Power Curve

EE155/255 Lecture 4 - Power Circuits

Compound Power Curve

EE155/255 Lecture 4 - Power Circuits

Compound Power Curve (2 Panels)

Not convexHow do you find maximum power point?

EE155/255 Lecture 4 - Power Circuits

Three Panels

EE155/255 Lecture 4 - Power Circuits

Typical String of 10 PV Panels

EE155/255 Lecture 4 - Power Circuits

Search Strategies for Non-Convex MPPT• Exhaustion

– Try every operating point• Random

– Randomly pick new points – keep if better• Hierarchical

– Try every point – with coarse spacing– Try every point near best point with finer spacing– Repeat

• Acquire and Track– One of the above to acquire MPPT (e.g., hierarchical)– Then gradient search to track– Periodically revisit (devote some fraction of string time to this)

• Optimal method depends on – Shape of curve– How fast the curve changes– How the curve changes

EE155/255 Lecture 4 - Power Circuits

Good Optimization Depends on Understanding The Problem

• Collect lots of data– Time series of IV curves from typical strings

• Understand the data• What causes “dips”

– Bad panels • Static offset in current

– Fixed shading – trees, buildings, etc… • Periodic offset – same time each day

– Variable shading – clouds, etc… • Unpredictable shading – but shifts across panels in one direction

• Develop algorithms• Test on data

EE155/255 Lecture 4 - Power Circuits

An Example of Optimization• Trade-off parameters against one another to maximize a figure of merit.

• In this case, parameters are panel voltage and current.

• Figure of merit is power.

• Optimization is done real-time because temperature and irradiance change.– Sometimes optimization is done at design time, or calibration time.

EE155/255 Lecture 4 - Power Circuits

MPPT Power Path(Boost Converter with Energy Meter)

Ci

VPV

PV Panel

RS

M1G

CO

L1

Load

M2G

VL

IPV

EE155/255 Lecture 4 - Power Circuits

MPPT Power Path(Boost Converter with Energy Meter)

Ci

VPV

PV Panel

RS

M1G

CO

L1

Load

M2G

VL

IPV

MPPT is a boost converter that regulates its INPUT voltage

EE155/255 Lecture 4 - Power Circuits

Cycle Waveforms

350 355 360 365 370 375 3802

4

6

8

il(A)

350 355 360 365 370 375 38034.5

35

35.5

v in (V

)

350 355 360 365 370 375 38043

43.5

44

44.5

v out (V

)

t (µs)

Size input cap Ci for acceptable ripple

Size output cap Co for acceptable ripple

Size inductor L to set ripple

EE155/255 Lecture 4 - Power Circuits

SPICE

EE155/255 Lecture 4 - Power Circuits

Longer Simulation

0 2 4 6 8 10 12 14 1610

20

30

40

v in(V

)

0 2 4 6 8 10 12 14 160

5

10

i pv(A

)

0 2 4 6 8 10 12 14 1620

40

60

v out(V

)

0 2 4 6 8 10 12 14 160

0.2

0.4

D

0 2 4 6 8 10 12 14 1650

100150200250

P (W

)

t (ms)

EE155/255 Lecture 4 - Power Circuits

PV Systems

EE155/255 Lecture 4 - Power Circuits

Microinverter

Panel InverterAC Line240 Vrms~1Arms

30-40V0-10A

EE155/255 Lecture 4 - Power Circuits

Store Energy During AC Null

EE155/255 Lecture 4 - Power Circuits

Approach 1 – DC Link

Boost

30-40V0-10A

340-600V0-1A

Buck Unfold

Rectified AC240V, 1A rms

EE155/255 Lecture 4 - Power Circuits

Approach 2 – Single Stage

30-40V0-10A

Convert Unfold

Rectified AC240V, 1A rms

EE155/255 Lecture 4 - Power Circuits

Buck

Boost

400VDC Unfold

400-600V120Hz Buck

240V 120Hz rectified sine240V AC 60Hz

2/3 of power through main pathLower path levels input current

Two-Path

EE155/255 Lecture 4 - Power Circuits

3-Phase

String ofPanels

Inverter

AC Line480 V20 A3 phase

600-1000V10A

No need for energy storage

EE155/255 Lecture 4 - Power Circuits

48V34AH

RCSF1

C1

A

A

B

B

C

C

A B C

3-F Inverter Power Path

EE155/255 Lecture 4 - Power Circuits

Transformerless

EE155/255 Lecture 4 - Power Circuits

Typical Utility-Scale PV System

EE155/255 Lecture 4 - Power Circuits

Typical Utility-Scale PV System• 8,000 Modules – 400 strings of 20 modules each

– 325W/module – 2.6MW DC total• Central 2MW inverter• Central 2MW step-up transformer to 34.5kv• Single axis tracking• This 2MW “block” is repeated for larger systems

EE155/255 Lecture 4 - Power Circuits

PV Economics 1• Utility scale costs

– PV Module $0.60/W– Inverter $0.10/W– Mounting $0.15/W– Balance $0.65/W– TOTAL $1.50/W

• Return– Hours/year 2,200– Wholesale $0.05/kWh– TOTAL $0.11/Wyear– 7.3% ROI

• Residential costs– PV Module $0.60– Microinverter $0.50– Mounting $0.20– Balance $1.70– TOTAL $3.00

• Return– Hours/year 2,200– Retail $0.15-$0.35/kWh– TOTAL $0.33-0.77/Wyear– 11% - 26% ROI

EE155/255 Lecture 4 - Power Circuits

PV Economics 2• Module is only 40% of cost (20% for residential)• Real issue is balance-of-system (installation labor)

EE155/255 Lecture 4 - Power Circuits

VOC Limiting• Typical module (Trina TSM-310-PD14)

– Vmp = 36V, Voc = 46V (worst-case cold temperature)• Inverter input limited to 1kV

– Limits strings to 21 modules– At Vmp could have 27 modules – 29% increase– Reduces string cost by ~30%.

EE155/255 Lecture 4 - Power Circuits

Module (and Cell) Mismatch• String current limited to current from weakest cell• Module current mismatch s = 5%• Worse for residential installations (partial shading)

• Two questions:– What is the typical mismatch profile of a 10-module string?– What power reduction does a X % current mismatch result in?

EE155/255 Lecture 4 - Power Circuits

Faults and Failures• Cell open/short• Diode open/short• Arc fault

EE155/255 Lecture 4 - Power Circuits

Summary of PV• PV cells/strings are voltage-dependent current sources (Diode in parallel

with current source)• PV controllers regulate their input voltage/current to maximize power

– Maximum power-point tracking• Can apply almost any converter topology

– Boost used for illustration– Regulate input rather than output

• Gradient search for convex optimization• More sophisticated search needed for multi cell/panel string

EE155/255 Lecture 4 - Power Circuits

In Upcoming LecturesNo Date Topic HWout HWin Labout Labck Lab HW

1 9/26/16Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/28/16EmbeddedProg/PowerElect.3 10/3/16PowerElectronics- 1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/5/16PowerElectronics- 2(circuits)5 10/10/16Photovoltaics 3 2 3 2 PVMPPT PVSPICE6 10/12/16FeedbackControl7 10/17/16ElectricMotors 4 3 4 3 MotorcontrolMatlab Feedback8 10/19/16IsolatedConverters9 10/24/16SolarDay 5/PP 4 5 4 Motorcontrol- Lab/ IsolatedConverters

10 10/26/16Magnetics11 10/31/16SoftSwitching 6 5/PP 6 5 PS MagneticsandInverters12 11/2/16ProjectDiscussions13 11/7/16Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/9/16Thermal&EMI15 11/14/16QuizReview C116 11/16/16Grounding,andDebuggingQ 11/16/16Quiz- intheevening C2

11/21/16ThanksgivingBreak11/23/16ThanksgivingBreak

17 11/28/1618 11/30/16 C319 12/5/1620 12/7/16Wrapup

TBD Projectpresentations PTBD Projectwebpagedue

Recommended